

A NOTE ON RADICALS OF ASSOCIATIVE RINGS AND **ALTERNATIVE RINGS**

S. TUMURBAT AND T. KHULAN AND D. DAYANTSOLMON

To the memory of professor Avirmed Nyamrinchin Received 17 April, 2018

Abstract. Let U be a universal subclass of a universal class V of rings. We investigate connections between radicals in U and V. We define T and T_s as follows:

> $\mathcal{T} = \{A \in \mathcal{A}_{ss} \mid \text{every prime homomorphic image of } A \text{ is not }$ a hereditary Amitsur ring}

 $\mathcal{T}_s = \{A \in \mathcal{A}_{ss} \mid \text{every prime homomorphic image of } A \text{ has no nonzero }$ ideal which is a hereditary Amitsur ring}.

Let $\gamma \in \{T, T_s\}$ and let A be a commutative ring with minimum condition on ideals. We give a sufficient and necessary condition for A to be γ -semisimple.

2010 Mathematics Subject Classification: 16N80

Keywords: Radicals of associative or alternative rings, lower radicals

1. Introduction

In this note, all rings considered will belong to some arbitrary (but fixed) universal class V of not necessarily associative rings. A universal class of rings is a class of rings that is hereditary (that is, if $A \in V$ and I is an ideal of A, then $I \in V$) and homomorphically closed (that is, if $A \in V$ and I is an ideal of A, then $A/I \in V$). All radicals considered in this paper are in the sense of Kurosh and Amitsur. For the fundamental definitions and properties of radicals, we refer the reader to [1].

For any ring A, let A^0 denote the ring with additive group (A, +) and with multiplication defined by xy = 0 for all $x, y \in R$. Such a ring A^0 is called a zero ring. The notation $I \subseteq A$ means that I is an ideal of A. A subring B of a ring A is said to be an accessible subring of A if there exists a finite sequence C_1, \ldots, C_n of subrings of A such that $C_i \leq C_{i+1}$, for i = 1, ..., n-1, $C_1 = B$ and $C_n = A$. We recall that a radical γ of rings has the ADS property if $\gamma(I) \subseteq A$ for every $I \subseteq A$. Let

The authors was supported in part by the Science and Technology Fund of Mongolia, Grant No.Shuss2017/64.

 \mathcal{M} be a subclass of the universal class V. If \mathcal{M} determines an upper radical, let $\mathcal{U}_V(\mathcal{M}) = \{A \in V \mid A \text{ has no nonzero homomorphic image in } \mathcal{M}\}$ that is, the upper radical generated by \mathcal{M} in V. The lower radical in V, induced by the class \mathcal{M} , is denoted by $\mathcal{L}_V(\mathcal{M})$. For a radical γ , the semisimple class of γ in V is given by $(S_V)\gamma = \{A \in V \mid \gamma(A) = 0\}$.

2. General rings

In what follows, U denotes a universal subclass of the universal class V.

Proposition 1. Let γ be a radical class in V. Then $\gamma \cap U$ is a radical class in U.

Proof. Clear.

Proposition 2. Let γ be a radical class in U. Then $\gamma = \mathcal{L}_V(\gamma) \cap U$.

Proof. It is clear that $\gamma \subseteq \mathcal{L}_V(\gamma) \cap U$.

If the semisimple class $(S_U)\gamma$ of γ is equal to 0, then $\gamma = U$ and $\gamma \supseteq \mathcal{L}_V(\gamma) \cap U$.

Suppose $(S_U)\gamma \neq 0$. Then $\mathcal{U}_V((S_U)\gamma) \supseteq \mathcal{L}_V(\gamma) \supseteq \mathcal{L}_V(\gamma) \cap U$. If there exists a non-zero ring $A \in \mathcal{L}_V(\gamma) \cap U$ with $\gamma(A) = 0$, then $A \in (S_U)\gamma$ and we have $A \in \mathcal{U}_V((S_U)\gamma) \cap (S_U)\gamma = 0$. This leads to a contradiction, so $\gamma \supseteq \mathcal{L}_V(\gamma) \cap U$

Now let us consider the following condition in the universal class V.

