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Abstract. Let U be a universal subclass of a universal class V of rings. We investigate connec-
tions between radicals in U and V. We define 7" and ‘I as follows:

T = {A € A | every prime homomorphic image of A is not
a hereditary Amitsur ring}

T, = {A € 4y | every prime homomorphic image of A has no nonzero
ideal which is a hereditary Amitsur ring}.

Letye {7,7;} and let A be a commutative ring with minimum condition on ideals. We give a
sufficient and necessary condition for A to be y-semisimple.

2010 Mathematics Subject Classification: 16N80

Keywords: Radicals of associative or alternative rings, lower radicals

1. INTRODUCTION

In this note, all rings considered will belong to some arbitrary (but fixed) universal
class V of not necessarily associative rings. A universal class of rings is a class of
rings that is hereditary (that is, if A € V and [ is an ideal of A, then / € V ) and
homomorphically closed (that is, if A € V and I is an ideal of A, then A/I € V). All
radicals considered in this paper are in the sense of Kurosh and Amitsur. For the
fundamental definitions and properties of radicals, we refer the reader to [1].

For any ring A, let A? denote the ring with additive group (A,+) and with mul-
tiplication defined by xy = 0 for all x,y € R. Such a ring A° is called a zero ring.
The notation / < A means that / is an ideal of A. A subring B of a ring A is said
to be an accessible subring of A if there exists a finite sequence Cy,...,C, of sub-
rings of A such that C; < Cjyq, fori=1,...,n—1, C; = B and C, = A. We recall
that a radical y of rings has the ADS property if y(I) < A for every [ < A. Let
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M be a subclass of the universal class V . If M determines an upper radical, let
Uy (M) = {A € V | A has no nonzero homomorphic image in M } that is, the upper
radical generated by M in V. The lower radical in V, induced by the class M,
is denoted by Ly (M). For a radical vy, the semisimple class of y in V is given by

(Sv)y={A €V [v(4)=0}.
2. GENERAL RINGS
In what follows, U denotes a universal subclass of the universal class V.
Proposition 1. Let y be a radical class in V. Then YNU is a radical class in U.
Proof. Clear. O
Proposition 2. Let y be a radical class in U. Theny= Ly(y)NU.

Proof. 1tis clear thaty C Ly (y)NU.

If the semisimple class (Sy)y of yis equal to 0, theny=U and y 2 Ly (y)NU.

Suppose (Sy)Y # 0. Then Uy ((Sy)y) 2 Ly (Y) 2 Ly (y) NU. If there exists a non-
zeroring A € Ly () NU withy(A) =0, then A € (Sy)yand we have A € Uy ((Sy)y)N
(Sy)y=0. This leads to a contradiction, so y 2 Ly (y)NU O

Now let us consider the following condition in the universal class V.
(ADS) : Every radical yin V has the ADS property.

Theorem 1. Let U C V be universal classes of rings with property (ADS) and let
Y be a radical in V. If for every ring A €, there exists a nonzero accessible subring
Iy with Iy € YN U, then Ly (yNU) =7.

Proof. We puty = Ly(yNU).

It is clear thaty C .

Let us suppose that 0 # A € Y\ Y, then 0 # A = A/Y(A) and A € y. Hence by
assumption there exits a nonzero accessible subring Iy <I; <, < --- <1, = A such
that Iy € yNU. Therefore ¥ (I1) # 0 and by ADS property we have ¥ (I;) < I,. Then
by induction ¥ (I,) # 0. Thus Y (A) # 0. But Y(A/Y (A)) = 0, which leads to a con-
tradiction. Hence Yy C Y. O

3. ASSOCIATIVE RINGS

In this section, all rings are associative not necessarily with a unity element. In
[4], we introduced (hereditary) Amitsur rings and also constructed radicals 7" and 7.
A ring A is said to be a (hereditary) Amitsur ring if y(A[x]) = (Y(A[x]) NA)[x], for all
(hereditary) radicals . Let us recall the definitions of 7 and 7.

