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1. INTRODUCTION

Throughout this paper denote by R,R+,Z, and N the sets of real numbers, non-
negative real numbers, integers, and positive integers, respectively, and denote I by a
nonempty subinterval of R.

The stability theory of convexity started with the paper [2] of Hyers and Ulam who
defined the ε-convex functions: If D is a convex subset of a real linear space X and ε

is a nonnegative number, then a function f : D → R is called ε-convex, if

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y)+ ε

for all x,y ∈ D, t ∈ [0,1]. The basic result obtained by Hyers and Ulam states that if
the underlying space X is finite dimension then f can be written as f = g+h, where
g is a convex function and h is a bounded function whose supremum norm is not
larger than knε, where the positive constant kn depends only on the dimension of the
underlying space X .

In [7], Páles introduced a more general notion than ε-convexity. Let ε,δ be non-
negative constants. A function f : D → R is called (ε,δ)-convex, if

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y)+δ+ εt(1− t)∥x− y∥

for every x,y ∈ D and t ∈ [0,1]. The main results of the paper [7] obtain a complete
characterization of (ε,δ)-convexity, if D ⊂R is an open real interval by showing that
these functions are of the form f = g+ h+ l, where g is convex, h is bounded with
|h| ≤ δ/2 and l is Lipschitzian with Lipschitz modulus Lip(l)≤ ε.

In [1], Alizadeh and Roohi introduced a general convexity notion, the so-called
σ-convexity, namely let σ : D →R be a nonnegative function. We say that a function
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f : D → R is σ-convex, if

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y)+ t(1− t)min(σ(x),σ(y))∥x− y∥
for all x,y ∈ D and t ∈ [0,1].

In this paper the relations between the σ-monotonicity and σ-convexity were in-
vestigated. Moreover, some results on the sum and difference of two σ-monotone
operator was considered. In this paper, we would like to generalize the notion of
σ-convexity and we would like to consider the basic properties of this generalized
convexity. Namely, we will characterize e-convexity in the real case, give a kind
of strengthening of e-convexity, give Bernstein–Doetcsh type result, search relations
between Hermite–Hadamard type inequalities and e-convexity.

2. MAIN RESULTS

Let X be a linear space and D be a nonempty convex subset of X , moreover let
e : D×D → [0,∞[ be a nonnegative, symmetric error function. We say that f : D →R
is e-convex, if

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y)+ t(1− t)e(x,y) (t ∈ [0,1], x,y ∈ D).

(2.1)
If the above inequality stands for a t ∈]0,1[, we say that the function f is (t,e)-convex.

Remark 1. The e-convexity reduces to
1) convexity if e(x,y) = 0, for all x,y ∈ D;
2) ε-convexity if e(x,y) = ε∥x− y∥ for all x,y ∈ D and for a fixed ε ≥ 0;
3) paraconvexity if e(x,y) =C∥x− y∥2 for all x,y ∈ D and for a fixed C ∈ R;
4) α(·)-paraconvexity if e(x,y) =Cα(∥x−y∥), for all x,y ∈ D, where C > 0 and

α is a nondecreasing function mapping the interval [0,+∞[ into the interval
[0,∞[. (see [6])

5) σ-convexity, if e(x,y) = min(σ(x),σ(y))∥x− y∥, if X is a normed space, and
σ : D → R be a nonnegative function.

In the following theorem, we would like to give a strengthening type result. This
result is similar as in [3].

Theorem 1. If the function f is e-convex on D, then the following e-convexity type
inequality also holds,

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y)+ t(1− t)e(x,y)

+
t − r
s− r

· s− t
s− r

(
e(sx+(1− s)y,rx+(1− r)y)− (s− r)2e(x,y)

) (2.2)

for all x,y ∈ D, and 0 ≤ r ≤ t ≤ s ≤ 1.

