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WEAK HYPERGRAPH REGULARITY AND APPLICATIONS TO

GEOMETRIC RAMSEY THEORY

NEIL LYALL AND ÁKOS MAGYAR

Abstract. Let Δ = Δ1 × . . . × Δd ⊆ Rn, where Rn = Rn1 × · · · × Rnd

with each Δi ⊆ Rni a non-degenerate simplex of ni points. We prove that
any set S ⊆ Rn, with n = n1 + · · · + nd of positive upper Banach density
necessarily contains an isometric copy of all sufficiently large dilates of the
configuration Δ. In particular any such set S ⊆ R2d contains a d-dimensional
cube of side length λ, for all λ ≥ λ0(S). We also prove analogous results with
the underlying space being the integer lattice. The proof is based on a weak
hypergraph regularity lemma and an associated counting lemma developed in
the context of Euclidean spaces and the integer lattice.

1. Introduction

1.1. Existing results I: Distances and simplices in subsets of Rn. Recall
that the upper Banach density of a measurable set S ⊆ Rn is defined by

(1.1) δ∗(S) = lim
N→∞

sup
t∈Rn

|S ∩ (t+Q(N))|
|Q(N)| ,

where | · | denotes Lebesgue measure on Rn and Q(N) denotes the cube
[−N/2, N/2]n.

A result of Furstenberg, Katznelson, and Weiss [6] states that if S ⊆ R2 has
positive upper Banach density, then its distance set {|x− x′| : x, x′ ∈ S} contains
all sufficiently large numbers. Note that the distance set of any set of positive
Lebesgue measure in Rn automatically contains all sufficiently small numbers (by
the Lebesgue density theorem) and that it is easy to construct a set of positive upper
density which does not contain a fixed distance by placing small balls centered on
an appropriate square grid.

Theorem A (Furstenberg, Katznelson, and Weiss [6]). If S ⊆ R2 with δ∗(S) > 0,
then there exists a λ0 = λ0(S) such that S is guaranteed to contain pairs of points
{x1, x2} with |x2 − x1| = λ for all λ ≥ λ0.

This result was later reproved using Fourier analytic techniques by Bourgain in
[1] where he established the following more general result for all configurations of n
points in Rn whose affine span is n− 1 dimensional, namely for all non-degenerate
simplices.
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Theorem B (Bourgain [1]). Let Δ ⊆ Rn be a non-degenerate simplex of n points.
If S ⊆ Rn with δ∗(S) > 0, then there exists a threshold λ0 = λ0(S,Δ) such that S
contains an isometric copy of λΔ for all λ ≥ λ0.

Recall that a finite point configuration Δ′ is said to be an isometric copy of λΔ
if there exists a bijection φ : Δ → Δ′ such that |φ(v) − φ(w)| = λ |v − w| for all
v, w ∈ Δ, i.e. if Δ′ is obtained from λΔ (the dilation of Δ by a factor λ) via a
rotation and translation.

Bourgain deduced Theorem B as an immediate consequence of the following
stronger quantitative result for measurable subsets of the unit cube of positive mea-
sure. In Proposition C, and throughout this article, we shall refer to a decreasing
sequence {λj}Jj=1 as lacunary if λj+1 ≤ λj/2 for all 1 ≤ j < J .

Proposition C (Bourgain [1]). Let Δ ⊆ Rn be a non-degenerate simplex of n
points. For any 0 < δ ≤ 1 there exists a constant J = OΔ(δ

−3n) such that if
1 ≥ λ1 ≥ · · · ≥ λJ is any lacunary sequence and S ⊆ [0, 1]n with |S| ≥ δ, then there
exists 1 ≤ j < J such that S contains an isometric copy of λΔ for all λ ∈ [λj+1, λj ].

In [12] the authors provided a short direct proof of Theorem B without using
Proposition C. It is based on the observation that uniformly distributed sets S ⊆ Rd

contain the expected “number” of isometric copies of dilates λΔ and that all sets
of positive upper density become uniformly distributed at sufficiently large scales.
However, for the purposes of this paper it will be important to recall Bourgain’s
indirect approach.

To see that Proposition C implies Theorem B notice that if Theorem B were not
to hold for some set S ⊆ Rn of upper Banach density δ∗(S) > δ > 0, then there must
exist a lacunary sequence λ1 ≥ · · · ≥ λJ ≥ 1, with J the constant in Proposition C,
such that S does not contain an isometric copy of λjΔ for any 1 ≤ j ≤ J . Taking
a sufficiently large cube Q with side length N ≥ λ1 and |S ∩Q| ≥ δ|Q| and scaling
back Q → [0, 1]n contradicts Proposition C.

We further note that by taking λj = 2−j in Proposition C we obtain the following
“Falconer-type” result for subsets of [0, 1]n of positive Lebesgue measure.

Corollary D. If Δ ⊆ Rn is a non-degenerate simplex of n points, then any S ⊆
[0, 1]n with |S| > 0 will necessarily contain an isometric copy of λΔ for all λ in
some interval of length at least exp(−CΔ|S|−3n).

Bourgain further demonstrated in [1] that no result along the lines of Theorem B
can hold for configurations that contain any three points in arithmetic progression
along a line, specifically showing that for any n ≥ 1 there are sets of positive upper
Banach density in Rn which do not contain an isometric copy of configurations of
the form {0, y, 2y} with |y| = λ for all sufficiently large λ. This should be contrasted
with the following remarkable result of Tamar Ziegler.

Theorem E (Ziegler [25]). Let F be any configuration of k points in Rn with n ≥ 2.
If S ⊆ Rn has positive upper density, then there exists a threshold λ0 = λ0(S,F)

such that Sε contains an isometric copy of λF for all λ ≥ λ0 and any ε > 0, where
Sε denotes the ε-neighborhood of S.

Bourgain’s example was later generalized by Graham [9] to establish that the
condition that ε > 0 in Theorem E is necessary and cannot be strengthened to
ε = 0 for any given non-spherical configuration F in Rn for any n ≥ 1, that is for
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any finite configuration of points that cannot be inscribed in some sphere. We note
that the sets constructed by Bourgain and Graham have the property that for any
ε > 0 their ε-neighborhoods will contain arbitrarily large cubes and hence trivially
satisfy Theorem E with λ0 = 0.

It is natural to ask if any spherical configuration F , beyond the known example
of simplices, has the property that every positive upper Banach density subset of
Rn, for some sufficiently large n, contains an isometric copy of λF for all sufficiently
large λ, and even to conjecture that this ought to hold for all spherical configu-
rations. The first breakthrough in this direction came in [12] when the authors
established this for configurations of four points forming a 2-dimensional rectangle
in R4 and more generally for any configuration that is the direct product of two
non-degenerate simplices in Rn for suitably large n.

The purpose of this article is to present a strengthening of the results in [12] and
to extend them to cover configurations with a higher dimensional product structure
in both the Euclidean and discrete settings.

1.2. New results I: Rectangles and products of simplices in subsets of Rn.
The first main result of this article is the following

Theorem 1.1. Let R be 2d points forming the vertices of a fixed d-dimensional
rectangle in R2d.

(i) If S ⊆ R2d has positive upper Banach density, then there exists a threshold
λ0 = λ0(S,R) such that S contains an isometric copy of λR for all λ ≥ λ0.

(ii) For any 0 < δ ≤ 1 there exists a constant c = c(δ,R) > 0 such that any
S ⊆ [0, 1]2d with |S| ≥ δ is guaranteed to contain an isometric copy of λR
for all λ in some interval of length at least c.

Moreover, if R has sidelengths given by t1, . . . , td, then the isometric copies of λR
in both (i) and (ii) above can all be realized in the special form {x11, x12} × · · · ×
{xd1, xd2} ⊆ R2 × · · · × R2 with each |xj2 − xj1| = λtj.

The multi-dimensional extension of Szemerédi’s theorem on arithmetic progres-
sions in sets of positive density due to Furstenberg and Katznelson [5] implies, and
is equivalent to the fact, that there are isometric copies of λR in S for arbitrarily
large λ, with sides parallel to the coordinate axis. Theorem 1.1 states that there
is an isometric copy of λR in S for every sufficiently large λ, but only with sides
parallel to given 2-dimensional coordinate subspaces which provides an extra degree
of freedom for each side vector of the rectangle R.

A weaker version of Theorem 1.1, with R2d replaced with R5d, was later estab-
lished by Durcik and Kovač in [4] using an adaptation of arguments of the second
author with Cook and Pramanik in [3]. This approach also makes direct use of
the full strength of the multi-dimensional Szemerédi theorem and as such leads to
quantitatively weaker results.

Our arguments work for more general patterns where d-dimensional rectangles
are replaced with direct products of non-degenerate simplices.

Theorem 1.2. Let Δ = Δ1 × · · · × Δd ⊆ Rn, where Rn = Rn1 × · · · × Rnd and
each Δj ⊆ Rnj is a non-degenerate simplex of nj points.

(i) If S ⊆ Rn has positive upper Banach density, then there exists a threshold
λ0 = λ0(S,Δ) such that S contains an isometric copy of λΔ for all λ ≥ λ0.
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(ii) For any 0 < δ ≤ 1 there exists a constant c = c(δ,Δ) > 0 such that any
S ⊆ [0, 1]n with |S| ≥ δ is guaranteed to contain an isometric copy of λΔ
for all λ in some interval of length at least c.

Moreover the isometric copies of λΔ in both (i) and (ii) above can all be realized
in the special form Δ′

1 × · · · ×Δ′
d with each Δ′

j ⊆ Rnj an isometric copy of λΔj.

Quantitative Remark. A careful analysis of our proof reveals that the constant
c(δ,Δ) can be taken greater than Wd(C

′
Δδ

−3n1···nd)−1 where Wk(m) is a tower of
exponentials defined by W1(m) = exp(m) and Wk+1(m) = exp(Wk(m)) for k ≥ 1.

1.3. Existing results II: Distances and simplices in subsets of Zn. The
problem of counting isometric copies of a given non-degenerate simplex in Zn (with
one vertex fixed) has been extensively studied via its equivalent formulation as the
number of ways a quadratic form can be represented as a sum of squares of linear
forms, see [11] and [19]. This was exploited by the second author in [16] and [17]
to establish analogous results to those described in Section 1.1 for subsets of the
integer lattice Zn of positive upper density.

Recall that the upper Banach density of a set S ⊆ Zn is analogously defined by

(1.2) δ∗(S) = lim
N→∞

sup
t∈Rn

|S ∩ (t+Q(N))|
|Q(N)| ,

where | · | now denotes counting measure on Zn and Q(N) the discrete cube
[−N/2, N/2]n ∩ Zn.

In light of the fact that any pairs of distinct points {x1, x2} in Zn have the
property that the square of the distance between them |x2−x1|2 is always a positive
integer we introduce the convenient notation

√
N := {λ : λ > 0 and λ2 ∈ Z}.

Theorem A′ (Magyar [16]). Let 0 < δ ≤ 1.
If S ⊆ Z5 has upper Banach density at least δ, then there exists an integer

q0 = q0(δ) and λ0 = λ0(S) such that S contains pairs of points {x1, x2} with

|x2 − x1| = q0λ for all λ ∈
√
N with λ ≥ λ0.

Theorem B′ (Magyar [17]). Let 0 < δ ≤ 1 and Δ ⊆ Z2n+3 be a non-degenerate
simplex of n points.

(i) If S ⊆ Z2n+3 has upper Banach density at least δ, then there exists an
integer q0 = O(exp(CΔδ

−13n)) and λ0 = λ0(S,Δ) such that S contains an

isometric copy of q0λΔ for all λ ∈
√
N with λ ≥ λ0.

(ii) If N ≥ exp(2CΔδ
−13n), then any S ⊆ {1,. . . ,N}2n+3 with cardinality |S| ≥

δN2n+3 will necessarily contain an isometric copy of λΔ for some λ ∈
√
N

with 1 ≤ λ ≤ N .

Note that the fact that S ⊆ Zn could fall entirely into a fixed congruence class
of some integer 1 ≤ q ≤ δ−1/n ensures that the q0 that appears in Theorems A′ and
B′ must be divisible by the least common multiple of all integers 1 ≤ q ≤ δ−1/n.
Indeed if S = (qZ)n with 1 ≤ q ≤ δ−1/n then S has upper Banach density at least
δ, however the distance between any two points x, y ∈ S is of the form |x− y| = qλ

for some λ ∈
√
N.

However, in both Theorems A′ and Part (i) of Theorem B′, one can take q0 = 1
if the sets S are assumed to be suitably uniformly distributed on congruence classes
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of small modulus. This leads via an easy density increment strategy to short new
proofs, see [14] for Theorem A′ and Section 8 for Part (i) of Theorem B′.

The original argument in [17] deduced Theorem B′ from the following discrete
analogue of Proposition C.

Proposition C′ (Magyar [17]). Let Δ ⊆ Z2n+3 be a non-degenerate simplex of n
points.

For any 0 < δ ≤ 1 there exist constants J = OΔ(δ
−3n) and q0 =

O(exp(CΔδ
−13n)) such that if N ≥ λ1 ≥ · · · ≥ λJ ≥ 1 is any lacunary sequence

in q0
√
N and S ⊆ {1, . . . , N}2n+3 with cardinality |S| ≥ δN2n+3, then S will

necessarily contain an isometric copy of λjΔ for some 1 ≤ j ≤ J .

To see that Proposition C′implies Theorem B′ notice that if Part (i) of Theorem
B′ were not to hold for some set S ⊆ Z2n+3 of upper Banach density δ∗(S) > δ > 0
with q0 from Proposition C′, then there must exist a lacunary sequence λ1 ≥ · · · ≥
λJ ≥ 1 in q0

√
N, with J the constant from Proposition C′, such that S does not

contain an isometric copy of λjΔ for any 1 ≤ j ≤ J . Since we can find a sufficiently
large cube Q with integer side length N that is divisible by q0 and greater than λ1

such that |S ∩Q| ≥ δ|Q|, this contradicts Proposition C′. Part (ii) of Theorem B′

follows from Proposition C′ by taking λj = 2J−jq0.

1.4. New results II: Rectangles and products of simplices in subsets of
Zn. We will also establish the following discrete analogues of Theorem 1.1 and 1.2.

Theorem 1.3. Let 0 < δ ≤ 1 and R be 2d points forming the vertices of a d-
dimensional rectangle in Z5d.

(i) If S ⊆ Z5d has upper Banach density at least δ, then there exist integers
q0 = q0(δ,R) and λ0 = λ0(S,R) such that S contains an isometric copy of

q0λR for all λ ∈
√
N with λ ≥ λ0.

(ii) There exists a constant N(δ,R) such that if N ≥ N(δ,R), then any S ⊆ {1,
. . . , N}5d with cardinality |S| ≥ δN5d will necessarily contain an isometric

copy of λR for some λ ∈
√
N with 1 ≤ λ ≤ N .

If R has side lengths given by t1, . . . , td, then each of the isometric copies in (i)
and (ii) above can be realized in the form {x11, x12}×· · ·×{xd1, xd2} ⊆ Z5×· · ·×Z5

with each |xj2 − xj1| = q0λtj and λtj, respectively.

Our arguments again work for more general patterns where d-dimensional rect-
angles are replaced with direct products of non-degenerate simplices.

Theorem 1.4. Let 0 < δ ≤ 1 and Δ = Δ1 × · · · × Δd ⊆ Zn, where Zn =
Z2n1+3 × · · · × Z2nd+3 and each Δi ⊆ Z2ni+3 is a non-degenerate simplex of ni

points.

(i) If S ⊆ Zn has upper Banach density at least δ, then there exist integers
q0 = q0(δ,Δ) and λ0 = λ0(S,Δ) such that S contains an isometric copy of

q0λΔ for all λ ∈
√
N with λ ≥ λ0.

(ii) There exists a constant N(δ,Δ) such that if N ≥ N(δ,Δ), then any S ⊆ {1,
. . . , N}n with cardinality |S| ≥ δNn will necessarily contain an isometric

copy of λΔ for some λ ∈
√
N with 1 ≤ λ ≤ N .

Moreover, each of the isometric copies in (i) and (ii) above can be realized in the
special form Δ′

1 × · · · ×Δ′
d with each Δ′

i ⊆ Z2ni+3 an isometric copy of q0λΔj and
λΔj, respectively.
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Quantitative Remark. A careful analysis of our proof reveals that the constant
q0(δ,Δ) (and consequently also N(δ,Δ)) can be taken less than Wd(C

′
Δδ

−13n1···nd)
where Wk(m) is a tower of exponentials defined by W1(m) = exp(m) and Wk+1(m)
= exp(Wk(m)) for k ≥ 1.

1.5. Notations and outline. We will consider the parameters d, n1, . . . , nd fixed
and will not indicate the dependence on them. Thus we will write f = O(g)
if |f | ≤ C(n1, . . . , nd)g. If the implicit constants in our estimates depend on
additional parameters ε, δ, K, . . . then we will write f = Oε,δ,K,...(g). We will use
the notation f 	 g to indicate that |f | ≤ c g for some constant c > 0 sufficiently
small for our purposes.

Given an ε > 0 and a (finite or infinite) sequence L0 ≥ L1 ≥ · · · > 0, we will say
that the sequence is ε-admissible if Lj/Lj+1 ∈ N and Lj+1 	 ε2Lj for all j ≥ 1.
Moreover, if q ∈ N is given and Lj ∈ N for all 1 ≤ j ≤ J , then we will call the
sequence L0 ≥ L1 ≥ · · · ≥ LJ (ε, q)-admissible if in addition LJ/q ∈ N. Such
sequences of scales will often appear in our statements both in the continuous and
the discrete case.

Our proofs are based on a weak hypergraph regularity lemma and an associated
counting lemma developed in the context of Euclidean spaces and the integer lattice.
In Section 2 we introduce our approach in the model case of finite fields and prove
an analogue of Theorem 1.1 in this setting. In Section 3 we review Theorem 1.2
for a single simplex and ultimately establish the base case of our general inductive
approach to Theorem 1.2. In Section 4 we address Theorem 1.2 for the direct
product of two simplices, this provides a new proof (and strengthening) of the main
result of [12] and serves as a gentle preparation for the more complicated general
case which we present in the Section 5. The proof of Theorem 1.4 is outlined in
Sections 6 and 7, while a short direct proof of Part (i) of Theorem B′ is presented
in Section 8.

2. Model case: Vector spaces over finite fields

In this section we will illustrate our general method by giving a complete proof
of Theorem 1.1 in the model setting of Fn

q where Fq denotes the finite field of q
elements. We do this as the notation and arguments are more transparent in this
setting yet many of the main ideas are still present.

We say that two vectors u, v ∈ Fn
q are orthogonal, if x·y = 0, where “·” stands for

the usual dot product. A rectangle in Fn
q is then a set R = {x1, y1}× · · ·×{xn, yn}

with side vectors yi − xi being pairwise orthogonal.
The finite field analogue of Theorem 1.1 is the following

Proposition 2.1. For any 0 < δ ≤ 1 there exists an integer q0 = q0(δ) with the
following property:

If q ≥ q0 and t1, . . . , td ∈ F∗
q, then any S ⊆ F2d

q with |S| ≥ δ q2d will contain
points

{x11, x12} × · · · × {xd1, xd2} ⊆ V1 × · · · × Vd with |xj2 − xj1|2 = tj for 1 ≤ j ≤ d

where we have written F2d
q = V1 × · · · × Vd with Vj 
 F2

q pairwise orthogonal
coordinate subspaces.
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2.1. Overview of the proof of Proposition 2.1. Write F2d
q = V1× . . .×Vd with

Vj 
 F2
q pairwise orthogonal coordinate subspaces. For any t := (t1, . . . , td) ∈ F∗

q

and S ⊆ F2d
q we define

Nt(1S) := Ex1∈V 2
1 ,...,xd∈V 2

d

∏
(�1,...,�d)∈{1,2}d

1S(x1�1 , . . . , xd�d)

d∏
j=1

σtj (xj2 − xj1)

where we used the shorthand notation xj := (xj1, xj2) for each 1 ≤ j ≤ d and the
averaging notation:

Ex∈Af(x) :=
1

|A|
∑
x∈A

f(x)

for a finite set A �= ∅. We have also used the notation

σt(x) =

{
q if |x|2 = t

0 otherwise

for each t ∈ F∗
q . Note that the function σt may be viewed as the discrete analogue

of the normalized surface area measure on the sphere of radius
√
t. It is well-known,

see [10], that

Ex∈F2
q
σt(x) = 1 +O(q−1/2)

and for all ξ �= 0 one has

σ̂t(ξ) := Ex∈F2
q
σt(x) e

2πix·ξ
q = O(q−1/2).