If A denotes the class of all associative rings, then

T = {A € 4, | every prime homomorphic image of A is not a hereditary

Amitsur ring}.



A NOTE ON RADICALS OF ASSOCIATIVE RINGS AND ALTERNATIVE RINGS 177

7y = {A € 4y, | every prime homomorphic image of A has no nonzero

ideal which is a hereditary Amitsur ring}.

Working in the class A4 of associative rings, we denote the semisimple class of a
radical y by SY.

Proposition 3. If F is a finite field, then F is not a hereditary Amitsur ring.

Proof. Let F be a finite field and let us consider the class {F'}. It is clear that {F }
is a special class of rings. Therefore the upper radical Y= U({F'}) is a special radical
class of rings. Hence 7y is a hereditary radical class.

Also it is easy to check that y(F[x]) is the ideal of F[x], generated by x" — x,
where p” is the number of elements in F. So y(F|[x]) C xF[x]. Therefore Y(F|[x]) #
(Y(F[x]) N F)[x]. Thus F is not a hereditary Amitsur ring. O

Proposition 4. [4] Let A be a ring without proper prime homomorphic images. If
A is an infinite integral domain, then A is a hereditary Amitsur ring.

2x
2y+1

Corollary 1. Let J = {

Amitsur ring.

|x,y€Z,(2x,2y+1) = 1}. Then J is a hereditary

Proposition 5. Lety€ {7,7} and F be a field. Then
(1) F € Syifand only if F is an infinite field.
(2) F €vifandonly if F is a finite field.

Proof. It follows from Propositions 3 and 4. U
Proposition 6. For all simple rings A, T (A) = I;(A).

Proof. If A is a simple ring, then A has no nonzero proper ideals and so it is obvious
that A € 7 if and only if A € I O

Let us denote by P the class of all prime rings. Let (1,&) be a partition of simple
rings. Let us consider the following class:

s(§) = {A € P | A is subdirectly irreducible with heart H(A) € &}
We denote by L,,1 the lower special radical generated by 1.

Theorem 2. [5] L,m & U(s(§)).

Let us put:
Ng ={A €T |Aisasimple ring}
Er ={A € ST |Aisasimple ring}
Nz ={A € Z; | Ais a simple ring }
& = {A € ST, | Ais asimple ring}
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Corollary 2. £,,(n7) = Liy(Ng) €L C T G U(s(&7)) = U(s(Ex))-

Proof. By the notations above and Proposition 4 and 6, we have £,(nz) € Z; C
T C U(s(&r)) = U(s(Ex)). Let J be the ring defined on Corollary 1. Then in a
similar to the proof of the Theorem 2, we can show that J ¢ 7 and J € U(s(§7)).
Thus T S U(s(Ez))- O

Theorem 3. Let A be a commutative ring, satisfying the minimum condition on
ideals. Lety€ {T,T;}. Then A€ Syifonly if A=FL®F&---®F,, where F; is an
infinite field for any i, 1 <i < n. Moreover, this statement is true for any radical ¥
such that Lg,(Mq) €Y< U(s(Ez)).

Proof. Let A € Sy. Since A satisfies the minimum condition on ideals, there exists
a non-zero minimal ideal / < A. A € Syimplies that A is a semiprime ring. Therefore
[ is a prime simple ring. Since A is a commutative ring, / is a commutative ring.
Hence al = I, for every non-zero a € I. Thus [ is a field. It is well known that / is a
direct summand of A. So we have A =1} @A, where I =} and A; € SY. Also, A;
satisfies all the conditions of the theorem. Hence if we continue this procedure, then
wehave A=, LD--- DL, D...

Put

Ji=A,
h=L&---Bl,P....

Jo=1, B Blys....

ThenJ; 2,2 - 2],1 2 ...and J; <A, foreachi=1,2,....
By assumption there exists n € N, such that

In=dugr ==
It implies I,+1 = 0. Since I;, 1 <i <, is a field, we have
A=F&® - --dF,, where l; =F;.
Also A € Syand F; € §y. Thus by Proposition 5, each F; is an infinite field.