Proof. Write, in (2.1), x by sx+(1− s)y and y by rx+(1− r)y, we can get that

f
(
(ts+(1− t)r)x+(1− (ts+(1− t)r))y

)
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= f
(
t(sx+(1− s)y)+(1− t)(rx+(1− r)y)

)
≤ t f (sx+(1− s)y)+(1− t) f (rx+(1− r)y)

+ t(1− t)e(sx+(1− s)y,rx+(1− r)y)

≤ t
(

s f (x)+(1− s) f (y)+ s(1− s)e(x,y)
)

+(1− t)
(

r f (x)+(1− r) f (y)+ r(1− r)e(x,y)
)

+ t(1− t)e(sx+(1− s)y,rx+(1− r)y)

≤ (ts+(1− t)r) f (x)+(1− (ts+(1− t)r)) f (y)

+ ts(1− s)e(x,y)+(1− t)r(1− r)e(x,y)

+ t(1− t)e(sx+(1− s)y,rx+(1− r)y).

Let u = ts+(1− t)r, then t = u−r
s−r and from the previous inequality we have that,

f (ux+(1−u)y)≤ u f (x)+(1−u) f (y)+u(1−u)e(x,y)

+
(
ts(1− s)+(1− t)r(1− r)−u(1−u))e(x,y)

+ t(1− t)e(sx+(1− s)y,rx+(1− r)y).

Applying the previous substitution, we have (2.2), which proves the statement. □

Remark 2. According to the previous theorem, we may assume that the plus error
term is nonnegative, namely

e(sx+(1− s)y,rx+(1− r)y)− (s− r)2e(x,y)≥ 0 for all 0 ≤ r ≤ s ≤ 1.

If not, we can strengthen our error term with the e-type function in (2.2). This means
that the error e has the property of superquadratic. For example, in the case of normed
space, if e(x,y) = ∥x− y∥p, where p > 0. We can get p ≤ 2.

Theorem 2. The e-convexity of the function f : D → R is equivalent with the
following property: For all x1, . . . ,xn ∈ D, ti ≥ 0 with ∑

n
i=1 ti = 1,

f

(
n

∑
i=1

tixi

)

≤
n

∑
i=1

ti f (xi)+
n

∑
j=1

j−1

∑
i=1

tit j(
∑

j
k=1 tk

)2 ·

· e

((
j

∑
k=1

tk

)
xi +

n

∑
k= j+1

(tkxk),

(
j

∑
k=1

tk

)
xi+1 +

n

∑
k= j+1

(tkxk)

)
.

(2.3)

Proof. Assume that f is e-convex on D. We will show (2.3) by induction. If
n = 2, we have the e-convexity of f . Let us assume that (2.3) satisfies for n ∈ N.
Let’s consider the case n+ 1. Let x1, . . . ,xn,xn+1 ∈ I and ti ≥ 0 with ∑

n+1
i=1 ti = 1. If
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tn+1 = 1, the statement is true. If it is not, then 1− tn+1 = ∑
n
i=1 ti. Then using the

inductive assumption, and some simple computation, finally the e-convexity of f , we
can get that,

f

(
n+1

∑
j=1

t jx j

)
= f

(
n

∑
j=1

t j

1− tn+1
((1− tn+1)x j + tn+1xn+1)

)

≤
n

∑
j=1

t j

1− tn+1
f ((1− tn+1)x j + tn+1xn+1)

+
n

∑
j=1

j−1

∑
i=1

ti
1−tn+1

t j
1−tn+1(

∑
j
k=1

tk
1−tn+1

)2 e

((
j

∑
k=1

tk
1−tn+1

)
((1− tn+1)xi + tn+1xn+1)

+
n

∑
k= j+1

tk
1−tn+1

((1− tn+1)xk + tn+1xn+1) ,(
j

∑
k=1

tk
1−tn+1

)
((1− tn+1)xi+1 + tn+1xn+1)+

n

∑
k= j+1

tk
1−tn+1

((1− tn+1)xk + tn+1xn+1)

)

=
n

∑
j=1

t j

1− tn+1
f ((1− tn+1)x j + tn+1xn+1)

+
n

∑
j=1

j−1

∑
i=1

tit j(
∑

j
k=1 tk

)2 e

((
j

∑
k=1

tk

)
xi +

n

∑
k= j+1

(tkxk)+ tn+1xn+1,

(
j

∑
k=1

tk

)
xi+1 +

n

∑
k= j+1

(tkxk)+ tn+1xn+1

)