Note that if Nt(1S) > 0, then this implies that S contains a rectangle of the form
{x11, x12} × · · · × {xd1, xd2} with xj1, xj2 ∈ Vj and |xj2 − xj1|2 = tj for 1 ≤ j ≤ d.

Our approach to Proposition 2.1 in fact establishes the following quantitatively
stronger result.

Proposition 2.2. For any 0 < ε ≤ 1 there exists an integer q0 = q0(ε) with the
following property:

If q ≥ q0, then for any S ⊆ F2d
q and t1, . . . , td ∈ F∗

q one has

Nt(1S) >

(
|S|
q2d

)2d

− ε,

where we have written F2d
q = V1 × . . . × Vd with Vj 
 F2

q pairwise orthogonal
coordinate subspaces.

A crucial observation in the proof of Proposition 2.2 is that the averages Nt(1S)
can be compared to ones which can be easily estimated from below. We define, for
any S ⊆ F2d

q , the (unrestricted) count

M(1S) := Ex1∈V 2
1 ,...,xd∈V 2

d

∏
(�1,...,�d)∈{1,2}d

1S(x1�1 , . . . , xd�d).

It is easy to see, by carefully applying Cauchy-Schwarz d times to
Ex11∈V1,...,xd1∈Vd

1S(x11, . . . , xd1), that

(2.1) M(1S) ≥
(
|S|
q2d

)2d

.
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Our approach to Proposition 2.2 therefore reduces to establishing that for any
ε > 0 one has

(2.2) Nt(1S) = M(1S) +O(ε) +Oε(q
−1/2).

The validity of (2.2) will follow immediately from the d = k case of Proposition
2.3. However, before we can state this counting lemma we need to introduce some
further notation from the theory of hypergraphs, notation that we shall ultimately
make use of throughout the paper.

2.2. Hypergraph notation and a counting lemma. In order to streamline our
notation we will make use the language of hypergraphs. For J := {1, . . . , d} and
1 ≤ k ≤ d, we let Hd,k = {e ⊆ J ; |e| = k} denote the full k-regular hypergraph
on the vertex set J . For K := {jl; j ∈ J, l ∈ {1, 2}} we define the projection
π : K → J as π(jl) := j and use this in turn to define the hypergraph bundle

H2
d,k := {e ⊆ K; |e| = |π(e)| = k}

using the shorthand notation 2 = (2, 2, . . . , 2) to indicate that |π−1(j)| = 2 for all
j ∈ J .

Notice when k = d then Hd,d consists of one element, the set e = {1, . . . , d},
and

H2
d,d = { {1l1, . . . , dld}; (l1, . . . , ld) ∈ {1, 2}d}.

Let V := F2d
q and V = V1× . . .×Vd with Vj 
 F2

q pairwise orthogonal coordinate

subspaces. For a given x = (x11, x12, . . . , xd1, xd2) ∈ V 2 with xj1, xj2 ∈ Vj and a
given edge e = {1l1, . . . , dld}, we write

xe := (x1l1 , . . . , xdld).

Note that the map x → xe defines a projection πe : V 2 → V . With this notation,
we can clearly now write

Nt(1S) = Ex∈V 2

∏
e∈H2

d,d

1S(xe)

d∏
j=1

σtj (xj2 − xj1)

M(1S) = Ex∈V 2

∏
e∈H2

d,d

1S(xe).

Now for any 1 ≤ k ≤ d and any edge e′ ∈ Hd,k, i.e. e
′ ⊆ {1, . . . , d}, |e′| = k, we

let Ve′ :=
∏

j∈e′ Vj . For every x ∈ V 2 and e ∈ H2
d,k, we define xe := πe(x) where

πe : V
2 → Vπ(e) is the natural projection map.

Our key counting lemma, Proposition 2.3, which we will establish by induction
on 1 ≤ k ≤ d below, is then the statement that given a family of functions fe :

Vπ(e) → [−1, 1], e ∈ H2
d,k, the averages (generalizing those discussed above) which

are defined by

Nt(fe; e ∈ H2
d,k) := Ex∈V 2

∏
e∈H2

d,k

fe(xe)

d∏
j=1

σtj (xj2 − xj1)(2.3)

M(fe; e ∈ H2
d,k) := Ex∈V 2

∏
e∈H2

d,k

fe(xe)(2.4)

are approximately equal. Specifically, one has
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Proposition 2.3 (Counting lemma). Let 1 ≤ k ≤ d and 0 < ε ≤ 1. For any
collection of functions

fe : Vπ(e) → [−1, 1] with e ∈ H2
d,k

one has

(2.5) Nt(fe; e ∈ H2
d,k) = M(fe; e ∈ H2

d,k) +O(ε) +Oε(q
−1/2).

If we apply this proposition with d = k and fe = 1S for all e ∈ H2
d,d, then

Theorem 2.1 clearly follows given the lower bound (2.1).

2.3. Proof of Proposition 2.3. We will establish Proposition 2.3 by inducting
on 1 ≤ k ≤ d.

For k = 1 the result follows from the basic observation that if f1, f2 : F2
q → [−1, 1]

and let t ∈ F∗
q , then

Ex1,x2∈F2
q
f1(x1)f2(x2) σt(x2 − x1) =

∑
ξ∈F2

q

f̂1(ξ)f̂2(ξ)σ̂t(ξ)

= f̂1(0)f̂2(0) +O(q−1/2)(2.6)

= Ex1,x2∈F2
q
f1(x1)f2(x2) +O(q−1/2)

by the properties of the function σ̂ given above.

To see how this implies Proposition 2.3 for k = 1 we note that since H2
d,1 = {jl :

1 ≤ j ≤ d, 1 ≤ l ≤ 2} it follows that

Nt(fe; e ∈ H2
d,1) =

d∏
j=1

Exj1,xj2∈F2
q
fj1(xj1)fj2(xj2) σt(xj2 − xj1)

=

d∏
j=1

Exj1,xj2∈F2
q
fj1(xj1)fj2(xj2) +O(q−1/2)

= M(fe; e ∈ H2
d,1) +O(q−1/2).

The induction step has two main ingredients, the first is an estimate of the type
which is often referred to as a generalized von-Neumann inequality, namely

Lemma 2.1. Let 1 ≤ k ≤ d. For any collection of functions fe : Vπ(e) → [−1, 1]

with e ∈ H2
d,k one has

(2.7) Nt(fe; e ∈ H2
d,k) ≤ min

e∈H2
d,k

‖fe‖�(Vπ(e)) +O(q−1/2),

where for any e ∈ H2
d,k and f : Vπ(e) → [−1, 1] we define

(2.8) ‖f‖2k�(Vπ(e))
:= Ex∈V 2

π(e)

∏
e∈H2

d,k

f(xe).

The corresponding inequality for the multi-linear expression M(fe; e ∈ H2
d,k),

namely the fact that

M(fe; e ∈ H2
d,k) ≤

∏
e∈H2

d,k

‖fe‖�(Vπ(e)) ≤ min
e∈H2

d,k

‖fe‖�(Vπ(e))

is well-known and is referred to as the Gowers-Cauchy-Schwarz inequality [8].
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The second and main ingredient is an approximate decomposition of a graph to
simpler ones, and is essentially the so-called weak (hypergraph) regularity lemma
of Frieze and Kannan [7]. We choose to state this from a somewhat more ab-
stract/probabilistic point of view, a perspective that will be particularly helpful
when we consider our general results in the continuous and discrete settings.

We will first introduce this in the case d = 2. A bipartite graph with (finite)
vertex sets V1, V2 is a set S ⊆ V1×V2 and a function f : V1×V2 → R may be viewed
as weighted bipartite graph with weights f(x1, x2) on the edges (x1, x2). If P1 and
P2 are partitions of V1 and V2 respectively then P = P1 ×P2 is a partition V1 ×V2

and we let E(f |P) denote the function that is constant and equal to Ex∈Af(x) on
each atom A = A1×A2 of P. The weak regularity lemma states that for any ε > 0
and for any weighted graph f : V1 × V2 → [−1, 1] there exist partitions Pi of Vi

with |Pi| ≤ 2O(ε−2) for i = 1, 2, so that

(2.9) |Ex1∈V1
Ex2∈V2

(f − E(f |P))(x1, x2) 1U1
(x1)1U2

(x2)| ≤ ε

for all U1 ⊆ V1 and U2 ⊆ V2. Informally this means that the graph f can be
approximated with precision ε with the “low complexity” graph E(f,P). If we
consider the σ-algebras Bi generated by the partitions Pi and the σ-algebra B = B1∨
B2 generated by P1×P2 then we have E(f |B), the so-called conditional expectation
function of f . Moreover it is easy to see, using Cauchy-Schwarz, that estimate (2.9)
follows from

(2.10) ‖f − E(f |B1 ∨ B2)‖�(V1×V2) ≤ ε.

With this more probabilistic point of view the weak regularity lemma says that
the function f can be approximated with precision ε by a low complexity function
E(f |B1

∨
B2), corresponding to σ-algebras Bi on Vi generated by O(ε−2) sets. This

formulation is also referred to as a Koopman von Neumann type decomposition,
see Corollary 6.3 in [23].

We will need a natural extension to k-regular hypergraphs. See [8, 22], and also
[2] for extension to sparse hypergraphs. Given an edge e′ ∈ Hd,k of k elements
we define its boundary ∂e′ := {f′ ∈ Hd,k−1; f′ ⊆ e′}. For each f′ = e′\{j} ∈ ∂e′

let B′
f be a σ-algebra on Vf′ :=

∏
j∈f′ Vj and B̄f′ := {U × Vj ; U ∈ Bf′} denote

its pull-back over the space Ve′ . The σ-algebra B =
∨

f′∈∂e′ Bf′ is the smallest

σ-algebra on ∂e′ containing B̄f′ for all f
′ ∈ ∂e′. Note that the atoms of B are of the

form A =
⋂

f′∈∂e′ Af′ where Af′ is an atom of B̄f′ . We say that the complexity of

a σ-algebra Bf′ is at most m, and write complex(Bf′) ≤ m, if it is generated by m
sets.

Lemma 2.2 (Weak hypergraph regularity lemma). Let 1 ≤ k ≤ d and fe : Vπ(e) →
[−1, 1] be a given function for each e ∈ H2

d,k. For any ε > 0 there exists σ-algebras

Bf′ on Vf′ for each f′ ∈ Hd,k−1 such that

(2.11) complex(Bf′) = O(ε−2k+1

)

and

(2.12) ‖fe − E(fe|
∨

f′∈∂π(e)

Bf′)‖�(Vπ(e)) ≤ ε for all e ∈ H2
d,k.
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The proof of Lemmas 2.1 and 2.2 are presented in Section 2.4. We close this
subsection by demonstrating how these lemmas can be combined to establish Propo-
sition 2.3.

Proof of Proposition 2.3. Let ε > 0, 2 ≤ k ≤ d and assume that the lemma holds
for k− 1. It follows from Lemma 2.2 that there exists σ-algebras Bf′ of complexity

O(ε−2k+1

) on Vf′ for each f′ ∈ Hd,k−1 for which (2.12) holds for all e ∈ H2
d,k. For

each e ∈ H2
d,k we let f̄e := E(fe|

∨
f′∈∂π(e) Bf′) and write fe = f̄e + he. By Lemma

2.1 and multi-linearity we have that

(2.13) Nt(fe; e ∈ H2
d,k) = Nt(f̄e; e ∈ H2

d,k) +O(ε) +O(q−1/2)

and also by the Gowers-Cauchy-Schwarz inequality

(2.14) M(fe; e ∈ H2
d,k) = M(f̄e; e ∈ H2

d,k) +O(ε).

The conditional expectation functions f̄e are linear combinations of the indicator
functions 1Ae

of the atoms Ae of the σ-algebras Be :=
∨

f′∈∂π(e) Bf′ . Since the

number of terms in this linear combination is at most 2Cε−2k+1

, with coefficients at

most 1 in modulus, plugging these into the multi-linear expressionsNt(f̄e; e ∈ H2
d,k)

and M(f̄e; e ∈ H2
d,k) one obtains a linear combination of expressions of the form

Nt(1Ae
; e ∈ H2

d,k) and M(1Ae
; e ∈ H2

d,k) respectively with each Ae being an atoms

of Be for all e ∈ H2
d,k.

The key observation is that these expressions are at level k − 1 instead of k.
Indeed, 1Ae

=
∏

f′∈∂π(e) 1Aef′ where Aef′ = A′
ef′ × Vj , with A′

ef′ being an atom

of Bf′ when f′ = π(e)\{j}. If e = (j1l1, . . . , jl, . . . , jklk), let pf′(e) := (j1l1,

. . . , jklk) ∈ H2
d,k−1, obtained from e by removing the jl-entry. Then we have

1Aef′ (xe) = 1A′
ef′

(xp′
f
(e)) since xjl ∈ Vj , and hence

1Ae
(xe) =

∏
f′∈∂π(e)

1A′
ef′
(xp′

f
(e)).

It therefore follows that

Nt(1Ae
; e ∈ H2

d,k) = Ex∈V 2

∏
e∈H2

d,k

∏
f′∈∂π(e)

1A′
ef′
(xpf′ (e)

)
d∏

j=1

σtj (xj2 − xj1)

= Ex∈V 2

∏
f∈H2

d,k−1

∏
e∈H2

d,k, f
′∈∂π(e)

pf′ (e)=f

1A′
ef′
(xpf′ (e)

)

︸ ︷︷ ︸
=:gf

d∏
j=1

σtj (xj2 − xj1)

= Nt(gf; f ∈ H2
d,k−1)

and similarly that

M(1Ae
; e ∈ H2

d,k) = M(gf; f ∈ H2
d,k−1).

It then follows from the induction hypotheses that

Nt(1Ae
; e ∈ H2

d,k) = M(1Ae
; e ∈ H2

d,k) +O(ε1) +Oε1(q
−1/2)
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for any ε1 > 0. If we choose ε1 := 2−C1 ε−2k+1

, with C1 � 1 sufficiently large, then

ε1 2
Cε−2k+1

= O(ε) and it follows that

Nt(f̄e; e ∈ H2
d,k) = M(f̄e; e ∈ H2

d,k) +O(ε) +Oε(q
−1/2).

This, together with (2.13) and (2.14), establishes that (2.5) hold for d = k as
required. �

2.4. Proof of Lemmas 2.1 and 2.2.

Proof of Lemma 2.1. We start by observing the following consequence of (2.6),
namely that

(2.15)
∣∣∣Ex1,x2∈F2

q
f1(x1)f2(x2)σt(x2 − x1)

∣∣∣2 ≤ Ex1,x2∈F2
q
f1(x1)f1(x2) +O(q−1/2)

for any f1, f2 : F2
q → [−1, 1] and t ∈ F∗

q .

Now, fix an edge, say e0 = (11, 21, . . . , k1). Partition the edges e ∈ H2
d,k into

three groups: the first group consisting of edges e for which 1 /∈ π(e), the second

where 11 ∈ e and write e = (11, e′) with e′ ∈ H2
d−1,k−1 and the third when 12 ∈ e,

using the notation H2
d−1,k−1 := {(j2l2, . . . , jklk)}. Accordingly we can write

Nt(fe; e ∈ H2
d,k)(2.16)

= Ex∈V 2

∏
1/∈π(e)

fe(xe)
∏

e′∈H2
d−1,k−1

f(11,e′)(x11, xe′)

×
∏

e′∈H2
d−1,k−1

f(12,e′)(x12, xe′)
d∏

j=1

σtj (xj2 − xj1).

If for given x ∈ V1 and x′ = (x21, x22, . . . , xd1, xd2) ∈ V 2
2 × . . .× V 2

d we define

g1(x, x
′) :=

∏
e′∈H2

d−1,k−1

f(11,e′)(x, xe′)

and g2(x, x
′) :=

∏
e′∈H2

d−1,k−1

f(12,e′)(x, xe′)

then we can write

Nt(fe; e ∈ H2
d,k) = Ex21,x22,...,xd1,xd2

∏
1/∈π(e)

fe(xe)

d∏
j=2

σtj (xj2 − xj1)(2.17)

× Ex11,x12
g1(x11, x

′)g2(x12, x
′) σt1(x12 − x11).

By (2.15) we can estimate the inner sum in (2.17) by the square root of

Ex11,x12
g1(x11, x

′)g1(x12, x
′) +O(q−1/2).
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Thus by Cauchy-Schwarz, and the fact that fe : Vπ(e) → [−1, 1] for all e ∈ H2
d,k, we

can conclude that

Nt(fe; e ∈ H2
d,k)

2

(2.18)

≤ Ex11,x12,...,xd1,xd2

∏
e′∈H2

d−1,k−1

f(11,e′)(x11, xe′)f(11,e′)(x12, xe′)
d∏

j=2

σtj (xj2 − xj2).

The expression on the right hand side of the inequality above is similar to that
in (2.16) except for the following changes. The functions fe for 1 /∈ e are eliminated
i.e. replaced by 1, as well as the factor σt1 . The functions f(12,e′) are replaced

by f(11,e′) for all e′ ∈ H2
d−1,k−1. Repeating the same procedure for j = 2, . . . , k

one eliminates all the factors σtj for 1 ≤ j ≤ k, moreover all the functions fe for
edges e such that j /∈ π(e) for some 1 ≤ j ≤ k, which leaves only the edges e so
that π(e) = (1, 2, . . . , k), moreover for such edges the functions fe are eventually
replaced by fe0 = f11,21,...,k1. The factors σtj (xj2 − xj1) are not changed for j > k
however as the function fe0 does not depend on the variables xjl for j > k, averaging

over these variables gives rise to a factor of 1 + O(q−1/2). Thus one obtains the
following final estimate

Nt(fe; e ∈ H2
d,k)

2k ≤ Ex11,x12,...,xk1,xk2

∏
π(e)=(1,...,k)

fe0(xe) +O(q−1/2)(2.19)

= ‖fe0‖2
k

�(Vπ(e0))
+O(q−1/2).

This proves the lemma, as it is clear that the above procedure can be applied to
any edge in place of e0 = (11, 21, . . . , k1). �

Proof of Lemma 2.2. For a function fe : Vπ(e) → [−1, 1] and a σ-algebra Bπ(e) on
Vπ(e) define the energy of fe with respect to Bπ(e) as

E(fe,Bπ(e)) := ‖E(fe|Bπ(e))‖22 = Ex∈Vπ(e)
|E(fe|Bπ(e))(x)|2,

and for a family of functions fe and σ-algebras Bπ(e), e ∈ H2
d,k its total energy as

E(fe,Bπ(e); e ∈ H2
d,k) :=

∑
e∈H2

d,k

E(fe,Bπ(e)).

We will show that if (2.12) does not hold for a family of σ-algebras Bπ(e) =∨
f′∈∂π(e) Bf′ , then the σ-algebras Bf′ can be refined so that the total energy of

the system increases by a quantity depending only on ε. Since the functions fe
are bounded the total energy of the system is O(1), the energy increment process
must stop in Oε(1) steps, and (2.12) must hold. The idea of this procedure appears
already in the proof of Szemerédi’s regularity lemma [20], and has been used since
in various places [7, 8, 22].