Let A=F &---®F,, where F; is an infinite field. Then by Proposition 4 each
F; € Sy. Thus A € §y. O

We denote by Ag; all associative rings and by Cy, all commutative associative rings.
It is clear that Cy; is a universal subclass of Ag.

Remark 1. Tt follows from Proposition 1 that 7 N C, and Z; N Cyy are radicals in
Cis.

Theorem 4. Let y € {7T,I;} and A be a subdirectly irreducible semiprime ring.
Then A is 6 = Ly, (YN Cys)-semisimple if and only if A is not a finite field.
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Proof. 1t is easy to see that 6 C v and A is a prime ring. Suppose that A is not
a finite field and not o-semisimple. Therefore 6(A) # 0 and 6(A) < A. It is clear
that 6(A) is a subdirectly irreducible ring. Let H(c(A)) denote the heart of 6(A).
Since 6(A) € o, there exists a nonzero accessible subring Iy of 6(A), which is in
YN Css. Since A is a prime ring H(6(A)) C Iy. This implies that H(c(A) is a simple
commutative ring. Therefore F = H(c(A) is a field. It is easy to see that F = A. Thus
by Proposition 6, F € 7;N C,,. Then by Proposition 5, A is a finite field, which leads
to a contradiction. Hence A is a 6-semisimple ring.

Suppose A is 6-semisimple and A = F is a finite field. Then again by Proposition
5,A =F € yNCg, which leads to a contradiction. 0

A class 0 of rings is said to be a matrix-extensible class if for all natural numbers
n, A € d if and only if M, (A) € §, where M,,(A) is the n X n matrix ring.

Corollary 3. 6 = L _(YNCy) is not a matrix-extensible class.

Proof. Let F be a finite field. Then F € YN Cy,. Thus, by Theorem 4, M, (F) is a
o-semisimple class. O

For the next theorem we use the following notations:

B— Baer radical, £L— Levitzki radical, A’ — Nil radical, 7— Jacobson radical and
G — Brown-McCoy radical. The notation o [T r means that o and r are not compar-
able radicals.

Theorem 5.

(1) B = LAss(BmCss);

(i) L # La,(LNCs5) =P
(iii) N # La, (N NCss) = B;
(iv) La,(JNCy) T NG

(V) La,(GNCg) 1T N

Proof.

(i) Let A be a ring in B. Then there exists a non-zero accessible subring 1° of A,
which is a zero ring. Hence I° € BN Cy,. Thus by Theorem 1, B = L4 (BN
Css). Also, we know that BN Cyy = LN Cys = NN Cys.

(i1) and (iii) In [6], E.I. Zelmanov constructed a ring A, which is locally nilpotent as well
as prime. So B(A) =0 while L(A) = A, which implies B # L. Also, it is easy
to see that B C Ly (L NCy) C Lo, (N NCs) and AN Cys € B. Thus B =
La, (LNCys) = La, (N.NCyy). Also, it is easy to see that Ly (A NCys) # N.

(iv) We shall show that £, (7 NCy,) € AL Let

2x
2y+1

J={ |x,y €Z,(2x,2y+1) =1}.
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Then we know that J is a commutative Jacobson radical ring. So J € 7 NCy;,
also J € L4, (JNCyy). But J has no nonzero nilpotent elements. Thus J & N[
In [2] A.Smoktunowicz proved that there exists a simple nil prime ring A. It
is clear that A € L4 (I NCyy). Thus AL E La, (I NCyy).

(v) Itis clear.