≤
n

∑
j=1

t j

1− tn+1
((1− tn+1) f (x j)+ tn+1 f (xn+1)+ tn+1(1− tn+1)e(x j,xn+1))

+
n

∑
j=1

j−1

∑
i=1

tit j(
∑

j
k=1 tk

)2 e

((
j

∑
k=1

tk

)
xi +

n+1

∑
k= j+1

(tkxk),

(
j

∑
k=1

tk

)
xi+1 +

n+1

∑
k= j+1

(tkxk)

)

=
n+1

∑
j=1

t j f (x j)+
n

∑
j=1

t jtn+1e(x j,xn+1)

+
n

∑
j=1

j−1

∑
i=1

tit j(
∑

j
k=1 tk

)2 e

((
j

∑
k=1

tk

)
xi +

n+1

∑
k= j+1

(tkxk),

(
j

∑
k=1

tk

)
xi+1 +

n+1

∑
k= j+1

(tkxk)

)

=
n+1

∑
j=1

t j f (x j)
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+
n+1

∑
j=1

j−1

∑
i=1

tit j(
∑

j
k=1 tk

)2 e

((
j

∑
k=1

tk

)
xi +

n+1

∑
k= j+1

(tkxk),

(
j

∑
k=1

tk

)
xi+1 +

n+1

∑
k= j+1

(tkxk)

)
,

which proves the statement. The substitution n = 2 give that the implication (iii)→(i)
also holds. □

Theorem 3. Let I be an open interval in R, then f : I →R is e-convex on I, if and
only if for all x < u < y from I,

f (u)− f (x)
u− x

≤ f (y)− f (u)
y−u

+
e(x,y)
y− x

(2.4)

holds.

Proof. Assume that f is e-convex on I, then substituting tx+(1− t)y by u, x <
u < y in (2.1), we can get that t = y−u

y−x and

f (u)≤ y−u
y− x

f (x)+
u− x
y− x

f (y)+
y−u
y− x

· u− y
y− x

e(x,y).

Rearranging the above inequality we can get (2.4).
The implication (ii)→ (i) is also a simple calculation. Namely with the substitution

u = tx+(1− t)y we have the e-convexity of f . □

Corollary 1. If f : I → R is differentiable and e-convex on I, then

f (x)− f (y)≥ f ′(y)(x− y)− e(x,y) (x,y ∈ I). (2.5)

Proof. Taking the limit y → u in (2.4), we have (2.5). □

Corollary 2. If f : I → R is differentiable and e-convex, then

( f ′(x)− f ′(y))(x− y)≥−2e(x,y) (x,y ∈ I). (2.6)

Proof. Let x,y ∈ I, then using (2.5) and applying the substitution x by y and y by
x, and adding the two inequalities, we have (2.6). □

Proposition 1. Let I = [a,b]. If e : I× I → [0,∞[ is upper semicontinuous and f is
e-convex, then f is continuous.

Proof. Assume that x0 in I and (xn) is a sequence in ]x0,b[, converging to x0. Then,

xn = λnb+(1−λn)x0 with λn → 0.

On the other hand xn ∈]a,x0[. Thus there exists λ′
n ∈ [0,1], such that

x0 = λ
′
na+(1−λ

′
n)xn with λ

′
n → 0.

Since f is e-convex, we have that

f (xn)≤ λn f (b)+(1−λn) f (x0)+λn(1−λn)e(b,λnb+(1−λn)x0).
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Therefore, by taking the limsup in the above inequality we have that

limsup
n→∞

f (xn)≤ f (x0).

However,

f (x0)≤ λ
′
n f (a)+(1−λ

′
n) f (xn)+λ

′
n(1−λ

′
n)e(a,λ

′
na+(1−λn)xn).

Taking the liminf, we have that

f (x0)≤ liminf f (xn).

□

Remark 3. Assume that 0∈ I and f : I →R is e-convex. If f (0)≤ 0 and e(x,0) = 0
for all x ∈ I, then f is super-additive on I ∩ [0,∞). Indeed, by the e-convexity of f ,
we have

f (tx) = f (tx+(1− t)0)≤ t f (x)+(1− t) f (0)+ t(1− t)e(x,0)≤ t f (x).