Initially set Bf′ := {∅, Vf′} and hence Bπ(e) = {∅, Vπ(e)} to be the trivial σ-
algebras. Assume that in general (2.12) does not hold for a family of σ-algebras

Bf′ , with f′ ∈ Hd,k−1. Then there exists an edge e ∈ H2
d,k so that ‖ge‖�(Vπ(e)) ≥ ε,

with ge := fe − E(fe|Bπ(e)). Let e = (11, . . . , k1) for simplicity of notation, hence
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π(e) = (1, . . . , k). Then, with notation x′ = (x12, . . . , xk2), one has

ε2
k ≤ ‖ge‖2

k

�(Vπ(e))

= Ex11,x12,...,xk1,xk2

∏
l1,...,lk=1,2

ge(x1l1 , . . . , xklk)

≤ Ex12,...,xk2

∣∣∣Ex11,...,xk1
ge(x11, . . . , xk1)

k∏
j=1

hj,x′(x11, . . . , xj−1 1, xj+11, . . . , xk1)
∣∣∣

for some functions hj,x′ that are bounded by 1 in magnitude. Indeed if and edge
e �= (11, . . . , k1) then xe does not depend at least one of the variables xj1. Thus

there must be an x′ for which the inner sum in the above expression is at least ε2
k

.
Fix such an x′. Decomposing the functions hj,x′ into their positive and negative
parts and then writing them as an average of indicator functions, one obtains that
there sets Bj ⊆ Vπ(e)\{j} such that

∣∣∣Ex11,...,xk1
ge(x11, . . . , xk1)

k∏
j=1

1Bj
(x11, . . . , xj−1 1, xj+1 1, . . . , xk1)

∣∣∣ ≥ 2−k ε2
k

which can be written more succinctly, using the inner product notation, as

(2.20)
∣∣∣〈fe − E(fe|Bπ(e)),

k∏
j=1

1Bj
〉
∣∣∣ ≥ 2−k ε2

k

.

For f′ = ∂π(e)\{j} let B′
f′ be the σ-algebra generated by Bf′ and the set Bj and

let B′
π(e)

:=
∨

f′∈∂π(e) B′
f′ . Since the functions 1Bj

are measurable with respect to

the σ-algebra B′
π(e) for all 1 ≤ j ≤ k, we have that

(2.21) 〈fe − E(fe|B′
π(e)),

k∏
j=1

1Bj
〉 = 0

and hence, by Cauchy-Schwarz, that
(2.22)

‖E(fe|B′
π(e))− E(fe|Bπ(e))‖22 = ‖E(fe|B′

π(e))‖22 − ‖E(fe|Bπ(e))‖22 ≥ 2−2k ε2
k+1

.

Note that the first equality above follows from the fact that conditional ex-
pectation function E(f |B) is the orthogonal projection of f to the subspace of
B-measurable functions in L2. This also implies that energy of a function is always
increasing when the underlying σ-algebra is refined, and (2.22) tells us that the

energy of fe is increased by at least ck ε
2k+1

.
For f′ /∈ ∂π(e) we set B′

f′ := Bf′ . Then the total energy of the family fe with

respect to the system B′
π(e) =

∨
f′∈∂π(e) B′

f′ , e ∈ H2
d,k is also increased by at least

ck ε
2k+1

.
It is clear that the complexity of the σ-algebras Bf′ is increased by at most 1,

hence, as explained above, the lemma follows by applying this energy increment

process at most O(ε−2k+1

) times. �
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3. The base case of an inductive strategy to establish Theorem 1.2

In this section we will ultimately establish the base case of our more general
inductive argument. We however start by giving a quick review of the proof of
Theorem 1.2 when d = 1 (which contains both Theorem B and Corollary D as
stated in Section 1.1), namely the case of a single simplex. This was originally
addressed in [1] and revisited in [12] and [13].

3.1. A single simplex in Rn. Let Q ⊆ Rn be a fixed cube and let l(Q) denotes
its side length.

Let Δ0 = {v1 = 0, v2, . . . , vn} ⊆ Rn be a fixed non-degenerate simplex and
define tkl := vk · vl for 2 ≤ k, l ≤ n where “·” is the dot product on Rn. Given
λ > 0, a simplex Δ = {x1 = 0, x2, . . . , xn} ⊆ Rn is isometric to λΔ0 if and only if
xk · xl = λ2tkl for all 2 ≤ k, l ≤ n. Thus the configuration space SλΔ0 of isometric
copies of λΔ0 is a non-singular real variety given by the above equations. Let σλΔ0

be natural normalized surface area measure on SλΔ0 , described in [1], [12], and
[13]. It is clear that the variable x1 can be replaced by any of the variables xi by
redefining the constants tkl.

For any family of functions f1, . . . , fn : Q → [−1, 1] and 0 < λ 	 l(Q) we define
the multi-linear expression

N 1
λΔ0,Q(f1, . . . , fn)(3.1)

:=

 
x1∈Q

ˆ
x2,...,xn

f1(x1) . . . fn(xn) dσλΔ0
(x2 − x1, . . . , xn − x1) dx1.

We note that all of our functions are 1-bounded and both integrals, in fact all
integrals in this paper are normalized. Recall that we are using the normalized
integral notation

ffl
A
f := 1

|A|
´
A
f . Since the normalized measure σλΔ0 is supported

on SλΔ0
we will not indicate the support of the variables (x2, . . . , xn) explicitly.

Note also that if S ⊆ Q is a measurable set and N 1
λΔ0,Q(1S, . . . , 1S) > 0 then

S must contain an isometric copy of λΔ0. Proposition 3.1 (with Q = [0, 1]n) is a
quantitatively stronger version of Proposition C that appeared in Section 1.1 and
hence immediately establishes Theorem 1.2 for d = 1.

Proposition 3.1. For any 0 < ε ≤ 1 there exists an integer J = O(ε−2 log ε−1)
with the following property:

Given any lacunary sequence l(Q) ≥ λ1 ≥ · · · ≥ λJ and S ⊆ Q, there is some
1 ≤ j < J such that

(3.2) N 1
λΔ0,Q(1S, . . . , 1S) >

(
|S|
|Q|

)n

− ε

for all λ ∈ [λj+1, λj ].

Our approach to establishing Proposition 3.1 is to compare the above expressions
to simpler ones for which it is easy to obtain lower bounds. Given a scale 0 < λ 	
l(Q) we define the multi-linear expression

(3.3) M1
λ,Q(f1, . . . , fn) :=

 
t∈Q

 
x1,x2,...,xn∈t+Q(λ)

f1(x1) . . . fn(xn) dx1 . . . dxn dt,

where Q(λ) = [−λ
2 ,

λ
2 ]

n and t+Q(λ) is the shift of the cube Q(λ) by the vector t.
Note that if S ⊆ Q is a set of measure |S| ≥ δ|Q| for some δ > 0, then for a given
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ε > 0, Hölder implies

M1
λ,Q(1S , . . . , 1S) =

 
t∈Q

( 
x∈t+Q(λ)

1S(x) dx

)n

dt(3.4)

≥
( 

t∈Q

 
x∈t+Q(λ)

1S(x) dx dt

)n

≥ δn −O(ε),

for all scales 0 < λ 	 ε l(Q).
Recall that for any ε > 0 we call a sequence L1 ≥ · · · ≥ LJ ε-admissible if

Lj/Lj+1 ∈ N and Lj+1 	 ε2Lj for all 1 ≤ j < J . Note that given any lacunary
sequence l(Q) ≥ λ1 ≥ · · · ≥ λJ′ with J ′ � (log ε−1) J , one can always finds an
ε-admissible sequence of scales l(Q) ≥ L1 ≥ · · · ≥ LJ such that for each 1 ≤ j < J
the interval [Lj+1, Lj ] contains at least two consecutive elements from the original
lacunary sequence.

In light of this observation, and the one above regarding a lower bound for
M1

λ,Q(1S , . . . , 1S), our proof of Proposition 3.1 reduces to establishing the following
“counting lemma”.

Proposition 3.2. Let 0 < ε < 1. There exists an integer J1 = O(ε−2) such that
for any ε-admissible sequence of scales l(Q) ≥ L1 ≥ · · · ≥ LJ1

and S ⊆ Q there is
some 1 ≤ j < J1 such that

(3.5) N 1
λΔ0,Q(1S , . . . , 1S) = M1

λ,Q(1S , . . . , 1S) +O(ε)

for all λ ∈ [Lj+1, Lj ].

There are two main ingredients in the proof of Proposition 3.2, this will be typical
to all of our arguments. The first ingredient is a result which establishes that the
multi-linear forms N 1

λΔ0,Q(f1, . . . , fn) are controlled by an appropriate norm which

measures the uniformity of distribution of functions f : Q → [−1, 1] with respect
to particular scales L. This is analogous to estimates in additive combinatorics [8]
which are often referred to as generalized von-Neumann inequalities.

The result below was proved in [12] for Q = [0, 1]n, however a simple scaling of
the variables xi transfers the result to an arbitrary cube Q.

Lemma 3.1 (A generalized von-Neumann inequality [12]). Let ε > 0, 0 < λ 	
l(Q), and 0 < L 	 ε6λ.

For any collections of functions f1, . . . , fn : Q → [−1, 1] we have

(3.6) |N 1
λΔ0,Q(f1, . . . , fn)| ≤ min

i=1,...,n
‖fi‖U1

L(Q) +O(ε),

where for any f : Q → [−1, 1] we define

(3.7) ‖f‖2U1
L(Q) :=

 
t∈Q

∣∣∣ 
x∈t+Q(L)

f(x) dx
∣∣∣2dt

with t+Q(L) denoting the shift of the cube Q(L) = [−L
2 ,

L
2 ]

n by the vector t.

The corresponding inequality for the multi-linear expression M1
λ,Q(f1, . . . , fn),

namely the fact that

M1
λ,Q(f1, . . . , fn) ≤ min

i=1,...,n
‖fi‖U1

L(Q) +O(ε)
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whenever 0 < L 	 ε6λ follows easily from Cauchy-Schwarz together with the simple
observation that

‖f‖U1
L(Q) ≤ ‖f‖U1

L′ (Q) +O(ε)

whenever L′ 	 εL.
The second key ingredient, proved in [13] and generalized in Lemma 3.3, is a

Koopman-von Neumann type decomposition of functions where the underlying σ-
algebras are generated by cubes of a fixed length. To recall it, let Q ⊆ Rn be a cube,
L > 0 be scale that divides l(Q), Q(L) = [−L

2 ,
L
2 ]

n, and GL,Q denote the collection
of cubes t+Q(L) partitioning the cube Q and ΓL,Q denote the grids corresponding
to the centers of the cubes. By a slightly abuse of notation we also write GL,Q

for the σ-algebra generated by the grid. Recall that the conditional expectation
function E(f |GL,Q) is constant and equal to

ffl
A
f on each cube A ∈ GL,Q.

Lemma 3.2 (A Koopman-von Neumann type decomposition [13]). Let 0 < ε ≤ 1
and Q ⊆ Rn be a cube.

There exists an integer J̄1 = O(ε−2) such that for any ε-admissible sequence
l(Q) ≥ L1 ≥ · · · ≥ LJ̄1

and function f : Q → [−1, 1] there is some 1 ≤ j < J̄1 such
that

(3.8) ‖f − E(f |GLj ,Q)‖U1
Lj+1

(Q) ≤ ε.

Proof of Proposition 3.2. Let GLj ,Q be the grid obtained from Lemma 3.2 for the

functions f = 1S for some fixed ε > 0. Let f̄ := E(f |GLj ,Q), then by (3.6) and
multi-linearity, we have

N 1
λΔ0,Q(f, . . . , f) = N 1

λΔ0,Q(f̄ , . . . , f̄) +O(ε),

and also

M1
λ,Q(f, . . . , f) = M1

λ,Q(f̄ , . . . , f̄) +O(ε)

provided for ε−6Lj+1 	 λ. Thus in showing (3.5) one can replace the functions f
with f̄ . If we make the additional assumption that λ 	 εLj then it is easy to see,
using the fact that the function f̄ is constant on the cubes Qt(Lj) ∈ GLj ,Q, that

N 1
λΔ0,Q(f̄ , . . . , f̄) = M1

λ,Q(f̄ , . . . , f̄) +O(ε).

Since the condition ε−6Lj+1 	 λ 	 εLj can be replaced with Lj+1 	 λ 	 Lj

if one passes to a subsequence of scales, for example L′
j = L5j , this completes the

proof of Proposition 3.2. �

3.2. The base case of a general inductive strategy. In this section, as prepa-
ration to handle the case of products of simplices, we prove a parametric version of
Proposition 3.2, namely Proposition 3.3, which will serve as the base case for later
inductive arguments.

Let Q = Q1 × · · · ×Qd with Qi ⊆ Rni be cubes of equal side length l(Q). Let L
be a scale dividing l(Q) and for each t = (t1, . . . , td) ∈ ΓL,Q let Qt(L) = t+Q(L)
and Qti(L) = ti +Qi(L). Note that Qt(L) = Qt1(L)× · · · ×Qtd(L). Here Q(L) =

[−L
2 ,

L
2 ]

n and Qi(L) = [−L
2 ,

L
2 ]

ni for each 1 ≤ i ≤ d.

Let Δ0
i = {vi1, . . . , vini

} ⊆ Rni be a non-degenerate simplex for each 1 ≤ i ≤ d.

Proposition 3.3 (Parametric counting lemma on Rn for simplices). Let 0 < ε ≤ 1
and R ≥ 1. There exists an integer J1 = J1(ε,R) = O(Rε−4) such that for any
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ε-admissible sequence of scales L0 ≥ L1 ≥ · · · ≥ LJ1
with the property that L0

divides l(Q) and collection of functions

f i,r
k,t : Qti(L0) → [−1, 1] with 1 ≤ i ≤ d, 1 ≤ k ≤ ni, 1 ≤ r ≤ R and t ∈ ΓL0,Q

there exists 1 ≤ j < J1 and a set Tε ⊆ ΓL0,Q of size |Tε| ≤ ε|ΓL0,Q| such that

(3.9) N 1
λΔ0

i ,Qti
(L0)

(f i,r
1,t , . . . , f

i,r
ni,t) = M1

λ,Qti
(L0)

(f i,r
1,t , . . . , f

i,r
ni,t) +O(ε)

for all λ ∈ [Lj+1, Lj ] and t /∈ Tε uniformly in 1 ≤ i ≤ d and 1 ≤ r ≤ R.

The proof of Proposition 3.3 will follow from Lemma 3.1 and the following gen-
eralization of Lemma 3.2 in which we simultaneously consider a family of functions
supported on the subcubes in a partition of an original cube Q.

Lemma 3.3 (A simultaneous Koopman-von Neumann type decomposition). Let
0 < ε ≤ 1, m ≥ 1, and Q ⊆ Rn be a cube. There exists an integer J̄1 = O(mε−3)
such that for any ε-admissible sequence L0 ≥ L1 ≥ · · · ≥ LJ̄1

with the property that
L0 divides l(Q), and collection of functions

f1,t, . . . , fm,t : Qt(L0) → [−1, 1]

defined for each t ∈ ΓL0,Q, there is some 1 ≤ j < J̄1 and a set Tε ⊆ ΓL0,Q of size
|Tε| ≤ ε|ΓL0,Q| such that

(3.10) ‖fi,t − E(fi,t|GLj ,Qt(L0))‖U1
Lj+1

(Qt(L0)) ≤ ε

for all 1 ≤ i ≤ m and t /∈ Tε.

Proof of Proposition 3.3. Fix 1 ≤ i ≤ d. For 1 ≤ k ≤ ni and t = (t1, . . . , td) ∈
ΓL0,Q, we will abuse notation and write

f i,r
k,t(x1, . . . , xd) := f i,r

k,t(xi)

for (x1, . . . , xd) ∈ Qt(L0).

If we apply Lemma 3.3 to the family of functions f i,r
k,t on Qt(L0) for 1 ≤ i ≤ d,

1 ≤ k ≤ ni, and 1 ≤ r ≤ R, with m = (n1 + . . .+ nd)R, then this produces a grid
GLj ,Q for some 1 ≤ j ≤ J̄1 = O(ε−3R), and a set Tε ⊆ ΓL0,Q of size |Tε| ≤ ε|ΓL0,Q|,
such that

‖f i,r
k,t − E(f i,r

k,t |GLj ,Q)‖U1
Lj+1

(Qt(L0)) ≤ ε

uniformly for 1 ≤ i ≤ d, 1 ≤ k ≤ ni and 1 ≤ r ≤ R for t /∈ Tε.
Since f i,r

k,t(x1, . . . , xd) = f i,r
k,t(xi) for (x1, . . . , xd) ∈ Qt(L0) it is easy to see that

‖f i,r
k,t − E(f i,r

k,t |GLj ,Q)‖U1
Lj+1

(Qt(L0)) = ‖f i,r
k,t − E(f i,r

k,t |GLj ,Qi
)‖U1

Lj+1
(Qti

(L0)).

Let f̄ i,r
k,t := E(f i,r

k,t |GLj ,Qi
), then by Lemma 3.1, one has

N 1
λΔ0

i ,Qti
(L0)

(f i,r
1,t , . . . , f

i,r
ni,t) = N 1

λΔ0
i ,Qti

(L0)
(f̄ i,r

1,t , . . . , f̄
i,r
ni,t) +O(ε),

and

M1
λ,Qti

(L0)
(f i,r

1,t , . . . , f
i,r
ni,t) = M1

λ,Qti
(L0)

(f̄ i,r
1,t , . . . , f̄

i,r
ni,t) +O(ε)

for all t /∈ Tε provided ε−6Lj+1 	 λ. Finally, if we also have λ 	 εLj then it is
easy to see that

N 1
λΔ0

i ,Qti
(L0)

(f̄ i,r
1,t , . . . , f̄

i,r
ni,t) = M1

λ,Qti
(L0)

(f̄ i,r
1,t , . . . , f̄

i,r
ni,t) +O(ε)
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as the functions f̄ i,r
k,t are constant on cubes Qti(Lj) of GLj ,Qi

, which are of size

Lj 	 εL0.
Passing first to a subsequence of scales, for example L′

j = L5j , the condition

ε−6Lj+1 	 λ 	 εLj can be replaced with Lj+1 	 λ 	 Lj so this completes the
proof of the proposition. �

We conclude this section with a sketch of the proof of Lemma 3.3. These argu-
ments are standard, see for example the proof of Lemma 3.2 given in [12].

Proof of Lemma 3.3. First we make an observation about the U1
L(Q)-norm. Sup-

pose 0 < L′ 	 ε2L with L′ dividing L. If s ∈ ΓL′,Q and t ∈ Qs(L
′) then

|t− s| = O(L′) and hence

 
x∈Qt(L)

g(x) dx =

 
x∈Qs(L)

g(x) dx+O(L′/L)

for any function g : Q → [−1, 1]. Moreover, since the cube Qs(L) is partitioned
into the smaller cubes Qt(L

′), we have by Cauchy-Schwarz∣∣∣ 
x∈Qs(L)

g(x) dx
∣∣∣2 ≤ Et∈ΓL′,Qs(L)

∣∣∣ 
x∈Qt(L′)

g(x) dx
∣∣∣2.

From these observations it is easy to see that

‖g‖2U1
L(Q) =

 
t∈Q

∣∣∣ 
x∈Qt(L)

g(x) dx
∣∣∣2 dt ≤ Et∈ΓL′,Q

∣∣∣ 
x∈Qt(L′)

g(x) dx
∣∣∣2 +O(L′/L)

and we note that the right side of the above expression is ‖E(g|GL′,Q)‖2L2(Q) since the

conditional expectation function E(g|GL′,Q) is constant and equal toffl
x∈Qt(L′) g(x) dx on the cubes Qt(L

′).

Suppose that (3.10) does not hold for some 1 ≤ i ≤ m for every t in some
set Tε ⊆ ΓL0,Q of size |Tε| > ε |ΓL0,Q|. If we apply the above observation to
g := fi,t − E(fi,t|GLj ,Qt(L0)), for every t ∈ Tε, we obtain by orthogonality that

m∑
i=1

‖E(fi,t|GLj+2,Qt(L0))‖2L2(Qt(L0))
≥

m∑
i=1

‖E(fi,t|GLj ,Qt(L0))‖2L2(Qt(L0))
+ cε2

for some constant c > 0.
If we now define fi : Q → [−1, 1] such that fi|(Qt(L0)) = fi,t, for 1 ≤ i ≤ m,

average over t ∈ ΓL0,Q, and use the fact ‖fi‖2L2(Q) = Et∈ΓL0,Q
‖fi,t‖2L2(Qt(L0))

, we

obtain

(3.11)

m∑
i=1

‖E(fi|GLj+2,Q)‖2L2(Q) ≥
m∑
i=1

‖E(fi|GLj ,Q)‖2L2(Q) + cε3.