Corollary 4. J # L4 (INCs) # B and G # La,(GNCss) # B.
Corollary 5. Letye {7, T} Then B G La, (YN Cy).
Proof. All zero rings and all finite fields are in yNCys. Thus B S L4, (YNCys). O

4. ALTERNATIVE RINGS

In this section all rings are alternative. An alternative rings is a ring in which
multiplication need not be associative, only alternative, that is, x>y = x(xy) and yx> =
(yx)x, for all x,y € A. We denote the class of all alternative rings by Alr. Let M be a
nonempty class of alternative rings and assume that /M is homomorphically closed.
Let us define M; = M. Assuming that M, has been defined for every ordinal number
o such that 1 < o < B, we define Mg to be the class of all alternative rings A such
that every nonzero homomorphic image of A contains a nonzero ideal I, which is
in My, for some o < B. It is clear that My < Mg if oo < B and each class M is
homomorphically closed. Let Ly (M) = UgMy. Then Ly (M) determines a radical
property and this is the smallest radical class containing M (see [0]).

Lemma 1 ([3]). If B is a nonzero accessible subring of an alternative ring A and
if Bis in M, then B, the ideal of A generated by B, is in M., where q is finite and
W is the first infinite ordinal.

Proposition 7. An alternative ring A is in "y = La;, (M) if and only if every nonzero
homomorphic image of A of A contains a nonzero accessible subring B, such that B
isin M.

Proof. Suppose that A is not in y. Then A = A/y(A) # 0. By assumption, A con-
tains a nonzero accessible subring B such that B is in M. From Lemma 1, B is the
ideal of A generated by B, which is in M,.,,,. Hence B is a y-radical ideal. Therefore
0 =7Y(A/y(A)) = y(A) # 0, which leads to a contradiction. Let A € Y. Then every
nonzero homomorphic image A of A is in y. By Lemma 1 of [2] and the proof of
Theorem 3 of [3], 0 # A contains a nonzero accessible subring B such that B is in

M. O

Theorem 6. Let y be a radical in Alt. Then Ly, (YN Ay) =Y if and only if every
nonzero ring A € 'y contains a nonzero accessible subring B € YN Ag;.

Proof. Tt is well known that every radical v in Alt has the ADS property. Thus the
result follows from Theorem 1 and Proposition 7. O
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Corollary 6. Let 'y be a hereditary radical in Alt. Then L, (YNAg) =7 if and
only if every nonzero ring A € Y contains a nonzero associative accessible subring B.

Proof. Let ybe a radical in Alf such that L, (YN As) =Y. By Theorem 6, every
nonzero ring A € y contains a nonzero accessible subring B such that B € YN Ag.
Thus B is an associative ring.

Let A be a nonzero ring in y. Then, by the assumption, there exists a nonzero
associative accessible subring B suchthat B=B; <B, J--- B, <B, =A. Since
Y is a hereditary radical, B, € y. Also B,_1 €7Y...B; € 7. Hence B] = B € YN Ag;.
Therefore, by Theorem 6, we have Ly, (YN Ay) = 7. ]

Let us denote by ‘B the Baer radical in Altr. We define a chain of subsets in a ring
A by setting A1) = A2 A®W = (A=1))2 We recall that a ring A is solvable if
A =0, for some n. Also it is clear that A® < Al=1),

Remark 2. From the definition of B it is easy to prove that B is generated by all
solvable alternative rings. (see [0]).

Corollary 7. B = BNAy and Ly, (B) = B.

Proof. By Remark 2 B C B and B C Ay,. Hence B C BNA. It is easy to see that
BNAs C B. Hence B = BNAy. By Theorem 9 of [60] B is a hereditary radical. By
Proposition 7 and Remark 2, for every ring A € ‘B there exists an accessible subring B
of A such that B is a solvable ring, that is B = 0 and B¥~! £ 0. Since B is an accessible
subring of A, B*~! is an accessible subring of A. But B¥"! is a zero ring. Thus
0 # B*! € Ay. By Corollary 6, £4;,(B) = ‘B, because B is a hereditary radical. [

Remark 3. T = T if and only if Ly (T) = Ly (T5).
Indeed, by Proposition 2, T = L4, (7) NAgs = Lan (L) NAgs = Ts.
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