On the other hand, for all x,y ∈ I

f (x)+ f (y) = f
(
(x+ y)

x
x+ y

)
+ f

(
(x+ y)

y
x+ y

)
≤ x

x+ y
f (x+ y)+

y
x+ y

f (x+ y) = f (x+ y)

In what follows, we find connections between a lower Hermite–Hadamard type in-
equality and e-convexity. We will need the definition of hemi-property. The function
f : D → R has a hemi-property, if for all x,y ∈ D the map

t → f (tx+(1− t)y) t ∈ [0,1] (2.7)

has got that property. For example f : D → R is hemi-bounded, if for all x,y ∈ D the
function defined by (2.7) is bounded.

Now, we recall a theorem of [5].

Theorem 4. Let D be a convex set of a linear space X. Let A be a sigma algebra
containing the Borel subsets of [0,1] and µ be a probability measure on the measure
space ([0,1],A ) such that the support of µ is not a singleton. Denote

S(µ) := µ
(
[0,µ1]

) ∫
]µ1,1]

tdµ(t)−µ
(
]µ1,1]

) ∫
[0,µ1]

tdµ(t). (2.8)

Assume that f : D → R is an hemi-µ-integrable solution of the functional inequality

f ((1− t)x+ ty)≤ (1− t) f (x)+ t f (y)+ ex,y(t) ((x,y) ∈ D2, t ∈ [0,1]), (2.9)

where, for all (x,y) ∈ D2∗, ex,y : [0,1]→ R is a function such that

I(x,y) :=
∫

]µ1,1]

∫
[0,µ1]

(t ′′− t ′)e(1−t ′)x+t ′y,(1−t ′′)x+t ′′y

(µ1 − t ′

t ′′− t ′

)
dµ(t ′)dµ(t ′′) (2.10)
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exists in [−∞,∞] for all (x,y) ∈ D2∗. Then, for all (x,y) ∈ D2∗, the function f also
satisfies the lower Hermite–Hadamard type inequality

f ((1−µ1)x+µ1y)≤
∫

[0,1]

f
(
(1− t)x+ ty

)
dµ(t)+E(x,y) ((x,y) ∈ D2), (2.11)

where

E(x,y) :=
I(x,y)
S(µ)

((x,y) ∈ D2∗). (2.12)

The following result gives a lower Hermite–Hadamard type inequality for e-convex
functions and it is a simple connection of the previous theorem.

Corollary 3. Let D be a convex set of a linear space X. Let A be a sigma algebra
containing the Borel subsets of [0,1] and µ be a probability measure on the measure
space ([0,1],A ) such that the support of µ is not a singleton. Let S(µ) defined by
(2.8). Assume that f : D → R is an hemi-µ-integrable solution of the e-convexity
type inequality (2.1), moreover let I(x,y) - defined by (2.10) - exist in [−∞,∞], for
all (x,y) ∈ D2. Then f satisfies the lower Hermite–Hadamard type inequality, (2.11),
where E is defined by (2.12).

Now, we apply this corollary for Lebesgue integral.

Corollary 4. Let D be a convex set of a linear space X. Assume that f : D → R
is an hemi-Lebesgue-integrable solution of the e-convexity inequality (2.1). Then f
satisfies the following lower Hermite–Hadamard type inequality,

f
(x+ y

2

)
≤

∫ 1

0
f
(
(1− t)x+ ty

)
dt +4I(x,y) ((x,y) ∈ D2), (2.13)

where

I(x,y) :=
1∫

1
2

1
2∫

0

(1
2 − t ′)(t ′′− 1

2)

t ′′− t ′
e((1− t ′)x+ t ′y,(1− t ′′)x+ t ′′y)dt ′dt ′′.

Proof. Denote by λ the Lebesgue measure on [0,1]. Then λ1 =
∫ 1

0 tdt = 1
2 . On the

other hand,

S(λ) := λ
(
[0,λ1]

) ∫
]λ1,1]

tdt −λ
(
]λ1,1]

) ∫
[0,λ1]

tdt

= λ
(
[0, 1

2 ]
) 1∫

1
2

tdt −λ
(
]1

2 ,1]
) 1

2∫
0

tdt =
1
4
.