It is clear that the sums in the above expressions are bounded by m for all j ≥ 1,
thus (3.11) cannot hold for some 1 ≤ j ≤ J̄1 for J̄1 := Cmε−3. This implies that
(3.10) must hold for some 1 ≤ j ≤ J̄1, for all 1 ≤ i ≤ m and all t /∈ Tε for a set
Tε ⊆ ΓL0,Q of size |Tε| ≤ ε |ΓL0,Q|. �
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4. Product of two simplices in Rn

Although not strictly necessary, we discuss in this section the special case d = 2
of Theorem 1.2. This already gives an improvement of the main results of [12], but
more importantly serves as a gentle preparation for the more complicated general
case, presented in the Section 5, which involve both a plethora of different scales
and the hypergraph bundle notation introduced in Section 2.2.

4.1. Proof of Theorem 1.2 with d = 2. Let Q = Q1 ×Q2 with Q1 ⊆ Rn1 and
Q2 ⊆ Rn2 be cubes of equal side length l(Q) and Δ0 = Δ0

1 ×Δ0
2 with Δ0

1 = {v11,
. . . , v1n1

} ⊆ Rn1 and Δ0
2 = {v11, . . . , v2n2

} ⊆ Rn2 two non-degenerate simplices.
In order to “count” configurations of the form Δ = Δ1 ×Δ2 ⊆ Rn1+n2 with Δ1

and Δ2 isometric copies of λΔ0
1 and λΔ0

2 respectively for some 0 < λ 	 l(Q) in a
set S ⊆ Q we introduce the multi-linear expression

N 2
λΔ0,Q({fkl}) :=

 
x11∈Q1

 
x21∈Q2

ˆ
x12,...,x1n1

ˆ
x22,...,x2n2

n1∏
k=1

n2∏
l=1

fkl(x1k, x2l)

dσλΔ0
1
(x12 − x11, . . . , x1n1

− x11)

dσλΔ0
2
(x22 − x21, . . . , x2n2

− x21) dx21 dx11

for any family of functions fkl : Q1×Q2 → [−1, 1] with 1 ≤ k ≤ n1 and 1 ≤ l ≤ n2.
Indeed, if fkl = 1S for all 1 ≤ k ≤ n1 and 1 ≤ l ≤ n2 then the above expression

is 0 unless there exists a configuration Δ ⊆ S of the form Δ1×Δ2 with Δ1 and Δ2

isometric copies of λΔ0
1 and λΔ0

2 respectively.
The short argument presented in Section 1.1 demonstrating how both Theorem

B and Corollary D follow from Proposition B, and hence from Proposition 3.1,
applies equally well to each of our main theorems. This reduces our main theorems
to analogous quantitative results involving an arbitrary lacunary sequence of scales.
In the case d = 2 of Theorem 1.2 this stronger quantitative result takes the following
form:

Proposition 4.1. For any 0 < ε 	 1 there exists an integer J = O(exp(Cε−13))
with the following property:

Given any lacunary sequence l(Q) ≥ λ1 ≥ · · · ≥ λJ and S ⊆ Q, there is some
1 ≤ j < J such that

(4.1) N 2
λΔ0,Q({1S}) >

(
|S|
|Q|

)n1n2

− ε

for all λ ∈ [λj+1, λj ].

Our approach to establishing Proposition 4.1 is again to compare the above
expressions to simpler ones for which it is easy to obtain lower bounds. For any
0 < λ 	 l(Q) and family of functions fkl : Q1 ×Q2 → [−1, 1] with 1 ≤ k ≤ n1 and
1 ≤ l ≤ n2 we consider

M2
λ,Q({fkl})

:=

 
t∈Q

 
x1∈(t1+Q1(λ))n1

 
x2∈(t2+Q2(λ))n2

n1∏
k=1

n2∏
l=2

fkl(x1k, x2l) dx2 dx1 dt,

where t = (t1, t2) ∈ Q1 × Q2, xi = (xi1, . . . , xini
) and Qi(λ) = [−λ

2 ,
λ
2 ]

ni for
i = 1, 2.
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Note that if S ⊆ Q is a set of measure |S| ≥ δ|Q| for some δ > 0, then careful
applications of Hölder’s inequality give

M2
λ,Q({1S}) ≥

 
t∈Q

( 
(x1,x2)∈t+Q(λ)

1S(x1, x2) dx1dx2

)n1n2

dt ≥ δn1n2 −O(ε)

for all scales 0 < λ 	 ε l(Q).
In light of the observation above, and the discussion preceding Proposition 3.2,

we see that Proposition 4.1, and hence Theorem 1.2 when d = 2, will follow as a
consequence of the following

Proposition 4.2. Let 0 < ε 	 1. There exists an integer J2 = O(exp(Cε−12))
such that for any ε-admissible sequence of scales l(Q) ≥ L1 ≥ · · · ≥ LJ2

and S ⊆ Q
there is some 1 ≤ j < J2 such that

(4.2) N 2
λΔ0,Q({1S}) = M2

λ,Q({1S}) +O(ε)

for all λ ∈ [Lj+1, Lj ].

There are again two main ingredients in the proof of Proposition 4.2. The first
establishes that the our multi-linear forms N 2

λΔ0,Q({fkl}) are controlled by an ap-

propriate box-type norm attached to a scale L.
Let Q = Q1×Q2 be a cube. For any scale 0 < L 	 l(Q) and function f : Q → R

we define its local box norm at scale L to be

(4.3) ‖f‖4�L(Q1×Q2)
:=

 
t∈Q

‖f‖4�(t+Q(L)) dt,

where Q(L) = [−L
2 ,

L
2 ]

n1+n2 and

‖f‖4�( ˜Q)

(4.4)

:=

 
x11,x12∈ ˜Q1

 
x21,x22∈ ˜Q2

f(x11, x21)f(x12, x21)f(x11, x22)f(x12, x22) dx11 . . . dx22

for any cube Q̃ ⊆ Q of the form Q̃ = Q̃1 × Q̃2 with Q̃j ⊆ Qj for j = 1, 2.

Lemma 4.1 (A generalized von-Neumann inequality [12]). Let ε > 0, 0 < λ 	
l(Q), and 0 < L 	 ε24λ.

For any collections of functions fkl : Q1 × Q2 → [−1, 1] with 1 ≤ k ≤ n1 and
1 ≤ l ≤ n2 we have both

|N 2
λΔ0,Q({fkl})| ≤ min

1≤k≤n1, 1≤l≤n2

‖fkl‖�L(Q1×Q2) +O(ε)(4.5)

|M2
λ,Q({fkl})| ≤ min

1≤k≤n1, 1≤l≤n2

‖fkl‖�L(Q1×Q2).(4.6)

The result above was essentially proved in [12] for the multi-linear forms N 2
λΔ0,Q

when Q = [0, 1]n1+n2 , however a simple scaling argument transfers the result to an
arbitrary cube Q. For completeness we include its short proof in Section 4.2.

The second and main ingredient is an analogue of a weak form of Szemerédi’s
regularity lemma due to Frieze and Kannan [7]. The more probabilistic formulation,
we will use below, can be found for example in [21], [22], and [23], and is also
sometimes referred to as a Koopman-von Neumann type decomposition.
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For any cube Q ⊆ Rn and scale L > 0 that divides l(Q) we will let Q(L) =
[−L

2 ,
L
2 ]

n and GL,Q denote the collection of cubes Qt(L) = t + Q(L) partitioning
the cube Q and let ΓL,Q denote grid corresponding to the centers of these cubes.
We will say that a finite σ-algebra B on Q is of scale L if it contains GL,Q and for
simplicity of notation will write Bt for B|Qt(L).

Recall that if we have two σ-algebras B1 on a cube Q1 and B2 on Q2 then by
B1∨B2 we mean the σ-algebra on Q = Q1×Q2 generated by the sets B1×B2 with
B1 ∈ B1 and B2 ∈ B2. Recall also that we say the complexity of a σ-algebra B is
at most m, and write complex(B) ≤ m, if it is generated by m sets.

Lemma 4.2 (Weak regularity lemma in Rn). Let 0 < ε 	 1 and Q = Q1 × Q2

with Q1 ⊆ Rn1 and Q2 ⊆ Rn2 be cubes of equal side length l(Q).
There exists an integer J̄2 = O(ε−12) such that for any ε4-admissible sequence

l(Q) ≥ L1 ≥ · · · ≥ LJ̄2
and function f : Q → [−1, 1] there is some 1 ≤ j ≤ J̄2 and

a σ-algebra B of scale Lj on Q such that

(4.7) ‖f − E(f |B)‖�Lj+1
(Q1×Q2) ≤ ε

which has the additional local structure that for each t = (t1, t2) ∈ ΓLj ,Q there
exist σ-algebras B1,t on Qt1(Lj) and B2,t on Qt2(Lj) with complex(Bi,t) = O(j) for
i = 1, 2 such that Bt = B1,t ∨ B2,t.

Comparing the above statement to Lemma 2.2 for d = 2, i.e to the weak regu-
larity lemma, note that the σ-algebra B of scale Lj has a direct product structure
only locally, inside each cube Qt(Lj). Moreover this product structure varies with
t ∈ ΓLj ,Q, however the “local complexity” remains uniformly bounded.

Assuming for now the validity of Lemmas 4.1 and 4.2 we prove Proposition 4.2.
We will make crucial use of Proposition 3.3, namely our parametric counting lemma
on Rn for simplices.

Proof of Proposition 4.2. Let 0 < ε 	 1, ε1 := exp(−C1ε
−12) for some C1 � 1,

and {Lj}j≥1 be an ε1-admissible sequence of scales. Set R = ε ε−1
1 and J1(ε1, R)

be the parameter appearing in Proposition 3.3, noting that J1(ε1, R) = O(ε−5
1 ).

For L ∈ {Lj}j≥1 write index(L) = j if L = Lj . We now choose a subsequence
{L′

j} ⊆ {Lj} so that L′
1 = L1 and index(L′

j+1) ≥ index(L′
j) + J1(ε1, R) + 2.

Applying Lemma 4.2, with fkl = f := 1S for all 1 ≤ k ≤ n1 and 1 ≤ l ≤ n2,
guarantees the existence of a σ-algebra B of scale L′

j on Q such that

(4.8) ‖f − E(f |B)‖�L′
j+1

(Q1×Q2) ≤ ε

for some 1 ≤ j ≤ Cε−12. Moreover, we know that B has the additional local
structure that for each t = (t1, t2) ∈ ΓL′

j ,Q
there exist σ-algebras B1,t on Qt1(L

′
j)

and B2,t on Qt2(L
′
j) with complex(Bi,t) = O(ε−12) for i = 1, 2 such that Bt =

B1,t ∨ B2,t. Thus, if we let R1,t and R2,t denote the number of atoms in B1,t and
B2,t respectively, then we can assume, by formally adding the empty set to these
collections of atoms if necessary, that R1,t = R2,t = R′ := exp(Cε−12) for all
t ∈ ΓL′

j ,Q
.

If we let f̄ := E(f |B1 ∨ B2), then by Lemma 4.1 and multi-linearity we have
(4.9)
N 2

λΔ0,Q({f}) = N 2
λΔ0,Q({f̄}) +O(ε) and M2

λ,Q({f}) = M2
λ,Q({f̄}) +O(ε)
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provided for ε−24L′
j+1 	 λ. For a given t ∈ ΓQ,L′

j
write f̄t for the restriction of f̄

to the cube Qt(L
′
j). By localization, one then has

(4.10) N 2
λΔ0,Q({f̄}) = Et∈ΓL′

j
,Q

N 2
λΔ0,Qt(L′

j)
({f̄t}) +O(ε),

and

(4.11) M2
λ,Q({f̄}) = Et∈ΓL′

j
,Q

M2
λ,Qt(L′

j)
({f̄t}) +O(ε)

provided one also insists that λ 	 εL′
j .

For given t ∈ ΓL′
j ,Q

, the functions f̄t(x1, x2) are linear combinations of functions

of the form 1Ar1
1,t
(x1)1Ar2

2,t
(x2), where {Ar1

1,t}1≤r1≤R′ and {Ar2
2,t}1≤r2≤R′ are the col-

lections of the atoms of the σ-algebras B1,t and B2,t defined on the cubes Qt1
(L′

j)
and Qt2

(L′
j). Thus for each t ∈ ΓL′

j ,Q
one has

f̄t =

R′∑
r1=1

R′∑
r2=1

αr,t1Ar1
1,t

× 1Ar2
2,t
,

where r = (r1, r2). Plugging these linear expansions into the multi-linear expres-
sions in above one obtains

N 2
λΔ0,Qt(L′

j)
({f̄t}) =

∑
r={rkl}kl

αr,t N 2
λΔ0,Qt(L′

j)
({1

A
r1,kl
1,t

× 1
A

r2,kl
2,t

})

using the notations rkl = (r1,kl, r2,kl), αr,t =
∏

kl αrkl,t
. Notice that the product

n1∏
k=1

n2∏
l=1

1
A

r1,kl
1,t

(x1k)1A
r2,kl
2,t

(x2l)

is nonzero only if A
r1,kl

1,t = A
r1,k
1,t , that is if r1,kl = r1,k for all 1 ≤ l ≤ n2, as the

atoms Ar
1,t are all disjoint. Similarly, one has that r2,kl = r2,l for all 1 ≤ k ≤ n1.

Thus, in fact

(4.12) N 2
λΔ0,Qt(L′

j)
({f̄t}) =

∑
r={rkl}kl

αr,t N 2
λΔ0,Qt(L′

j)
({1

A
r1,k
1,t

× 1
A

r2,l
2,t

})

and similarly

(4.13) M2
λ,Qt(L′

j)
({f̄t}) =

∑
r={rkl}kl

αr,t M2
λ,Qt(L′

j)
({1

A
r1,k
1,t

× 1
A

r2,l
2,t

}).

Note, that indices r are running through the index set [1, R′]n1 × [1, R′]n2 of size at
most R if C1 � 1.

The key observation is that

N 2
λΔ0,Qt(L′

j)
(1

A
r1,k
1,t

× 1
A

r2,l
2,t

)(4.14)

= N 1
λΔ0

1,Qt1
(L′

j)
(1

A
r1,1
1,t

, . . . , 1
A

r1,n1
1,t

) N 1
λΔ0

2,Qt2
(L′

j)
(1

A
r2,1
2,t

, . . . , 1
A

r2,n2
2,t

)

and

M2
λ,Qt(L′

j)
(1

A
r1,k
1,t

× 1
A

r2,l
2,t

)(4.15)

= M1
λ,Qt1

(L′
j)
(1

A
r1,1
1,t

, . . . , 1
A

r1,n1
1,t

) M1
λ,Qt2

(L′
j)
(1

A
r2,1
2,t

, . . . , 1
A

r2,n2
2,t

).
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Let r = {(r1,k, r2,l)}kl and g
1,r
k,t := 1

A
r1,k
1,t

, g
2,r
l,t := 1

A
r2,l
2,t

. Writing j′ := index(L′
j)

and J ′ := index(L′
j+1), one may apply Proposition 3.3 for the families of functions

g
1,r
k,t , g

2,r
l,t , where 1 ≤ k ≤ n1, 1 ≤ l ≤ n2 and r = (r1,k, r2,l)kl ∈ [1, R′]n1 × [1, R′]n2 ,

with respect to the ε1-admissible sequence of scales

Lj′+1 ≥ Lj′+2 ≥ · · · ≥ LJ′−1.

This is possible as J ′ − j′ = J1(ε1, R). Then there is a scale Lj with j′ ≤ j < J ′ so
that

(4.16) N 1
λΔ0

1,Qt1
(L′

j)
(g

1,r
1,t , . . . , g

1,r
n1t) = M1

λ,Qt1
(L′

j)
(g

1,r
1,t , . . . , g

1,r
n1,t) +O(ε1)

and

(4.17) N 1
λΔ0

2,Qt2
(L′

j)
(g

2,r
1,t , . . . , g

2,r
n2,t) = M1

λ,Qt2
(L′

j)
(g

2,r
1,t , . . . , g

2,r
n2,t) + O(ε1),

for all λ ∈ [Lj+1, Lj ] uniformly in r = {(r1,k, r2,l)}kl and t /∈ Tε1 ⊆ ΓL′
j ,Q

, for a set

of size |Tε1 | ≤ ε1|ΓL′
j ,Q

|. Then, by (4.14)–(4.15) and (4.12)–(4.13), we have

(4.18) N 2
λΔ0,Qt(L′

j)
({f̄t}) = M2

λ,Qt(L′
j)
({f̄t}) +O(ε)

for t /∈ Tε1 , as |αr,t| ≤ 1 and Rε1 ≤ ε. Finally, since |Tε1 | ≤ ε1|ΓL′
j ,Q

|, by averaging

in t ∈ ΓL′
j ,Q

, one has

N 2
λΔ0,Q({f̄}) = M2

λ,Q ({f̄}) +O(ε)

using (4.10)–(4.11) and the Proposition follows by (4.9) with an index 1 ≤ j <
J2 = O(ε−12ε−5

1 ). �

4.2. Proof of Lemmas 4.1 and 4.2.

Proof of Lemma 4.1. First we note that if χL := L−n1[−L/2,L/2]n and ψL := χL ∗
χL, then

ψL(x2 − x1) =

ˆ
t

χL(x1 − t)χL(x2 − t) dt

and hence for any function f : Q → [−1, 1], with Q ⊆ Rn being a cube of side
length l(Q), one has

‖f‖2U1
L(Q) =

 
x1∈Q

ˆ
x2

f(x1)f(x2)ψL(x2 − x1) dx1dx2 + O(L/l(Q)).

Write x′ := (x21, . . . , x2n2
) and let gk,x′(x) :=

∏n2

l=1 fkl(x, x2l). Then one may
write

N 2
λΔ0,Q({fkl})

=

 
x21∈Q2

ˆ
x22,...,x2n2

N 1
λΔ0

1,Q1
(g1,x′ , . . . , gn1,x′) dσλΔ0

2
(x22−x21, . . . , x2n2

−x21)dx21.

Using estimate (3.6), the above observation, and Cauchy-Schwarz one has

|N 2
λΔ0,Q({fkl})|2

≤
 
x11∈Q1

ˆ
x12

ψL(x12 − x11) N 1
λΔ0

2,Q2
(h1,x11,x12

, . . . , hn2,x11,x12
) dx11dx12 +O(ε4)
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provided 0<λ	 l(Q) and 0<L	 ε24λ where hl,x11,x12
(x) = f1l(x11, x)f1l(x12, x)

for 1 ≤ l ≤ n2. Applying the same procedure again ultimately gives

|N 2
λΔ0,Q({fkl})|4 ≤ ‖f11‖4�L(Q1×Q2)

+O(ε4).

The same estimate can of course be given for any function fkl in place of f11.
This establishes (4.5). Estimate (4.6) is established similarly. �

Proof of Lemma 4.2. For each t = (t1, t2) ∈ ΓL1,Q we will let B1,t(L1) :=
{∅, Qt1(L1)} and B2,t(L1) := {∅, Qt2(L1)}, in other words the trivial σ-algebras
on Qt1(L1) and Qt2(L1) respectively. If (4.8) holds with B(L1) = GL1,Q, noting
that Bt(L1) := B1,t(L1) ∨ B2,t(L1) in this case, then we are done.

We now assume that we have developed, for each t = (t1, t2) ∈ ΓLj ,Q, σ-algebras
B1,t(Lj) onQt1(Lj) and B2,t(Lj) onQt2(Lj) with complex(Bi,t(Lj)) ≤ j for i = 1, 2.
Let B(Lj) be the σ-algebra such that Bt(Lj) = B1,t(Lj)∨B2,t(Lj) for all t ∈ ΓLj ,Q

and assume that (4.8) does not hold, namely that

‖g‖�Lj+1
(Q) ≥ ε,

where g := f−E(f |B(Lj)). By the definition of the local box norm this means that 
t∈Q

‖g‖4�(t+Q(Lj+1))
dt ≥ ε4

and hence, as Lj+2 	 ε4Lj+1, it is easy to see that

Es∈ΓLj+2,Q
‖g‖4�(s+Q(Lj+2))

≥ ε4/2.

This implies that there is a set S ⊆ ΓLj+2,Q of size |S| ≥ (ε4/4)|ΓLj+2,Q| such that

for all s = (s1, s2) ∈ S, one has that ‖g‖4�(Qs(Lj+2))
≥ ε4/4. It therefore follows, as

is well-known see for example [12] or [23], that there exist sets B1,s ⊆ Qs1(Lj+2)
and B2,s ⊆ Qs2(Lj+2) such that

(4.19)

 
x1∈Qs1

(Lj+2)

 
x2∈Qs2

(Lj+2)

g(x1, x2) 1B1,s
(x1)1B2,s

(x2) dx1 dx2 ≥ ε4/16.

