General solution of the differential equation $y^{\prime \prime}(x)-\left(y^{\prime}(x)\right)^{2}+x^{2} e^{y}(x)=0$

KRYSTYNA GRYTCZUK

Abstract

In this note we prove that the general solution of the differential equation $y^{\prime \prime}(x)-\left(y^{\prime}(x)\right)^{2}+x^{2} e^{y}(x)=0, x>0$ is the function $y(x)=-\ln W(x)$, where $W(x)=\frac{1}{12} x^{4}+A x+$ B and A, B are arbitrary constants.

1. Introduction

In this note we prove that the general solution of the differential equation

$$
\begin{equation*}
y^{\prime \prime}(x)-\left(y^{\prime}(x)\right)^{2}+x^{2} e^{y(x)}=0, \quad x>0 \tag{1}
\end{equation*}
$$

is the function

$$
\begin{equation*}
y(x)=-\ln W(x), \text { where } W(x)=\frac{1}{12} x^{4}+A x+B \tag{2}
\end{equation*}
$$

and A, B are arbitrary constants. First, we note that such type of differential equations as (1) are difficult to solve. For example, E. Y. Rodin (see [1], p. 474, Unsolved problems, SIAM 81-17) posed the following problem. Find the general solution of the differential equation:

$$
\begin{equation*}
y^{\prime \prime}(x)+x^{2} e^{y(x)}=0, \quad x>0 . \tag{3}
\end{equation*}
$$

We prove that (1) has general solution given by (2), however we can't find the general solution of (3).

2. The Result

We prove the following theorem:
Theorem. The general solution of the differential equation (1) is the function

$$
y(x)=\ln \left(\frac{1}{12} x^{2}+A x+B\right)
$$

where A, B are arbitrary constants.

Proof. Putting $y(x)=\ln z(x)$ we obtain

$$
\begin{equation*}
y^{\prime}(x)=\frac{z^{\prime}(x)}{z(x)} \tag{4}
\end{equation*}
$$

and consequently we have

$$
\begin{equation*}
y^{\prime \prime}(x)=\frac{z^{\prime \prime}(x)}{z(x)}-\left(\frac{z^{\prime}(x)}{z(x)}\right)^{2} . \tag{5}
\end{equation*}
$$

Since $y(x)=\ln z(x)$, then $e^{y(x)}=z(x)$ and by (4) and (5) it follows that (1) can be reduced to the following form:

$$
\begin{equation*}
\frac{z^{\prime \prime}(x)}{z^{2}(x)}-2 \frac{\left(z^{\prime}(x)\right)^{2}}{z^{3}(x)}=-x^{2} \tag{6}
\end{equation*}
$$

Integrating (6) with respect to x we obtain:

$$
\int\left(\frac{z^{\prime \prime}(x)}{z^{2}(x)}-2 \frac{\left(z^{\prime}(x)\right)^{2}}{z^{3}(x)}\right) d x=-\frac{1}{3} x^{3}+C_{1} .
$$

Denote by

$$
\begin{equation*}
f(z(x))=\frac{z^{\prime \prime}(x)}{z^{2}(x)}-2 \frac{\left(z^{\prime}(x)\right)^{2}}{z^{3}(x)} . \tag{7}
\end{equation*}
$$

Then we see that the function

$$
\begin{equation*}
\frac{z^{\prime}(x)}{z^{2}(x)}=F(z(x)) \tag{8}
\end{equation*}
$$

satisfies the following condition

$$
F^{\prime}(z(x))=\left(\frac{z^{\prime}(x)}{z^{2}(x)}\right)^{\prime}=\frac{z^{\prime \prime}(x)}{z^{2}(x)}-2 \frac{\left(z^{\prime}(x)\right)^{2}}{z^{3}(x)}=f((z(x))
$$

and therefore by (7) and (8) it follows that

$$
\begin{equation*}
\frac{z^{\prime}(x)}{z^{2}(x)}=-\frac{1}{3} x^{3}+C_{1} . \tag{9}
\end{equation*}
$$

Integrating the last equality with respect to x we obtain

$$
\begin{equation*}
\int \frac{z^{\prime}(x)}{z^{2}(x)} d x=-\frac{1}{12} x^{4}+C_{1} x+C_{2} \tag{10}
\end{equation*}
$$

On the other hand it easy to see that

$$
\begin{equation*}
\left(-\frac{1}{z(x)}\right)^{\prime}=\frac{z^{\prime}(x)}{z^{2}(x)} \tag{11}
\end{equation*}
$$

and consequently by (10) and (11) it follows that

$$
-\frac{1}{z(x)}=-\frac{1}{12} x^{4}+C_{1} x+C_{2}
$$

and we have

$$
y(x)=\ln z(x)=-\ln \left(\frac{1}{12} x^{4}+A x+B\right)=-\ln W(x)
$$

where $A=-C_{1}, B=-C_{2}$. The proof of the theorem is complete.

References

[1] S. Rabinowitz, Index to Mathematical Problems, Westford, Massachusetts, USA, 1992.

Institute of Mathematics
Technical University
Zielona Góra, ul. Podgórna 50
Poland