□
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Now, we recall a result from [4].

Theorem 5. Let µ be a Borel probability measure on [0,1], denote µ1 :=
∫
[0,1] tdµ(t)

and assume that the support of µ is not a singleton, i.e., µ ̸= δµ1 . Assume that, for
all (x,y) ∈ D2, f : D → R is an upper hemicontinuous solution of the functional in-
equality (2.13), where E : D2 → R. Assume that, for all (x,y) ∈ D2, ex,y : [0,1]→ R
is a lower semicontinuous function with ex,y(0) = ex,y(1) = 0 satisfying the following
system of inequalities:

ex,y(s)≥


∫

[0,1]
ex,y
( st

µ1

)
dµ(t)+E

(
x,(1− s

µ1
)x+ s

µ1
y
)

(s ∈ [0,µ1]),∫
[0,1]

ex,y
(
1− (1−s)(1−t)

1−µ1

)
dµ(t)+E

( 1−s
1−µ1

x+(1− 1−s
1−µ1

)y,y
)

(s ∈ [µ1,1]).

(2.14)
Then, for all (x,y) ∈ D2 and s ∈ [0,1], the function f also satisfies the approximate
convexity inequality (2.9).

The following proposition states that from Hermite–Hadamard type inequality, we
can get e-convexity.

Corollary 5. Let µ be a Borel probability measure on [0,1], denote µ1 :=
∫
[0,1] tdµ(t),

µ2 =
∫
[0,1] t

2dµ(t) and assume that the support of µ is not a singleton, i.e., µ ̸= δµ1 .
Assume that, for all (x,y) ∈ D2, f : D → R is an upper hemicontinuous solution of
the functional inequality (2.13), where E : D2 → R. Assume that, for all (x,y) ∈ D2,
e : D×D→R is a lower semicontinuous function with satisfying the following system
of inequalities:{

s2(µ2
µ2

1
−1)ex,y(s)≥ E

(
x,(1− s

µ1
)x+ s

µ1
y
)

(s ∈ [0,µ1]),

(1− s)2
(1−2µ1+µ2

(1−µ1)2

)
e(x,y)≥ E

( 1−s
1−µ1

x+(1− 1−s
1−µ1

)y,y
)

(s ∈ [µ1,1]).
(2.15)

Then, the function f is e-convex on D.

Proof. Define for x,y ∈ D and t ∈ [0,1], the function ex,y by the following formu-
lae:

ex,y(t) = t(1− t)e(x,y)
Simple calculations shows that (2.14) reduces (2.15). Using the previous theorem,
we have the e-convexity of f . □

Corollary 6. Let d : D×D → [0,∞[ be a symmetric function. Assume that f : D →
R is a hemi-continuous solution of the functional inequality,

f
(x+ y

2

)
≤

∫ 1

0
f (tx+(1− t)y)dt +d(x,y), (x,y ∈ D)

with
1

12
s2e(x,y)≥ d(x,(1− s)x+ sy) (s ∈ [0,1], x,y ∈ D). (2.16)
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Then f is e-convex.

Proof. In this case, µ is the Lebesgue measure, which is denoted by λ. λ1 =
1
2 and

λ2 =
1
3 . Using the symmetry of the function d it is also easy to see that (2.15) reduces

(2.16). Applying the previous corollary, we can get the e-convexity of f . □

The following proposition states a Bernstein–Doetsch type theorem for e-convexity.

Corollary 7. Let X is normed space and D is a nonempty, open and convex subset
of X. Let d : D×D → [0,∞[ be a symmetric function. Let f : D → R be a continuous
solution of the following functional inequality,

f
(x+ y

2

)
≤ f (x)+ f (y)

2
+d(x,y)

Assume that e : D×D → [0,∞[ is symmetric and it satisfies the following functional
inequality,

s2

4
e(x,y)≥ d(x,(1− s)x+ sy) s ∈ [0,1], s ∈ [0,1].

Then f is e-convex.

Proof. Let µ be the Dirac-measure which concentrated to 1
2 . Then, from Corollary

6, we can get the statement. □
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