For a given s ∈ ΓLj+2,Q there is a unique t = t(s) such that Qs(Lj+2) ⊆ Qt(Lj).
Let B′

1,s(Lj+2) := B1,t(Lj)|Qs1
(Lj+2) and B′

2,s(Lj+2) := B2,t(Lj)|Qs2
(Lj+2) not-

ing that complex(B′
i,s(Lj+2)) ≤ j for i = 1, 2, as the complexity of a σ-algebra

does not increase when restricted to a set. If, for i = 1, 2, we let Bi,s(Lj+2)
denote the σ-algebra generated by B′

i,s(Lj+2) and the set Bi,s if s ∈ S and let

Bi,s(Lj+2) := B′
i,s(Lj+2) otherwise, then clearly complex(Bi,s(Lj+2)) is at most

j + 1. We now define B(Lj+2) to the the sigma algebra of scale Lj+2 with the
property that Bs(Lj+2) = B1,s(Lj+2) ∨ B2,s(Lj+2) for all s ∈ ΓLj+2,Q.

Using the inner product notation 〈f, g〉Q =
ffl
Q
f(x)g(x) dx we can rewrite (4.19)

as

〈f − E(f |B(Lj)) , 1B1,s
× 1B2,s

〉Qs(Lj+2) ≥ ε4/16

for all s ∈ S. Since the function 1B1,s
×1B2,s

is measurable with respect to B(Lj+2)
one clearly has

〈f − E(f |B(Lj+2)) , 1B1,s
× 1B2,s

〉Qs(Lj+2) = 0

and hence

〈E(f |B(Lj+2))− E(f |B(Lj)) , 1B1,s
× 1B2,s

〉Qt(Lj+2) ≥ ε4/16.
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It then follows from Cauchy-Schwarz and orthogonality that

‖E(f |B(Lj+2))‖2L2(Qs(Lj+2))
− ‖E(f |B1(Lj))‖2L2(Qs(Lj+2))

≥ ε8/256.

Since |S| ≥ (ε4/4)|ΓLj+2,Q| averaging over all s ∈ ΓLj+2,Q gives

‖E(f |B(Lj+2))‖2L2(Q) ≥ ‖E(f |B(Lj))‖2L2(Q) + ε12/210.

Trivially both sides are at most 1 thus the process must stop at a step j = O(ε−12)
where (4.8) holds for a σ-algebra of “local complexity” at most j. This proves the
lemma. �

5. Proof of Theorem 1.2: The general case

After these preparations we will now consider the general case of Theorem 1.2.
Let Q = Q1 × · · · × Qd ⊆ Rn with Qi ⊆ Rni cubes of equal side length l(Q) and
Δ0 = Δ0

1 × · · · ×Δ0
d with each Δi ⊆ Rni a non-degenerate simplex of ni points for

1 ≤ i ≤ d.
We will use a generalized version of the hypergraph terminology introduced in

Section 2. In particular, for a vertex set I = {1, 2, . . . , d} and set K = {il; 1 ≤
i ≤ d, 1 ≤ l ≤ ni} we will let π : K → I denote the projection defined by π(il) := i.
As before we will let Hd,k := {e ⊆ I; |e| = k} denote the complete k-regular
hypergraph with vertex set I, and for the multi-index n = (n1, . . . , nd) define the
hypergraph bundle

Hn
d,k := {e ⊆ K; |e| = |π(e)| = k}

noting that |π−1(i)| = ni for all i ∈ I.
In order to parameterize the vertices of direct products of simplices, i.e. sets of

the form Δ = Δ1 × · · · × Δd with Δi ⊆ Qi, we consider points x = (x1, . . . , xd)
with xi = (xi1, . . . , xini

) ∈ Qni
i for each i ∈ I. Now for any 1 ≤ k ≤ d and any

edge e′ ∈ Hd,k we will write Qe′ :=
∏

i∈e′ Qi, and for every x ∈ Qn1
1 ×· · ·×Qnd

d and

e ∈ Hn
d,k we define xe := πe(x), where πe : Q

n1
1 × · · · ×Qnd

d → Qπ(e) is the natural

projection map. Writing Δi = {xi1, . . . , xini
} we have that Δ1 × · · · ×Δd = {xe :

e ∈ Hn
d,d} since every edge xe is of the form (x1l1 , . . . , xdld). We can therefore

identify points x with configurations of the form Δ1 × · · · ×Δd.
For any 0 < λ 	 l(Q) the measures dσλΔ0

i
, introduced in Section 3.1, are

supported on points (y2, . . . , yni
) for which the simplex Δi = {0, y2, . . . , yni

} is
isometric to λΔ0

i . For simplicity of notation we will writeˆ
xi

f(xi) dσ
λ
i (xi) :=

 
xi1∈Qi

ˆ
xi2,...,xini

f(xi) dσλΔ0
i
(xi2 − xi1, . . . , xini

− xi1) dxi1.

Note that the support of the measure dσλ
i is the set of points xi so that the

simplex Δi := {xi1, . . . , xini
} is isometric to λΔ0

i and xi1 ∈ Qi, moreover the
measure is normalized. Thus if S ⊆ Q is a set then the density of configurations Δ
in S of the form Δ = Δ1 × . . . ×Δd with each Δi ⊆ Qi an isometric copy of λΔ0

i

is given by the expression

(5.1) N d
λΔ0,Q(1S ; e ∈ Hn

d,d) :=

ˆ
x1

· · ·
ˆ
xd

∏
e∈Hn

d,d

1S(xe) dσ
λ
1 (x1) . . . dσ

λ
d (xd).

The proof of Theorem 1.2 reduces to establishing the following stronger quanti-
tative result.
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Proposition 5.1. For any 0 < ε 	 1 there exists an integer Jd = Jd(ε) with the
following property:

Given any lacunary sequence l(Q) ≥ λ1 ≥ · · · ≥ λJd
and S ⊆ Q, there is some

1 ≤ j < Jd such that

(5.2) N d
λΔ0,Q(1S ; e ∈ Hn

d,d) >

(
|S|
|Q|

)n1···nd

− ε

for all λ ∈ [λj+1, λj ].

Quantitative remark. A careful analysis of our proof reveals that there is a choice
of Jd(ε) which is less than Wd(log(CΔε

−3)), where Wk(m) is again the tower-
exponential function defined by W1(m) = exp(m) and Wk+1(m) = exp(Wk(m)) for
k ≥ 1.

For any 0 < λ 	 l(Q) and set S ⊆ Q we define the expression:

(5.3) Md
λ,Q(1S ; e ∈ Hn

d,d) :=

 
t∈Q

Md
t+Q(λ)(1S ; e ∈ Hn

d,d) dt,

where Q(λ) = [−λ
2 ,

λ
2 ]

n and

(5.4) Md
˜Q
(1S ; e ∈ Hn

d,d) :=

 
x1∈ ˜Q

n1
1

· · ·
 
xd∈ ˜Q

nd
d

∏
e∈Hn

d,d

1S(xe) dx1 . . . dxd

for any cube Q̃ ⊆ Q of the form Q̃ = Q̃1 × · · · × Q̃d with Q̃i ⊆ Qi for 1 ≤ i ≤ d.
Note that if S ⊆ Q is a set of measure |S| ≥ δ|Q| for some δ > 0, then careful
applications of Hölder’s inequality give

Md
λ,Q(1S ; e ∈ Hn

d,d) ≥
 
t∈Q

( 
(x1,...,xd)∈t+Q(λ)

1S(x1, . . . , xd) dx1 . . . dxd

)n1···nd

dt

≥δn1···nd −O(ε)

for all scales 0 < λ 	 ε l(Q).
In light of the discussion above, and that preceding Proposition 3.2, we see that

Proposition 5.1, and hence Theorem 1.2 in general, will follow as a consequence of
the following

Proposition 5.2. Let 0 < ε 	 1. There exists an integer Jd = Jd(ε) such that
for any ε-admissible sequence of scales l(Q) ≥ L1 ≥ · · · ≥ LJd

and S ⊆ Q there is
some 1 ≤ j < Jd such that

(5.5) N d
λΔ0,Q(1S ; e ∈ Hn

d,d) = Md
λ,Q(1S ; e ∈ Hn

d,d) +O(ε)

for all λ ∈ [Lj+1, Lj ].

The validity of Proposition 5.2 will follow immediately from the d = k case of
Proposition 5.3.

5.1. Reduction of Proposition 5.2 to a more general “local” counting
lemma. For any given 1 ≤ k ≤ d and collection of functions fe : Qπ(e) → [−1, 1]

with e ∈ Hn
d,k we define the following multi-linear expressions

(5.6) N d
λΔ0,Q(fe; e ∈ Hn

d,k) :=

ˆ
x1

· · ·
ˆ
xd

∏
e∈Hn

d,k

fe(xe) dσ
λ
1 (x1) . . . .dσ

λ
d (xd)
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and

(5.7) Md
λ,Q(fe ; e ∈ Hn

d,k) :=

 
t∈Q

Md
t+Q(λ)(fe ; e ∈ Hn

d,k) dt,

where Q(λ) = [−λ
2 ,

λ
2 ]

n and

(5.8) Md
˜Q
(fe ; e ∈ Hn

d,k) :=

 
x1∈ ˜Q

n1
1

· · ·
 
xd∈ ˜Q

nd
d

∏
e∈Hn

d,k

fe(xe) dx1 . . . dxd

for any cube Q̃ ⊆ Q of the form Q̃ = Q̃1 × · · · × Q̃d with Q̃i ⊆ Qi for 1 ≤ i ≤ d.
Our strategy to proving Proposition 5.2 is the same as illustrated in the finite

field settings, that is we would like to compare averages NλΔ0,Q(fe; e ∈ Hn
d,k)

to those of Md
λ,Q(fe ; e ∈ Hn

d,k), at certain scales λ ∈ [Lj+1, Lj ], inductively for
1 ≤ k ≤ d. However in the Euclidean case, an extra complication emerges due to
the fact the (hypergraph) regularity lemma, the analogue of Lemma 2.2, does not
produce σ-algebras Bf, for f ∈ Hn

d,k−1, on the cubes Qf. In a similar manner to
the case for d = 2 discussed in the previous section, we will only obtain σ-algebras
“local” on cubes Qt

f
(L0) at some scale L0 > 0. This will have the effect that the

functions fe will be replaced by a family of functions fe,t, where t runs through a
grid ΓL0,Q.

To be more precise, let L > 0 be a scale dividing the side-length l(Q). For
t ∈ ΓL,Q and e′ ∈ Hd,k we will use te′ to denote the projection of t onto Qe′ and
Qte′

(L) := te′ + Qe′(L) to denote the projection of the cube Qt(L) centered at t
onto Qe′ . It is then easy to see that for any ε > 0 we have

(5.9) N d
λΔ0,Q(fe; e ∈ Hn

d,k) = Et∈ΓL,Q
N d

λΔ0,Qt(L)(fe,t ; e ∈ Hn
d,k) +O(ε)

and

(5.10) Md
λ,Q(fe; e ∈ Hn

d,k) = Et∈ΓL,Q
Md

λ,Qt(L)(fe,t ; e ∈ Hn
d,k) +O(ε)

provided 0 < λ 	 εL where fe,t denotes the restriction of a function fe to the cube
Qt(L).

At this point the proof of Proposition 5.2 reduces to showing that the expressions
in (5.9) and (5.10) only differ by O(ε) at some scales λ ∈ [Lj+1, Lj ], given an ε-
admissible sequence L0 ≥ L1 ≥ · · · ≥ LJ , for any collection of bounded functions
fe,t, e ∈ Hn

d,k, t ∈ ΓL0,Q. Indeed, our crucial result will be the following

Proposition 5.3 (Local counting lemma). Let 0 < ε 	 1 and M ≥ 1. There
exists an integer Jk = Jk(ε,M) such that for any ε-admissible sequence of scales
L0 ≥ L1 ≥ · · · ≥ LJk

with the property that L0 divides l(Q), and collection of
functions

fm
e,t : Qtπ(e)

(L0) :→ [−1, 1] with e ∈ Hn
d,k, 1 ≤ m ≤ M and t ∈ ΓL0,Q

there exists 1 ≤ j < Jk and a set Tε ⊆ ΓL0,Q of size |Tε| ≤ ε|ΓL0,Q| such that

(5.11) N d
λΔ0,Qt(L0)

(fm
e,t; e ∈ Hn

d,k) = Mλ,Qt(L0)(f
m
e,t; e ∈ Hn

d,k) +O(ε)

for all λ ∈ [Lj+1, Lj ] and t /∈ Tε uniformly in e ∈ Hn
d,k and 1 ≤ m ≤ M .
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5.2. Proof of Proposition 5.3. We will prove Proposition 5.3 by induction on
1 ≤ k ≤ d. For k = 1 this is basically Proposition 3.3.

Indeed, in this case for a given t = (t1, . . . , td) ∈ ΓL0,Q and edge e ∈ Hn
d,1 =

{il : 1 ≤ i ≤ d, 1 ≤ l ≤ ni} we have that fm
e,t(xe) = fm

il,t(xil) with xil ∈ Qti(L0)
and hence both

N d
λΔ0,Qt(L0)

(fm
e,t; e ∈ Hn

d,1) =

d∏
i=1

N 1
λΔ0

i ,Qti
(L0)

(fm
i1,t, . . . , f

m
ini,t)

Md
λ,Qt(L0)

(fm
e,t; e ∈ Hn

d,1) =

d∏
i=1

M1
λ,Qti

(L0)
(fm

i1,t, . . . , f
m
ini,t).

By Proposition 3.3 there exists an 1 ≤ j < J1 = O(Mε−4) and an exceptional set
Tε ⊆ ΓL0,Q of size |Tε| ≤ ε|ΓL0,Q|, such that uniformly for t /∈ Tε and for 1 ≤ i ≤ d,
one has

N 1
λΔ0

i ,Qti
(L0)

(fm
i1,t, . . . , f

m
ini,t) = M1

λ,Qti
(L0)

(fm
i1,t, . . . , f

m
ini,t) +O(ε)

hence

N d
λΔ0,Qt(L0)

(fm
e,t; e ∈ Hn

d,1) = Md
λ,Qt(L0)

(fm
e,t; e ∈ Hn

d,1) + O(ε)

as the all factors are trivially bounded by 1 in magnitude. This implies (5.11) for
k = 1.

For the induction step we again need two main ingredients. The first estab-
lishes that the our multi-linear forms N d

λΔ0,Q(fe; e ∈ Hn
d,k) are controlled by an

appropriate box-type norm attached to a scale L.
Let Q = Q1 × · · · ×Qd and 1 ≤ k ≤ d. For any scale 0 < L 	 l(Q) and function

f : Qe′ → [−1, 1] with e′ ∈ Hd,k we define its local box norm at scale L by

(5.12) ‖f‖2k�L(Qe′ )
:=

 
s∈Qe′

‖f‖2k�(s+Q(L)) ds,

where

‖f‖2k�( ˜Q)

(5.13)

:=

 
x11,x12∈ ˜Q1

· · ·
 
xk1,xk2∈ ˜Qk

∏
(�1,...,�k)∈{1,2}k

f(x1�1 , . . . , xk�k) dx11 dx12 . . . dxk1 dxk2

for any cube Q̃ of the form Q̃ = Q̃1 × · · · × Q̃k.

Lemma 5.1 (Generalized von-Neumann inequality). Let ε > 0, 0 < λ 	 l(Q) and

0 < L 	 (ε2
k

)6λ.
For any 1 ≤ k ≤ d and collection of functions fe : Qπ(e) → [−1, 1] with e ∈ Hn

d,k

we have both

|N d
λΔ0,Q(fe; e ∈ Hn

d,k)| ≤ min
e∈Hn

d,k

‖fe‖�L(Qπ(e)) +O(ε)(5.14)

|Md
λ,Q(fe; e ∈ Hn

d,k)| ≤ min
e∈Hn

d,k

‖fe‖�L(Qπ(e)).(5.15)

The crucial ingredient is the following analogue of the weak hypergraph regularity
lemma.
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Lemma 5.2 (Parametric weak hypergraph regularity lemma for Rn). Let 0 < ε 	
1, M ≥ 1, and 1 ≤ k ≤ d.

There exists J̄k = O(Mε−2k+3

) such that for any ε2
k

-admissible sequence L0 ≥
L1 ≥ · · · ≥ LJ̄k

with the property that L0 divides l(Q) and collection of functions

fm
e,t : Qtπ(e)

(L0) → [−1, 1] with e ∈ Hn
d,k, 1 ≤ m ≤ M , and t ∈ ΓL0,Q

there is some 1 ≤ j < J̄k and σ-algebras Be′,t of scale Lj on Qte′
(L0) for each

t ∈ ΓL0,Q and e′ ∈ Hd,k such that

(5.16) ‖fm
e,t − E(fm

e,t|Bπ(e),t)‖�Lj+1
(Qtπ(e)

(L0)) ≤ ε

uniformly for all t /∈ Tε, e ∈ Hn
d,k, and 1 ≤ m ≤ M , where Tε ⊆ ΓL0,Q with

|Tε| ≤ ε|ΓL0,Q|.
Moreover, the σ-algebras Be′,t have the additional local structure that the exist

σ-algebras Be′,f′,s on Qs
f′
(Lj) with complex(Be′,f′,s) = O(j) for each s ∈ ΓLj ,Q,

e′ ∈ Hd,k, and f′ ∈ ∂e′ such that if s ∈ Qt(L0), then

(5.17) Be′,t

∣∣
Qse′ (Lj)

=
∨

f′∈∂e′

Be′,f′,s.

Lemma 5.2 is the parametric and simultaneous version of the extension of Lemma
4.2 to the product of d simplices. The difference is that in the general case one has
to deal with a parametric family of functions fm

e,t as t is running through a grid
ΓL0,Q. The essential new content of Lemma 5.2 is that one can develop σ-algebras
Be′,t on the cubes Qt(L0) with respect to the family of functions fm

e,t such that

the local structure described above and (5.16) hold simultaneously for almost all
t ∈ ΓL0,Q.

Proof of Proposition 5.3. Assume the proposition holds for k − 1.

Let ε > 0, ε1 := exp (−C1ε
−2k+3

) for some large constant C1 = C1(n, k, d) � 1,
and {Lj}j≥1 be an ε1-admissible sequence of scales. Set F (ε) := Jk−1(ε1,M) with

M = ε ε−1
1 .

For L ∈ {Lj}j≥1 we again write index(L) = j if L = Lj . We now choose a
subsequence {L′

j} ⊆ {Lj} so that L′
0 = L0 and index(L′

j+1) ≥ index(L′
j)+F (ε)+2.

Lemma 5.2 then guarantees the existence of σ-algebras Be′,t of scale L
′
j on Qte′

(L0)

for each t ∈ ΓL0,Q and e′ ∈ Hd,k, with the local structure described above, such
that

(5.18) ‖fm
e,t − E(fm

e,t|Bπ(e),t)‖�L′
j+1

(Qtπ(e)
(L0)) ≤ ε

uniformly for all t /∈ T ′
ε, e ∈ Hn

d,k, and 1 ≤ m ≤ M , for some 1 ≤ j < J̄k(ε,M) =

O(Mε−2k+3

), where T ′
ε ⊆ ΓL0,Q with |T ′

ε| ≤ ε|ΓL0,Q|. Let f̄m
e,t := E(fm

e,t|Bπ(e),t) for

t ∈ ΓL0,Q and e ∈ Hn
d,k. If t /∈ T ′

ε, then by (5.14), (5.15), and (5.16) we have both

N d
λΔ0,Qt(L0)

(fm
e,t; e ∈ Hn

d,k) = N d
λΔ0,Qt(L0)

(f̄m
e,t; e ∈ Hn

d,k) +O(ε)(5.19)

Md
λ,Qt(L0)

(fm
e,t; e ∈ Hn

d,k) = Md
λ,Qt(L0)

(f̄m
e,t; e ∈ Hn

d,k) +O(ε)(5.20)

provided (ε−2k)6L′
j+1 	 λ. For given s ∈ ΓL′

j ,Qt(L0) one may write f̄m
e,s for the

restriction of f̄m
e,t on the cube Qs(L

′
j) ⊆ Qt(L0), as s uniquely determines t. By



190 NEIL LYALL AND ÁKOS MAGYAR

localization, provided λ 	 εL′
j , we then have both

N d
λΔ0,Qt(L0)

(f̄m
e,t; e ∈ Hn

d,k) = Es∈ΓL′
j
,Qt(L0)

N d
λΔ0,Qs(L′

j)
(f̄m

e,s; e ∈ Hn
d,k) +O(ε),

(5.21)

Md
λ,Qt(L0)

(f̄m
e,t; e ∈ Hn

d,k) = Es∈ΓL′
j
,Qt(L0)

Md
λ,Qs(L′

j)
(f̄m

e,s; e ∈ Hn
d,k) +O(ε).(5.22)

For a fixed cube Qs(L
′
j) we have that

(5.23) f̄m
e,s =

Re,s∑
re=1

αs,re,m 1Are
π(e),s

,

where {Are
π(e),s}1≤r≤Re,s

is the family of atoms of the σ-algebra Bπ(e),t restricted

to the cube Qs(L
′
j). Note that |αs,re | ≤ 1 and |Re,s| = O(exp (Cε−2k+3

)). By
adding the empty set to the collection of atoms one may assume |Re,s| = R :=

exp (Cε−2k+3

) for all e ∈ Hn
d,k and s ∈ ΓL′

j ,Q
. Then, by multi-linearity, using the

notations r = (re)e∈Hn
d,k

and αr,s =
∏

e αs,re , one has both

N d
λΔ0,Qs(L′

j)
(f̄m

s,e; e ∈ Hn
d,k) =

∑
r

αs,r,m N d
λΔ0,Qs(L′

j)
(1Are

π(e),s
; e ∈ Hn

d,k)(5.24)

Md
λ,Qs(L′

j)
(f̄m

s,e; e ∈ Hn
d,k) =

∑
r

αs,r,m Md
λ,Qs(L′

j)
(1Are

π(e),s
; e ∈ Hn

d,k).(5.25)

The key observation is that these expressions in the sum above are all at level
k− 1 instead of k. To see this let e = (i1l1, . . . , imlm, . . . , iklk) so e′ = π(e) = (i1,
. . . , im, . . . , ik). If f′ = e′\{im} then recall that the edge pf′(e) = (i1l1, . . . ,
iklk) ∈ Hn

d,k−1 is obtained from e by removing the imlm-entry. Thus, for any atom

Ae′,s of Bs,e′(L
′
j) we have by (5.17), that

(5.26) 1Ae′,s(xe) =
∏

f′∈∂e′

1Ae′,f′,s,(xpf′ (e)
),

where Ae′,f′,s is an atom of the σ-algebra Be′,f′,s. Thus
(5.27)∏

e∈Hn
d,k

1Are
π(e),s

(xe) =
∏

f∈Hn
d,k−1

∏
e∈Hn

d,k,f
′∈∂π(e)

pf′ (e)=f

1Are
π(e),f′,s

(xf) =
∏

f∈Hn
d,k−1

g
r
f,s (xf).

It follows that

(5.28) N d
λΔ0,Qs(L′

j)
(1Are

π(e),s
; e ∈ Hn

d,k) = N d
λΔ0,Qs(L′

j)
(g

r
f,s; f ∈ Hn

d,k−1)

and hence that

(5.29) N d
λΔ0,Qs(L′

j)
(f̄m

e,s; e ∈ Hn
d,k) =

∑
r

αs,r,m N d
λΔ0,Qs(L′

j)
(g

r
f,s; f ∈ Hn

d,k−1)

and similarly

(5.30) Md
λ,Qs(L′

j)
(f̄m

e,s; e ∈ Hn
d,k) =

∑
r

αr,s,m Md
λ,Qs(L′

j)
(g

r
f,s; f ∈ Hn

d,k−1).

Note that number of index vectors r = (re)e∈Hn
d,k

is RD with D := |Hn
d,k| and

hence RD ≤ M if C1 � 1.
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Writing j′ := index(L′
j) and J ′ := index(L′

j+1) it then follows from our inductive
hypothesis functions, applied with respect to the ε1-admissible sequence of scales

Lj′+1 ≥ Lj′+2 ≥ · · · ≥ LJ′−1

which is possible as J ′−j′ � Jk−1(ε1, R
D), that there is a scale Lj with j′ ≤ j < J ′

so that

(5.31) NλΔ0,Qs(L′
j)
(g

r
s,f; f ∈ Hn

d,k−1) = Mλ,Qs(L′
j)
(g

r
s,f; f ∈ Hn

d,k−1) +O(ε1)

for all λ ∈ [Lj+1, Lj ] uniformly in r for s /∈ Sε1 , where Sε1 ⊆ ΓL′
j ,Q

is a set of size

|Sε1 | ≤ ε1|ΓL′
j ,Q

|.
Since the cubes Qt(L0) form a partition of Q as t runs through the grid ΓL0,Q

the relative density of the set Sε1 can substantially increase only of a few cubes

Qt(L0). Indeed, it is easy to see that |T ′′
ε1 | ≤ ε

1/2
1 |ΓL0,Q| for the set

T ′′
ε1

:= {t ∈ ΓL0,Q : |Sε1 ∩Qt(L0)| ≥ ε
1/2
1 |ΓL′

j ,Q
∩Qt(L0)|}.

We claim that (5.11) holds for λ ∈ [Lj+1, Lj ] uniformly in t /∈ Tε := T ′
ε ∪ T ′′

ε1 ,

e ∈ Hn
d,k, and 1 ≤ m ≤ M . Indeed, from (5.29), (5.30), and (5.31) and the fact

that |αs,r| ≤ 1, it follows

N d
λΔ0,Qs(L′

j)
(f̄e,s; e ∈ Hn

d,k) = Md
λ,Qs(L′

j)
(f̄e,s; e ∈ Hn

d,k) +O(ε)

for s /∈ Sε1 ∩ Qt(L0) since RDε1 	 ε. Finally, the fact that t /∈ T ′′
ε1 together with

localization, namely (5.21) and (5.22), ensures that averaging over ΓL′
j ,Qt(L0) gives

N d
λΔ0,Qt(L0)

(f̄e,t; e ∈ Hn
d,k) = Md

λ,Qt(L0)
(f̄e,t; e ∈ Hn

d,k) +O(ε) +O(ε
1/2
1 )

which in light of (5.19), (5.20), and the fact that ε1 	 ε2 complete the proof. �

5.3. Proof of Lemmas 5.1 and 5.2.

Proof of Lemma 5.1. The argument is similar to that of Lemma 2.1. Fix an edge,
say e0 = (11, 12, . . . , 1k), and partition the edges e ∈ Hn

d,k in to as follows. Let H0

be the set of those edges e for which 1 /∈ π(e), and for l = 1, . . . , n1 let Hl denote
the collection of edges of the form e = (1l, j2l2, . . . , jklk), in other words e ∈ Hl if
e = (1l, e′) for some edge e′ = (j2l2, . . . , jklk) ∈ Hn

d−1,k−1. Accordingly write

∏
e∈Hn

d,k

fe(xe) =
∏

e∈H0

fe(xe)

n1∏
l=1

∏
e′∈Hn

d−1,k−1

f1l,e′(x1l, xe′).

For x ∈ Q1 and x′ = (x2, . . . , xd) with xi ∈ Qni
i , define

(5.32) gl(x, x
′) :=

∏
e′∈Hn

d−1,k−1

f1l,e′(x1l, xe′).

Then one may write

N d
λΔ0,Q(fe; e ∈ Hn

d,k)(5.33)

=

 
x2

. . .

 
xd

∏
e∈H0

fe(xe)

( 
x1

n1∏
l=1

gl(x1l, x
′) dσλ

1 (x1)

)
dσλ

d (xd) . . . dσ
λ
2 (x2).
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For the inner integrals we have, using (3.6), the estimate( 
x1

n1∏
l=1

gl(x1l, x
′) dσλ

1

)2

≤ ‖g1‖2U1
L(Q) +O(ε2

k

)

=

 
y11

ˆ
y12

g1(y11)g1(y12)ψ
1
L(y12−y11) dy11 dy12 +O(ε2

k

)

provided 0 < L 	 (ε2
k

)6λ, where as in the proof of Lemma 4.1 we use the notation

ψi
L(y2 − y1) =

ˆ
t

χi
L(y1 − t)χi

L(y2 − t) dt

with χi
L := L−ni1[−L/2,L/2]ni for 1 ≤ i ≤ k. By Cauchy-Schwarz we then have∣∣∣N d

λΔ0,Q(fe; e ∈ Hn
d,k

∣∣∣2
≤
ˆ
y
1

 
x2

. . .

 
xd

∏
e′∈Hn

d−1,k−1

f11,e′(x11, xe′)f11,e′(x12, xe′) dσ
λ
d . . . dσλ

2 dω1
L(y1)+O(ε2

k

),

where dωi
L(yi) = |Qi|−1ψi

L(yi2 − yi1) dyi1 dyi2 with y
i
= (yi1, yi2) ∈ Q2

i for 1 ≤ i ≤
k.

The expression we have obtained above is similar to the one in (5.6) except for
the following changes. The variable x1 ∈ Qn1

1 is replaced by y
1
∈ Q2

1 and the

measure dσλ
1 by dω1

L. The functions f1l,e′ are replaced by f11,e′ , for 1 ≤ l ≤ n1,
while the functions fe for all e ∈ Hn

d,k such that 1 /∈ π(e) are eliminated, that
is replaced by 1. Repeating the same procedure for i = 2, . . . , k replaces all
variables xi with variables y

i
as well as the measures dσλ

i with dωi
L. The procedure

eliminates all functions fe when e is an edge such that i /∈ π(e) for some 1 ≤ i ≤ k;
for the remaining edges, when π(e) = (1, . . . , k), it replaces the functions fe with
fe0 = f11,21,...,1k. For k < i the variables xi and the measures dσλ

i are not changed,
however integrating in these variables will have no contribution as the measures are
normalized. Thus one obtains the following final estimate

∣∣∣NλΔ0,Q(fe; e ∈ Hn
d,k

∣∣∣2k
(5.34)

≤ 1

|Q1|

ˆ
y
1

. . .
1

|Qk|

ˆ
y
k

∏
e∈H2

k,k

fe0(ye)
k∏

i=1

ψi
L(yi2 − yi1) dyi1 dyi2 +O(ε2

k

)

noting that these integrals are not normalized. Thus, one may write the expression
in (5.34), using a change of variables yi1 := yi1 − ti, yi2 := yi2 − ti, as

1

|Q1|

ˆ
t1

 
y
1
∈t1+Q1

. . .
1

|Qk|

ˆ
tk

 
y
k
∈tk+Qk

∏
e∈H2

k,k

fe0(ye) dy1 . . . dyk dt(5.35)

= ‖fe0‖2
k

�L(Qπ(e0))
+O(ε2

k

)

where the last equality follows from the facts that the function fe0 is supported on
the cube Qπ(e0) and hence the integration in t is restricted to the cube Q+Q(L),
giving rise an error of O(L/l(Q)). Estimate (5.14) follows from (5.34) and (5.35)
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noting that the above procedure can be applied to any e ∈ Hn
d,k in place of e0.

Estimate (5.15) is established similarly. �

Proof of Lemma 5.2. For j = 0 we set Be′,t(L0) := {Qt(L0), ∅} and Be′,f′,s(L0) :=
{Qs

f′
(L0), ∅} for e′ ∈ Hd,k, f

′ ∈ ∂e′, and t, s ∈ ΓL0,Q. We will develop σ-algebras

Be′,t(Lj) of scale Lj such that (5.17) holds with complex(Be′,f′,s(Lj)) ≤ j.
We define the total energy of a family of functions fm

e,t with respect to a family

of σ-algebras Be′,t(Lj) as

(5.36) E(fm
e,t|Be′,t(Lj)) := Et∈ΓL0,Q

M∑
m=1

∑
e∈Hn

d,k

‖E(fm
e,t|Bπ(e),t(Lj))‖2L2(Qtπ(e)

(L0))
.

Since |fm
e,t| ≤ 1 for all e, m, and t it follows that the total energy is bounded

by M · |Hn
d,k| = O(M). Our strategy will be to show that if (5.16) does not hold

then there exist a family of σ-algebras Be′,t(Lj+2) such that the total energy of

the family of functions fm
e,t is increased by at least ckε

2k+3

with respect to this

new family of σ-algebras, and at the same time ensuring that (5.17) remains valid
with complex(Be′,f′,s(Lj+2)) ≤ j + 2. This iterative process must stop at some

j = O(M ε−2k+3

) proving the lemma.
Assume that we have developed σ-algebras Be′,t(Lj) and Be′,f′,s(Lj) of scale Lj

such that (5.17) holds with complex(Be′,f′,s(Lj)) ≤ j. If (5.16) does not hold then
|Tε| ≥ ε|ΓL0,Q| for the set

Tε := {t ∈ ΓL0,Q : ‖fm
e,t − E(fm

e,t|Bπ(e),t(Lj))‖�Lj+1
(Qtπ(e)

(L0)) ≥ ε

for some e ∈ Hn
d,k and 1 ≤ m ≤ M}.

Fix t ∈ Tε and let e ∈ Hn
d,k and 1 ≤ m ≤ M be such that

‖fm
e,t − E(fm

e,t|Bπ(e),t(Lj))‖�Lj+1
(Qtπ(e)

(L0)) ≥ ε

and write e′ := π(e). Consider the partition of the cube Qte′
(L0) into small cubes

Qse′
(Lj+2) where se′ ∈ ΓLj+2,Qe′ ∩ Qte′

(L0). By the localization properties of the

�Lj+1
(Q)-norm, and the fact that Lj+2 	 ε2

k

Lj+1 we have that

‖f‖2k�Lj+1
(Qte′ (L0))

≤ Ese′∈ΓLj+2,Qt
e′

(L0)
‖f‖2k�(Qse′ (Lj+2))

+
ε2

k

2

for any function f : Qte′
(L0) → [−1, 1]. Thus there exists a set Sε,e,t ⊆ ΓLj+2,Qt

e′ (L0)

of size

|Sε,e,t| ≥
ε2

k

4
|ΓLj+2,Qte′ (L0)|

such that

(5.37) ‖fm
e,t − E(fm

e,t|Be′,t(Lj))‖2
k

�(Qs
e′ (Lj+2)

≥ ε2
k

4

for all se′ ∈ Sε,e,t.
For a given cube Q and functions f, g : Q → R, define the normalized inner

product of f and g as

〈f, g〉Q :=

 
Q

f(x)g(x) dx.
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Then by the well-known property of the �-norm, see for example [23] or the proof
of Lemma 2.2, it follows from (5.37) that there exists sets

Bf′,se′ ,t
⊆ Qs

f′
(Lj+2)

for f′ ∈ ∂e′ such that

(5.38)
〈
fm
e,t − E(fm

e,t|Be′,t(Lj)) ,
∏

f′∈∂e′

1Bf′,s
e′ ,t

〉
Qs

e′ (Lj+2)
≥ ε2

k

2k+2
.

If s ∈ ΓLj+2,Q then there is a unique t = t(s) ∈ ΓL0,Q such that s ∈ Qt(L0). If
t ∈ Tε and se′ ∈ Sε,e,t then we define the σ-algebras Bf′,e′,s(Lj+2) on Qs

f′
(Lj+2)

as follows. Write Bf′,e′,s = Bf′,se′ ,t
where t = t(s) and let Bf′,e′,s(Lj+2) be the

σ-algebra generated by the set Bf′,e′,s and the σ-algebra Bf′,e′,s′(Lj) restricted to
Qs

f′
(Lj+2) where s′ ∈ ΓLj ,Q is the unique element so that s ∈ Qs′(Lj). Note that

that the complexity of the σ-algebra Bf′,e′,s(Lj+2) is at most one larger than the
complexity of the σ-algebra Bf′,e′,s′(Lj) as restricting a σ-algebra to a set does not
increase its complexity. If t = t(s) /∈ Tε or se′ /∈ Sε,e,t then let Bf′,e′,s(Lj+2) be
simply the restriction of Bf′,e′,s′(Lj) to the cube Qs

f′
(Lj+2), or equivalently define

the sets Bf′,e′,s := Qs
f′
(Lj+2). Finally, let

(5.39) Be′,s(Lj+2) :=
∨

f′∈∂e′

Bf′,e′,s(Lj+2)

be the corresponding σ-algebra on the cube Qse′
(Lj+2).

Since the cubes Qse′
(Lj+2) partition the cube Qte′

(L0) as se′ runs through
the grid ΓLj+2,Qe′ ∩ Qte′

(L0), these σ-algebras define a σ-algebra Be′,t(Lj+2) on
Qte′

(L0), such that its restriction to the cubes Qse′
(Lj+2) is equal to the σ-algebras

Be′,s(Lj+2).
Since the function

∏
f′∈∂e′ 1Bf′,e′,s is measurable with respect to the σ-algebra

Be′,t(Lj+2) restricted to the cube Qse′
(Lj+2) one clearly has

(5.40) 〈 fm
e,t − E(fm

e,t|Be′,t(Lj+2)),
∏

f′∈∂e′

1Bf′,e′,s 〉Qs
e′ (Lj+2) = 0

and hence, by (5.38), that

(5.41) 〈E(fm
e,t|Be′,t(Lj+2))− E(fm

e,t|Be′,t(Lj)),
∏

f′∈∂e′

1Bf′,e′,s 〉Qs
e′ (Lj+2) ≥

ε2
k

2k+2
.

It then follows from Cauchy-Schwarz and orthogonality, using the fact that the
σ-algebra Be′,t(Lj+2)) is a refinement of Be′,t(Lj+2), that

‖E(fm
e,t|Be′,t(Lj+2))− E(fm

e,t|Be′,t(Lj))‖2L2(Qse′ (Lj+2))
(5.42)

= ‖E(fm
e,t|Be′,t(Lj+2))‖2L2(Qs

e′ (Lj+2))

− ‖E(fm
e,t|Be′,t(Lj))‖2L2(Qse′ (Lj+2))

≥
( ε2

k

2k+2

)2
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for se′∈Sε,e,t. Since |Sε,e,t|≥
ε2

k

4
|ΓLj+2,Qte′

(L0)| averaging over se′∈ΓLj+2,Qte′
(L0)

implies

(5.43) ‖E(fm
e,t|Be′,t(Lj+2))‖2L2(Qte′ (L0))

≥ ‖E(fm
e,t|Be′,t(Lj))‖2L2(Qte′ (L0))

+
ε2

k+2

22k+6
.

At this point we have shown that if t ∈ Tε then there exists an edge e ∈ Hn
d,k,

1 ≤ m ≤ M , and σ-algebras Be′,t(Lj+2)) of scale Lj+2 on Qte′
(L0), with e′ = π(e),

such that (5.43) holds.
For all e′′ ∈ Hd,k with e′′ �= e′ let Bf′,e′′,s(Lj+2) be the restriction of the σ-

algebra Bf′,e′′,s′(Lj) to the cube Qs
f′
(Lj+2), where s′ is such that s ∈ Qs′(Lj).

By (5.39) this implies that Be′′,s(Lj+2) is also the restriction of Be′′,s′(Lj) to the
cube Qse′′

(Lj+2), and hence the σ-algebra Be′′,t(Lj+2) is generated by the grid
GLj+2,Qt

e′′ (L0) and the σ-algebra Be′′,t(Lj).

We have therefore defined a family of the σ-algebras Be′,t(Lj+2) for e′ ∈ Hd,k,
satisfying

M∑
m=1

∑
e∈Hn

d,k

‖E(fm
e,t|Bπ(e),t(Lj+2))‖2L2(Qtπ(e)

(L0))

≥
M∑

m=1

∑
e′∈Hn

d,k

‖E(fm
e,t|Bπ(e),t(Lj))‖2L2(Qtπ(e)

(L0))
+

ε2
k+2

22k+6
.

Using the fact that |Tε| ≥ ε|ΓL0,Q| and averaging over t ∈ ΓL0,Q it follows using
the notations of (5.36) that

E(fm
e,t|Be′,t(Lj+2)) ≥ E(fm

e,t|Be′,t(Lj)) +
ε2

k+3

22k+6
.

As the total energy E(fm
e,t|Be′,t(Lj)) is bounded by O(M), the process must stop

at a step j = O(M ε−2k+3

) where (5.16) holds for a σ-algebra of “local complexity”
at most j, completing the proof of Lemma 5.2. �

6. The base case of an inductive strategy to establish Theorem 1.4

In this section we will ultimately establish the base case of our more general
inductive argument. We will however start by giving a (new) proof of Theorem B′,
namely the case d = 1 of Theorem 1.4.

6.1. A single simplex in Zn. Let Δ0 = {v1 = 0, v2, . . . , vn1
} be a fixed non-

degenerate simplex of n1 points in Zn with n = 2n1 + 3 and define tkl := vk · vl for
2 ≤ k, l ≤ n1. Recall, see [17], that a simplex Δ = {m1 = 0, . . . , mn1

} ⊆ Zn is
isometric to λΔ0 if and only if mk ·ml = λ2tkl for all 2 ≤ k, l ≤ n1.

For any positive integer q and λ ∈ q
√
N we define SλΔ0,q(m2, . . . , mn1

) :

Zn(n1−1) → {0, 1} be the function whose value is 1 if mk ·ml = λ2tkl with both mk

and ml in (qZ)n for all 2 ≤ k, l ≤ n1 and is equal to 0 otherwise. It is a well-known
fact in number theory, see [11] or [17], that for n ≥ 2n1 + 1 we have that∑

m2,...,mn1

SλΔ0,q(m2, . . . ,mn1
) = ρ(Δ0) (λ/q)(n−n1)(n1−1)(1 +O(λ−τ ))
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for some absolute constant τ > 0 and some constant ρ(Δ0) > 0, the so-called
singular series, which can be interpreted as the product of the densities of the
solutions of the above system of equations among the p-adics and among the reals.
Thus if we define

σλΔ0,q := ρ(Δ0)−1(λ/q)−(n−n1)(n1−1)SλΔ0,q

then σλΔ0,q is normalized in so much that∑
m2,...,mn1

σλΔ0,q(m2, . . . ,mn1
) = 1 +O(λ−τ )

for some absolute constant τ > 0.
Let Q ⊆ Zn be a fixed cube and let l(Q) denotes its side length. For any family

of functions

f1, . . . , fn1
: Q → [−1, 1]

and 0 < λ 	 l(Q) we define the following two multi-linear expressions

N 1
λΔ0,q,Q(f1, . . . , fn1

)

(6.1)

:= Em1∈Q

∑
m2,...,mn1

f1(m1) . . . fn1
(mn1

) σλΔ0,q(m2 −m1, . . . ,mn1
−m1)

and

(6.2) M1
λ,q,Q(f1, . . . , fn1

) := Et∈Q Em1,...,mn1
∈t+Q(q,λ) f1(m1) . . . fn1

(mn1
),

where Q(q, λ) := [−λ
2 ,

λ
2 ]

n ∩ (qZ)n. Note that if S ⊆ Q and N 1
λΔ0,q,Q(1S , . . . ,

1S) > 0 then S must contain an isometric copy of λΔ0, while if |S| ≥ δ|Q| for some
δ > 0 then as before Hölder implies that

(6.3) M1
λ,q,Q(1S , . . . , 1S) ≥ δn −O(ε)

for all scales λ ∈ q
√
N with 0 < λ 	 ε l(Q).

Recall that for any 0 < ε 	 1 and positive integer q we call a sequence L1 ≥
· · · ≥ LJ (ε, q)-admissible if Lj/Lj+1 ∈ N and Lj+1 	 ε2Lj for all 1 ≤ j < J and

LJ/q ∈ N. Note that if λ1 ≥ · · · ≥ λJ′ ≥ 1 is any lacunary sequence in q
√
N with

J ′ � (log ε−1) J+log q, one can always finds an (ε, q)-admissible sequence of scales
L1 ≥ · · · ≥ LJ with the property that for each 1 ≤ j < J the interval [Lj+1, Lj ]
contains at least two consecutive elements from the original lacunary sequence.

In light of these observations we see that the following “counting lemma” ulti-
mately establishes a quantitatively stronger version of Proposition B′ that appeared
in Section 1.3 and hence immediately establishes Theorem 1.4 for d = 1.

Proposition 6.1. Let 0 < ε 	 1 and qj := q1(ε)
j for j ≥ 1 with q1(ε) := lcm{1 ≤

q ≤ Cε−10}.
There exists J1 = O(ε−2) such that for any (ε, qJ1

)-admissible sequence of scales
l(Q) ≥ L1 ≥ · · · ≥ LJ1

and S ⊆ Q there is some 1 ≤ j < J1 such that

(6.4) N 1
λΔ0,qj ,Q

(1S , . . . , 1S) = M1
λ,qj ,Q(1S , . . . , 1S) +O(ε)

for all λ ∈ qj
√
N with Lj+1 ≤ λ ≤ Lj.
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As in the continuous setting the proof of Proposition 6.1 has two main ingredi-
ents, namely Lemmas 6.1 and 6.2. In these lemmas, and for the remainder Sections
6 and 7, we will continue to use the notation

q1(ε) := lcm{1 ≤ q ≤ Cε−10}

for any given ε > 0.

Lemma 6.1 (A generalized von Neumann inequality). Let 0 < ε 	 1, q, q′ ∈ N

with qq1(ε)|q′, and λ ∈ q
√
N with λ 	 l(Q) and 1 	 L 	 ε10λ. For any collection

of functions f1, . . . , fn1
: Q → [−1, 1] we have

(6.5) |N 1
λΔ0,q,Q(f1, . . . , fn1

)| ≤ min
1≤i≤n1

‖fi‖U1
q′,L(Q) +O(ε)

where for any function f : Q → [−1, 1] we define

(6.6) ‖f‖U1
q,L(Q) :=

( 1

|Q|
∑
t∈Q

|f ∗ χq,L(t)|2
)1/2

with χq,L denoting the normalized characteristic function of the cubes Q(q, L) :=

[−L
2 ,

L
2 ]

n ∩ (qZ)n.

For any cube Q ⊆ Zn of side length l(Q) and q, L ∈ N satisfying q 	 L with L
dividing l(Q), we shall now partitionQ into cubic gridsQt(q, L) = t+((qZ)n∩Q(L)),
with Q(L) = [−L

2 ,
L
2 ]

n as usual. These grids form the atoms of a σ-algebra Gq,L,Q.
Note that if q|q′ and L′|L then Gq,L,Q ⊆ Gq′,L′,Q.

Lemma 6.2 (A Koopman-von Neumann type decomposition). Let 0 < ε 	 1
and qj := q1(ε)

j for all j ≥ 1. There exists an integer J̄1 = O(ε−2) such that
any (ε, qJ̄1

)-admissible sequence of scales l(Q) ≥ L1 ≥ · · · ≥ LJ̄1
and function

f : Q → [−1, 1] there is some 1 ≤ j < J̄1 such that

(6.7) ‖f − E(f |Gqj ,Lj ,Q)‖U1
qj+1,Lj+1

(Q) ≤ ε.

The reduction of Proposition 6.1 to these two lemmas is essentially identical to
the analogous argument in the continuous setting as presented at the end of Section
3.1, we choose to omit the details.

Proof of Lemma 6.1. We will rely on some prior exponential sum estimates, specif-
ically Propositions 4.2 and 4.4 in [17]. First we deal with the case n1 ≥ 3. By the
change of variables m1 := m1, mi := mi −m1 for 2 ≤ i ≤ n1, one may write

N 1
λΔ0,q,Q(f1, . . . , fn1

)

:= Em1∈QN

∑
m2,...,mn1

f1(m1)f2(m1 +m2) · · · fn1
(m1 +mn1

) σλΔ0,q(m2, . . . ,mn1
).

We now write

σλΔ0,q(m2, . . . ,mn1
) = σλΔ0′,q(m2, . . . ,mn1−1) σ

m2,...,mn1−1

λ,q (mn1
),

where Δ0′ = {v1 = 0, v2, . . . , vn1−1} and for each m2, . . . , mn1−1 ∈ (qZ)n we are
using σ

m2,...,mn1−1

λ,q (m) denote the (essentially) normalized indicator function of the

subset of (qZ)n that contains m if and only if m ·mk = λ2tkn1
for all 2 ≤ k ≤ n1.
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Using the fact that |fi| ≤ 1, together with Cauchy-Schwarz and Plancherel, one
can then easily see that

(6.8) |N 1
λΔ0,q,Q(f1, . . . , fn1

)|2 ≤ |Q|−1

ˆ
ξ∈Tn

|f̂n1
(ξ)|2Hλ,q(ξ) dξ

with

Hλ,q(ξ) =
∑

m2,...,mn1

σλΔ0′,q(m2, . . . ,mn1−1) | ̂σ
m2,...,mn1−1

λ,q (ξ)|2.

It then follows by Propositions 4.2 and 4.4 in [17], with δ = ε4 and after rescaling
by q, that in addition to being non-negative and uniformly bounded in ξ we in fact
have

(6.9) Hλ,q(ξ) = O(ε) whenever

∣∣∣∣qξ − l

q1(ε)

∣∣∣∣ ≥ q

ε4λ
,

for all l ∈ Zn.
We note that the expression Hλ,q(ξ) may be interpreted as the Fourier transform

of the indicator function of the set of integer points on a certain variety, and estimate
(6.9) indicates that this concentrates near rational points of small denominator. It is
this crucial fact from number theory which makes results like Theorem B′ possible.

Since

χ̂q,L(ξ) =
qn

Ln

∑
m∈[−L

2 ,L2 )n, q|m

e−2πim·ξ

it is easy to see that χ̂q,L(l/q) = 1 for all l ∈ Zn and that there exists some absolute
constant C > 0 such that

(6.10) 0 ≤ 1− χ̂q,L(ξ)
2 ≤ C L |ξ − l/q|

for all ξ ∈ Tn and l ∈ Zn. It is then easy to see using our assumption that qq1(ε)|q′
that

(6.11) 0 ≤ Hλ,q(ξ)(1− χ̂q′,L(ξ)
2) ≤ Cε

for some constant C > 0 uniformly in ξ ∈ Tn provided L 	 ε5λ. Substituting
inequality (6.7) into (6.8), we obtain

|N 1
λΔ0,q,Q(f1, . . . , fn1

)|2

≤ |Q|−1

(ˆ
|f̂n1

(ξ)|2Hλ(ξ)χ̂q′,L(ξ)
2 dξ +

ˆ
|f̂n1

(ξ)|2Hλ(ξ)(1− χ̂q′,L(ξ)
2) dξ

)
≤ ‖fn1

‖2U1
q′,L(Q) +O(ε)

provided L 	 ε5λ. This proves Lemma 6.1 for k ≥ 3, as it is clear that by re-
indexing the above estimate holds for any of the functions fi in place of fn1

. For
n1 = 2 an easy modification of arguments in [14], specifically the proof of Lemma
3 therein, establishes that

|N 1
λΔ0,q,Q(f1, f2)|2 ≤ ‖fi‖2U1

q′,L(Q) +O(ε)

for i = 1, 2 provided L 	 ε5λ. �

Proof of Lemma 6.2. Let q, L ∈ N such that L|N , q|L. The “modulo q” grids
Qt(q, L) = t+Q(q, L) partition the cube Q with t running through the set Γq,L,Q =
{1, . . . , q}n + ΓL,Q, where ΓL,Q denote the centers of the “integer” grids t+Q(L)
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in an initial partition of Q. Let q′, L′ be positive integers so that q|q′, L′|L and
L′ 	 ε2L. If s ∈ Γq′,L′,Q and t ∈ Qs(q

′, L′) then |t− s| = O(L′) and hence

Ex∈Qt(q,L)g(x) = Ex∈Qs(q,L)g(x) +O(L′/L)

for any function g : Q → [−1, 1]. Moreover, since the cube Qs(q, L) is partitioned
into the smaller cubes Qt(q

′, L′), we have by Cauchy-Schwarz

|Ex∈Qs(q,L) g(x)|2 ≤ Et∈Γq′,L′,Qs(q,L)
|Ex∈Qt(q′,L′)g(x)|2.

From this it is easy to see that

‖g‖2U1
q,L(Q) = Et∈Q|Ex∈Qt(q,L)g(x)|2 ≤ Et∈Γq′,L′,Q |Ex∈Qt(q′,L′)g(x)|2 +O(L′/L)

and we note that the right side of the above expression is ‖E(g|Gq′,L′,Q)‖2L2(Q)

since the conditional expectation function E(g|Gq′,L′,Q) is constant and equal to
Ex∈Qt(q′,L′)g(x) on the cubes Qt(q

′, L′).
Now suppose (6.7) does not hold for some j ≥ 1, that is

‖f − E(f |Gqj ,Lj ,Q)‖2U1
qj+1,Lj+1

(Q) ≥ ε2.

Since Lj+2 	 ε2Lj+1, Lj+2|Lj , and qj+1|qj+2 we can apply the above observations
to g := f − E(f |Gqj ,Lj ,Q) and obtain, by orthogonality, that

(6.12) ‖E(f |Gqj+2,Lj+2,Q)‖2L2(Q) ≥ ‖E(f |Gqj ,Lj ,Q)‖2L2(Q) + cε2

for some constant c > 0. Since the above expressions are clearly bounded by 1,
the above procedure must stop in O(ε−2) steps at which (6.7) must hold for some
1 ≤ j ≤ J̄1(ε) with J̄1(ε) = O(ε−2). �

6.2. The base case of our general inductive strategy. Let Q = Q1× . . .×Qd

with Qi ⊆ Z2ni+3 be cubes of equal side length l(Q) and Δ0
i ⊆ Z2ni+3 be a non-

degenerate simplex of ni points for 1 ≤ i ≤ d.
We note that for any q0 ∈ N and scale L0 dividing l(Q) if t = (t1, . . . , td) ∈

Γq0,L0,Q, then the corresponding grids Qt(q0, L0) in the partition of Q take the form
Qt(q0, L0) = Qt1(q0, L0)× · · · ×Qtd(q0, L0).

As in the continuous setting we will ultimately need a parametric version of
Proposition 6.1, namely Proposition 6.2.

Proposition 6.2 (Parametric counting lemma on Zn for simplices). Let 0 < ε ≤ 1
and R ≥ 1.

There exists an integer J1 = J1(ε,R) = O(Rε−4) such that for any (ε, qJ1
)-

admissible sequence of scales L0 ≥ L1 ≥ · · · ≥ LJ1
with L0 dividing l(Q) and

qj := q0q1(ε)
j for 0 ≤ j ≤ J1 with q0 ∈ N, and collection of functions

f i,r
k,t : Qti(q0, L0)→ [−1, 1] with 1≤ i≤d, 1≤k≤ni, 1≤r≤R and t ∈ Γq0,L0,Q

there exists 1 ≤ j < J1 and a set Tε ⊆ Γq0,L0,Q of size |Tε| ≤ ε|Γq0,L0,Q| such that

(6.13) N 1
λΔ0

i ,qj ,Qti
(q0,L0)

(f i,r
1,t , . . . , f

i,r
ni,t) = M1

λ,qj ,Qti
(q0,L0)

(f i,r
1,t , . . . , f

i,r
ni,t) + O(ε)

for all λ ∈ qj
√
N with Lj+1 ≤ λ ≤ Lj and t /∈ Tε uniformly in 1 ≤ i ≤ d and

1 ≤ r ≤ R.

This proposition follows, as the analogous result did in the continuous setting,
from Lemma 6.1 and the following parametric version of Lemma 6.2.
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Lemma 6.3 (A simultaneous Koopman-von Neumann type decomposition). Let
0 < ε 	 1, m ≥ 1, and Q ⊆ Zn be a cube. There exists an integer J̄1 = O(mε−3)
such that for any (ε, qJ̄1

)-admissible sequence L0 ≥ L1 ≥ · · · ≥ LJ̄1
with L0 dividing

l(Q) and qj := q0q1(ε)
j for 0 ≤ j ≤ J̄1 with q0 ∈ N, and collection of functions

f1,t, . . . fm,t : Qt(q0, L0) → [−1, 1]

defined for each t ∈ Γq0,L0,Q, there is some 1 ≤ j < J̄1 and a set Tε ⊆ Γq0,L0,Q of
size |Tε| ≤ ε|Γq0,L0,Q| such that

(6.14) ‖fi,t − E(fi,t|Gqj ,Lj ,Qt(q0,L0)‖U1
qj+1,Lj+1

(Qt(q0,L0)) ≤ ε

for all 1 ≤ i ≤ m and t /∈ Tε.

Lemma 6.3 is of course the discrete analogue of Lemma 3.2. Since the proofs of
Proposition 6.2 and Lemma 6.3 are almost identical to the arguments presented in
Section 3.2 we choose to omit these details.

7. Proof of Theorem 1.4: The general case

After the preparations in Section 6 we can proceed very similarly as in Section
5 to prove our main result in the discrete case, namely Theorem 1.4. The main
difference will be that given 0 < ε 	 1 and 1 ≤ k ≤ d, we construct a positive
integer qk(ε) and assume that all our sequences of scales will be (ε, qk(ε))-admissible.
The cubes Qt(L) will be naturally now be replaced by the grids Qt(q, L) of the form
that already appear in Section 6 where we always assume q|L.

Let Δ0 = Δ0
1 × . . .×Δ0

d with each Δ0
i ⊆ Z2ni+3 a non-degenerate simplex of ni

points for 1 ≤ i ≤ d and Q = Q1 × . . .×Qd ⊆ Zn with Qi ⊆ Z2ni+3 cubes of equal
side length l(Q) (taken much larger than the diameter of Δ0). We will use the
same parameterizations in terms of hypergraph bundles Hn

d,k and corresponding
notations as in Section 5 to count the configurations Δ = Δ1 × . . .×Δd ⊆ Q with
each Δi ⊆ Qi an isometric copy of λΔ0

i for some λ ∈
√
N.

Given any positive integer q and λ ∈ q
√
N we will make use of the notation

(7.1)∑
xi

f(xi) σ
i
λ,q(xi) := Exi1∈Qi

∑
xi2,...,xini

f(xi) σλΔ0
i ,q

(xi2 − xi1, . . . , xini
− xi1) dxi1

with σλΔ0
i ,q

as defined in the previous section and xi = (xi1, . . . , xini
) ∈ Qni

i .
Note that if S ⊆ Q then the density of configurations Δ in S, of the form

Δ = Δ1 × . . .×Δd with each Δi ⊆ Qi an isometric copy of λΔ0
i for some λ ∈ q

√
N

is given by the expression

(7.2) N d
λΔ0,q,Q(1S ; e ∈ Hn

d,d) :=
∑
x1

· · ·
∑
xd

∏
e∈Hn

d,d

1S(xe) σ
1
λ,q(x1) . . . σ

d
λ,q(xd).

More generally, for any given 1 ≤ k ≤ d and a family of functions fe : Qπ(e) →
[−1, 1] with e ∈ Hn

d,k we define the multi-linear expression

(7.3) N d
λΔ0,q,Q(fe; e ∈ Hn

d,k) :=
∑
x1

· · ·
∑
xd

∏
e∈Hn

d,k

fe(xe) σ
1
λ,q(x1) . . . .σ

d
λ,q(xd)

as well as

(7.4) Md
λ,q,Q(fe; e ∈ Hn

d,k) := Et∈Q Md
t+Q(q,L) (fe; e ∈ Hn

d,k),
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where Q(q, L) = Q1(q, L)×· · ·×Qd(q, L) with each Qi(q, L) = (qZ∩ [−L
2 ,

L
2 ])

2ni+3

and

(7.5) Md
˜Q
(fe; e ∈ Hn

d,k) := Ex1∈ ˜Q
n1
1

· · · Exd∈ ˜Q
nd
d

∏
e∈Hn

d,k

fe(xe)

for any cube Q̃ ⊆ Q of the form Q̃ = Q̃1 × · · · × Q̃d with Q̃i ⊆ Qi for 1 ≤ i ≤ d.
We note that it is easy to show, as in the continuous, that if S ⊆ Q with

|S| ≥ δ|Q| for some δ > 0 then

(7.6) Md
λ,q,Q(1S ; e ∈ Hn

d,d) ≥ δn1···nd −O(ε)

for all scales λ ∈ q
√
N with 0 < λ 	 ε l(Q). In light of this observation and the

discussion preceding Proposition 6.1 the proof of Theorem 1.4 reduces, as it did in
the continuous setting, to the following

Proposition 7.1. Let 0 < ε 	 1. There exist positive integers Jd = Jd(ε) and qd(ε)
such that for any (ε, qd(ε)

Jd)-admissible sequence of scales l(Q) ≥ L1 ≥ · · · ≥ LJ1

and S ⊆ Q there is some 1 ≤ j < Jd such that

(7.7) N d
λΔ0,qj ,Q

(1S ; e ∈ Hn
d,d) = Md

λ,qj ,Q(1S ; e ∈ Hn
d,d) +O(ε),

for all λ ∈ qj
√
N with Lj+1 ≤ λ ≤ Lj with qj := qd(ε)

j.

Quantitative Remark. A careful analysis of our proof reveals that there exist
choices of Jd(ε) and qd(ε) which are less than Wd(log(CΔε

−3)) and Wd(CΔε
−13)

respectively whereWk(m) is again the tower-exponential function defined byW1(m)
= exp(m) and Wk+1(m) = exp(Wk(m)) for k ≥ 1.

The proof of Proposition 7.1 follows along the same lines as the analogous result
in the continuous setting. As before we will compare the averages N d

λΔ0,q,Q(fe; e ∈
Hn

d,k) to those of Md
λ,q,Q(fe; e ∈ Hn

d,k), at certain scales q and λ ∈ q
√
N with

with Lj+1 ≤ λ ≤ Lj , inductively for 1 ≤ k ≤ d. As the arguments closely follow
those given in Section 5 we will be brief and emphasize mainly just the additional
features.

7.1. Reduction of Proposition 7.1 to a more general “local” counting
lemma. For any given 1 ≤ k ≤ d and a family of functions fe : Qπ(e) → [−1, 1]

with e ∈ Hn
d,k it is easy to see that for any ε > 0, scale L0 > 0 dividing the

side-length l(Q), and q0|q we have

(7.8) N d
λΔ0,q,Q(fe; e ∈ Hn

d,k) = Et∈Γq0,L0,Q
N d

λΔ0,q,Qt(q0,L0)
(fe,t; e ∈ Hn

d,k) +O(ε)

and

(7.9) Md
λ,q,Q(fe; e ∈ Hn

d,k) = Et∈ΓL,Q
Md

λ,q,Qt(q0,L0)
(fe,t; e ∈ Hn

d,k) +O(ε)

provided 0 < λ 	 εL0 where fe,t denotes the restriction of a function fe to the
cube Qt(q0, L0).

Thus the proof of Proposition 7.1 reduces to showing that the expressions in (7.8)

and (7.9) only differ by O(ε) for all scales λ ∈ q
√
N with Lj+1 ≤ λ ≤ Lj , given

an (ε, q)-admissible sequence L0 ≥ L1 ≥ · · · ≥ LJ , for any collection of bounded
functions fe,t, e ∈ Hn

d,k, t ∈ Γq0,L0,Q. Indeed, our crucial result will be the following
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Proposition 7.2 (Local counting lemma in Zn). Let 0 < ε 	 1 and q0,M ∈ N.
There exist positive integers Jk = Jk(ε,M) and qk(ε) such that for any (ε, qJd

)-
admissible sequence of scales L0 ≥ L1 ≥ · · · ≥ LJ1

with L0 dividing l(Q) and
qj := q0 qk(ε)

j for j ≥ 1, and collection of functions

fm
e,t : Qtπ(e)

(q0, L0) :→ [−1, 1] with e ∈ Hn
d,k, 1 ≤ m ≤ M and t ∈ Γq0,L0,Q

there exists 1 ≤ j < Jk and a set Tε ⊆ Γq0,L0,Q of size |Tε| ≤ ε|Γq0,L0,Q| such that

(7.10) N d
λΔ0,qj ,Qt(q0,L0)

(fe,t; e ∈ Hn
d,k) = Md

λ,qj ,Qt(q0,L0)
(fe,t; e ∈ Hn

d,k) +O(ε)

for all λ ∈ qj
√
N with Lj+1 ≤ λ ≤ Lj and t /∈ Tε uniformly in e ∈ Hn

d,k and
1 ≤ m ≤ M .

Note that if k = d, L0 = l(Q), q0 = M = 1, then |Γq0,L0,Q| = 1, and moreover
if fe,t = 1S for all e ∈ Hn

d,k for a set S ⊆ Q, then Proposition 7.2 reduces to
precisely Proposition 7.1. In fact, Proposition 7.2 is a parametric, multi-linear and
simultaneous extension of Proposition 7.1 which we need in the induction step, i.e.
when going from level k − 1 to level k.

7.2. Proof of Proposition 7.2. We will prove Proposition 7.2 by induction on
1 ≤ k ≤ d.

For k = 1 this is basically Proposition 6.2, exactly as it was in the base case of
the proof of Proposition 5.3.

For the induction step we will again need two main ingredients. The first es-
tablishes that the our multi-linear forms N d

λΔ0,q,Q(fe; e ∈ Hn
d,k) are controlled by a

box-type norm attached to scales q′ and L.
Let Q = Q1 × . . . × Qd with Qi ⊆ Z2ni+3 be cubes of equal side length l(Q)

and 1 ≤ k ≤ d. For any scale 0 < L 	 l(Q) and function f : Qe′ → [−1, 1] with
e′ ∈ Hd,k we define its local box norm at scales q′ and L by

(7.11) ‖f‖2k�q′,L(Qe′ )
:= Es∈Qe′‖f‖

2k

�(Qs(q′,L)),

where

(7.12) ‖f‖2k�( ˜Q)
:= Ex11,x12∈ ˜Q1

· · · Exk1,xk2∈ ˜Qk

∏
(�1,...,�k)∈{1,2}k

f(x1�1 , . . . , xk�k)

for any cube Q̃ of the form Q̃ = Q̃1 × · · · × Q̃k. We note that (7.4) and (7.5) are
special cases of (7.11) and (7.12) with k = d, n = (2, . . . , 2), and fe = f for all
e ∈ Hn

d,d.

Lemma 7.1 (A generalized von-Neumann inequality on Zn). Let 1 ≤ k ≤ d.

Let 0 < ε 	 1, q, q′ ∈ N with qq1(ε)|q′, and λ ∈ q
√
N with λ 	 l(Q) and

1 	 L 	 (ε2
k

)10λ. For any collection of functions fe : Qπ(e) → [−1, 1] with

e ∈ Hn
d,k we have both

(7.13) |N d
λΔ0,q,Q(fe; e ∈ Hn

d,k)| ≤ min
e∈Hn

d,k

‖fe‖�q′,L′ (Qπ(e)) +O(ε)

and

(7.14) |Md
λ,q,Q(fe; e ∈ Hn

d,k)| ≤ min
e∈Hn

d,k

‖fe‖�q′,L′ (Qπ(e)).
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The proof of inequalities (7.13) and (7.14) follow exactly as in the continuous
case, see Lemma 5.1, using Lemma 6.1 in place of Lemma 3.1. We omit the details.

The crucial ingredient is again a parametric weak hypergraph regularity lemma,
i.e. Lemma 5.2 adapted to the discrete settings. The proof is essentially the same as
in the continuous case, with exception that the �Lj

-norms are replaced by �qj ,Lj
-

norms where qj = q0q
j is a given sequence of positive integers and L0 ≥ L1 ≥ · · · ≥

LJ is an (ε, qJ)-admissible sequence of scales. To state it we say that a σ-algebra
B on a cube Q is of scale (q, L) if it is refinement of the grid Gq,L,Q, i.e. if its
atoms partition each cube Qt(q, L) of the grid. We will always assume that q|L and
L|l(Q). Recall also that we say the complexity of a σ-algebra B is at most m, and
write complex(B) ≤ m, if it is generated by m sets.

Lemma 7.2 (Parametric weak hypergraph regularity lemma for Zn). Let 0 < ε 	
1, 1 ≤ k ≤ d, q0, q, L0,M ∈ N, and let qj := q0q

j for j ≥ 1. There exists J̄k =

O(Mε−2k+3

) such that for any (ε2
k

, qJ̄k
)-admissible sequence L0 ≥ L1 ≥ · · · ≥ LJ̄k

with the property that L0 divides l(Q) and collection of functions

fm
e,t : Qtπ(e)

(q0, L0) → [−1, 1] with e ∈ Hn
d,k, 1 ≤ m ≤ M , and t ∈ Γq0,L0,Q

there is some 1 ≤ j < J̄k and σ-algebras Be′,t of scale (qj , Lj) on Qte′
(q0, L0) for

each t ∈ Γq0,L0,Q and e′ ∈ Hd,k such that

(7.15) ‖fm
e,t − E(fm

e,t|Bπ(e),t)‖�qj+1,Lj+1
(Qtπ(e)

(L0)) ≤ ε

uniformly for all t /∈ Tε, e ∈ Hn
d,k, and 1 ≤ m ≤ M , where Tε ⊆ Γq0,L0,Q with

|Tε| ≤ ε|Γq0,L0,Q|.
Moreover, the σ-algebras Be′,t have the additional local structure that the exist σ-

algebras Be′,f′,s on Qs
f′
(qj , Lj) with complex(Be′,f′,s) = O(j) for each s ∈ Γqj ,Lj ,Q,

e′ ∈ Hd,k, and f′ ∈ ∂e′ such that if s ∈ Qt(q0, L0), then

(7.16) Be′,t

∣∣
Qs

e′ (qj ,Lj)
=

∨
f′∈∂e′

Be′,f′,s.

The proof of Lemma 7.2 follows exactly as the corresponding proof of Lemma
5.2 in the continuous setting, so we will omit the details. We will however provide
some details of how one deduces Proposition 7.2, from Lemmas 7.1 and 7.2. The
arguments are again very similar to those in the continuous setting, however one
needs to make a careful choice of the integers qk(ε), appearing in the statement of
the Proposition.

Proof of Proposition 7.2. Let 2 ≤ k ≤ d and assume that the lemma holds for k−1.

Let 0 < ε 	 1 and ε1 := exp (−C1ε
−2k+3

) for some large constant C1 =
C1(n, k, d) � 1.

We then define qk(ε) := qk−1(ε1) recalling that q1(ε) := lcm{1 ≤ q ≤ Cε−10}
and note that it is easy to see by induction that qk(ε)|qk(ε′) for 0 < ε′ ≤ ε and
qk−1(ε)|qk(ε). We further define the function F (ε) := Jk−1(ε1,M) with M = ε ε−1

1

and recall that qj := q0 qk(ε)
j for j ≥ 1.

We now proceed exactly as in the proof of Proposition 5.3 but with {Lj}j≥1 being

a (ε1, q ˜J )-admissible sequence of scales, with J̃ � F (ε) J̄k(ε,M). We again choose a
subsequence {L′

j} ⊆ {Lj} so that L′
0 = L0 and index(L′

j+1) ≥ index(L′
j)+F (ε)+2,

but also now set q′j = qj′ , where j′ := index(L′
j). Lemma 7.2 then guarantees the

existence of σ-algebras Be′,t of scale (q
′
j , L

′
j) on Qte′

(q0, L0) for each t ∈ Γq0,L0,Q and
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e′ ∈ Hd,k, with the local structure described above, such that (7.15) holds uniformly

for all t /∈ T ′
ε, e ∈ Hn

d,k, and 1 ≤ m ≤ M , for some 1 ≤ j < J̄k(ε,M) = O(Mε−2k+3

),

where T ′
ε ⊆ Γq0,L0,Q with |T ′

ε| ≤ ε|Γq0,L0,Q|.
Arguing as in the proof of Proposition 5.3 we can conclude from this that for

each j′ ≤ l < J ′ we have
(7.17)

N d
λΔ0,ql,Qs(q′j ,L

′
j)
(fm

e,s; e∈Hn
d,k)=

∑
r

αs,r,mN d
λΔ0,ql,Qs(q′j ,L

′
j)
(g

r
f,s; f ∈ Hn

d,k−1)+O(ε)

and
(7.18)

Md
λ,ql,Qs(q′j ,L

′
j)
(fm

e,s; e ∈ Hn
d,k) =

∑
r

αr,s,m Md
λ,ql,Qs(q′j ,L

′
j)
(g

r
f,s; f ∈ Hn

d,k−1)+O(ε)

provided (ε−2k)10L′
j+1 	 λ with λ ∈ ql

√
N, where each |αs,re | ≤ 1 and number of

index vectors r = (re)e∈Hn
d,k

is RD with D := |Hn
d,k| and hence RD ≤ M if C1 � 1.

By induction, we apply Proposition 7.2 to the sequence of scales L′
j = Lj′ ≥

Lj′+1 ≥ · · · ≥ LJ′ = L′
j+1 with ε1 > 0 and for ql := q′j qk(ε)

l−j′ = qj′ qk−1(ε1)
l−j′

where j′ ≤ l ≤ J ′ with respect to the family of functions g
r
s,f : Qs

f
(q′j , L

′
j) → [−1, 1].

This is possible as J ′ − j′ � Jk−1(ε1, R
D) and our sequence of scales is (ε1, qJ′)-

admissible. Thus there exists an index j′ ≤ l < J ′ such that for all λ ∈ ql
√
N with

Ll+1 ≤ λ ≤ Ll we have
(7.19)

N d
λΔ0,ql,Qs(q′j ,L

′
j)
(g

r
f,s; f ∈ Hn

d,k−1) = Md
λ,ql,Qs(q′j ,L

′
j)
(g

r
f,s; f ∈ Hn

d,k−1) +O(ε1)

uniformly in r for s /∈ Sε1 , where Sε1 ⊆ Γq′j ,L
′
j ,Q

is a set of size |Sε1 | ≤ ε1|Γq′j ,L
′
j ,Q

|.
The remainder of the proof follows as just as it did for Proposition 5.3. �

8. Appendix: A short direct proof of part (i) of Theorem B′

We conclude by providing a short direct proof of Part (i) of Theorem B′, namely
the following

Theorem 8.1 (Magyar [17]). Let 0 < δ ≤ 1 and Δ ⊆ Z2k+3 be a non-degenerate
simplex of k points.

If S ⊆ Z2k+3 has upper Banach density at least δ, then there exists an integer
q0 = q0(δ) and λ0 = λ0(S,Δ) such that S contains an isometric copy of q0λΔ for

all λ ∈
√
N with λ ≥ λ0.

For any ε > 0 we define

qε := lcm{1 ≤ q ≤ Cε−10}

with C > 0 a (sufficiently) large absolute constant. Following [14] we further define
S ⊆ Zn to be ε-uniformly distributed (modulo qε) if its relative upper Banach
density on any residue class modulo qε never exceeds (1 + ε2) times its density on
Zn, namely if

δ∗(S | s+ (qεZ)
d) ≤ (1 + ε2) δ∗(S)

for all s ∈ {1, . . . , qε}d. It turns out that this notion is closely related to the
U1
q,L(Q)-norm introduced in Section 6. Recall that for any cube Q ⊆ Zn and
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function f : Q → [−1, 1] we define

(8.1) ‖f‖U1
q,L(Q) :=

( 1

|Q|
∑
t∈Q

|f ∗ χq,L(t)|2
)1/2

with χq,L denoting the normalized characteristic function of the cubes Q(q, L) :=

[−L
2 ,

L
2 ]

n∩(qZ)n. Note that the U1
q,L(Q)-norm measures the mean square oscillation

of a function with respect to cubic grids of size L and gap q.
The following observation from [14] (specifically Lemmas 1 and 2) is key to our

short proof of Theorem 8.1.

Lemma 8.1. Let ε > 0. If S ⊆ Zn be ε-uniformly distributed with δ := δ∗(S) > 0,
then there exists an integer L = L(S, ε) > 0 and cubes Q of arbitrarily large side
length l(Q) with l(Q) � ε−4L such that

‖1S − δ1Q‖U1
qε,L(Q) = O(ε).

Let Δ0 = {v1 = 0, v2, . . . , vk} be a fixed non-degenerate simplex of k points
in Zn with n = 2k + 3 and define tij := vi · vj for 2 ≤ i, j ≤ k. We now define a
function which counts isometric copies of λΔ0.

Recall, see [17], that a simplex Δ = {m1 = 0, . . . , mk} ⊆ Zn is isometric to

λΔ0 if and only if mi · mj = λ2tij for all 2 ≤ i, j ≤ k. For any λ ∈
√
N we

define SλΔ0(m2, . . . , mk) : Zn(k−1) → {0, 1} be the function whose value is 1 if
mi ·mj = λ2tij for all 2 ≤ i, j ≤ k and is equal to 0 otherwise. It is a well-known
fact in number theory, see [11] or [17], that for n ≥ 2k + 1 we have that∑

m2,...,mk

SλΔ0(m2, . . . ,mk) = ρ(Δ0)λ(n−k)(k−1)(1 +O(λ−τ ))

for some absolute constant τ > 0 and constant ρ(Δ0) > 0, the so-called singular
series, which can be interpreted as the product of the densities of the solutions of
the above system of equations among the p-adics and among the reals. Thus if we
define

σλΔ0 := ρ(Δ0)−1λ−(n−k)(k−1)SλΔ0

then σλΔ0 is normalized in so much that∑
m2,...,mk

σλΔ0(m2, . . . ,mk) = 1 +O(λ−τ )

for some absolute constant τ > 0.
Let Q ⊆ Zn be a fixed cube and let l(Q) denotes its side length. For any family

of functions

f1, . . . , fk : Q → [−1, 1]

and 0 < λ 	 l(Q) we define
(8.2)

N 1
λΔ0,Q(f1, . . . , fk) :=Em1∈Q

∑
m2,...,mk

f1(m1) . . . fk(mk)σλΔ0(m2−m1, . . . ,mk−m1).

It is clear that if f1 = · · · = fk = 1S restricted to Q, then the above expression
is a normalized count of the isometric copies of λΔ0 in S ∩Q. Thus, Theorem 8.1
will follow from Lemma 8.1 and the following special case (with q = 1) of Lemma
6.1.
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Lemma 8.2 (A generalized von Neumann inequality). Let 0 < ε 	 1.

If λ ∈
√
N with λ 	 l(Q) and 1 	 L 	 ε10λ then for any collection of functions

f1, . . . , fk : Q → [−1, 1] we have

(8.3) |N 1
λΔ0,Q(f1, . . . , fk)| ≤ min

1≤j≤k
‖fj‖U1

qε,L(Q) + O(ε).

This compares with the purely number theoretic fact that the number of simplices
Δ = {v1 = 0, v2, . . . , vk} ⊆ Zn isometric to λΔ0 is asymptotic to ρ(Δ0)λ(n−k)(k−1).
Thus, under the same conditions as in Lemma 8.2, we have

(8.4) N 1
λΔ0,Q(1Q, . . . , 1Q) = 1 +O(λ−τ ) +O(ε)

provided one also has λ 	 εl(Q).

Proof of Theorem 8.1. Let 0 < ε 	 δk and S ⊆ Zn be a set of upper Banach
density δ.

We assume first that S is ε-uniformly distributed. Select a scale L = L(ε, S)
and a sufficiently large cube Q so that the conclusion of Lemma 8.1 holds. For a
given λ ∈

√
N with λ 	 εl(Q) and L 	 ε10λ write 1S = δ1Q + g and substitute

this decomposition into the multi-linear expression N 1
λΔ0,Q(1S , . . . , 1S). Then by

Lemma 8.2 and (8.3)–(8.4), we have that

(8.5) N 1
λΔ0,Q(1S, . . . , 1S) ≥ δk −O(ε)

and we can conclude that S must contain an isometric copy of λΔ0.
If S is not ε-uniformly distributed, then its upper Banach density is increased

to at least δ1 := (1 + ε2)δ when restricted to a residue class s + (qεZ)
n. Identify

s + (qεZ)
n with Zn and simultaneously the set S|s+(qεZ)n with a set S1 ⊆ Zn, via

the map y → q−1
ε (y− s). Note that if S1 is ε-uniformly distributed then it contains

an isometric copy of λΔ0 for all sufficiently large λ ∈
√
N and hence S contains an

isometric copy of qελΔ
0.

Repeating the above procedure one arrives to a set Sj = q−j
ε (S − sj) ⊆ Zn for

some sj ∈ Zn in j = O(log ε−1) steps which contains an isometric copy of λΔ0 for

all sufficiently large λ ∈
√
N. �
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