(ADS): Every radical γ in V has the ADS property.

Theorem 1. Let $U \subseteq V$ be universal classes of rings with property (ADS) and let γ be a radical in V. If for every ring $A \in \gamma$, there exists a nonzero accessible subring I_0 with $I_0 \in \gamma \cap U$, then $\mathcal{L}_V(\gamma \cap U) = \gamma$.

Proof. We put $\gamma' = \mathcal{L}_V(\gamma \cap U)$.

It is clear that $\gamma \subseteq \gamma$.

Let us suppose that $0 \neq A \in \gamma \setminus \gamma'$, then $\bar{0} \neq \bar{A} = A/\gamma'(A)$ and $\bar{A} \in \gamma$. Hence by assumption there exits a nonzero accessible subring $\bar{I}_0 \unlhd \bar{I}_1 \unlhd \bar{I}_2 \unlhd \cdots \unlhd \bar{I}_n = \bar{A}$ such that $\bar{I}_0 \in \gamma \cap U$. Therefore $\gamma'(\bar{I}_1) \neq \bar{0}$ and by ADS property we have $\gamma'(\bar{I}_1) \unlhd \bar{I}_2$. Then by induction $\gamma'(\bar{I}_n) \neq \bar{0}$. Thus $\gamma'(\bar{A}) \neq \bar{0}$. But $\gamma'(A/\gamma'(A)) = \bar{0}$, which leads to a contradiction. Hence $\gamma \subseteq \gamma'$.

3. ASSOCIATIVE RINGS

In this section, all rings are associative not necessarily with a unity element. In [4], we introduced (hereditary) Amitsur rings and also constructed radicals \mathcal{T} and \mathcal{T}_s . A ring A is said to be a (hereditary) Amitsur ring if $\gamma(A[x]) = (\gamma(A[x]) \cap A)[x]$, for all (hereditary) radicals γ . Let us recall the definitions of \mathcal{T} and \mathcal{T}_s .

If A_{ss} denotes the class of all associative rings, then

 $T = \{A \in \mathcal{A}_{ss} \mid \text{ every prime homomorphic image of } A \text{ is not a hereditary } Amitsur ring \}.$

П

 $\mathcal{T}_s = \{ A \in \mathcal{A}_{ss} \mid \text{ every prime homomorphic image of } A \text{ has no nonzero ideal which is a hereditary Amitsur ring} \}.$

Working in the class \mathcal{A} of associative rings, we denote the semisimple class of a radical γ by $S\gamma$.

Proposition 3. *If F is a finite field, then F is not a hereditary Amitsur ring.*

Proof. Let F be a finite field and let us consider the class $\{F\}$. It is clear that $\{F\}$ is a special class of rings. Therefore the upper radical $\gamma = \mathcal{U}(\{F\})$ is a special radical class of rings. Hence γ is a hereditary radical class.

Also it is easy to check that $\gamma(F[x])$ is the ideal of F[x], generated by $x^{p^n} - x$, where p^n is the number of elements in F. So $\gamma(F[x]) \subseteq xF[x]$. Therefore $\gamma(F[x]) \neq (\gamma(F[x]) \cap F)[x]$. Thus F is not a hereditary Amitsur ring.

Proposition 4. [4] Let A be a ring without proper prime homomorphic images. If A is an infinite integral domain, then A is a hereditary Amitsur ring.

Corollary 1. Let
$$J = \left\{ \frac{2x}{2y+1} \mid x, y \in \mathbb{Z}, (2x, 2y+1) = 1 \right\}$$
. Then J is a hereditary Amitsur ring.

Proposition 5. Let $\gamma \in \{\mathcal{T}, \mathcal{T}_s\}$ and F be a field. Then

- (1) $F \in S\gamma$ if and only if F is an infinite field.
- (2) $F \in \gamma$ if and only if F is a finite field.

Proof. It follows from Propositions 3 and 4.

Proposition 6. For all simple rings A, $\mathcal{T}(A) = \mathcal{T}_s(A)$.

Proof. If A is a simple ring, then A has no nonzero proper ideals and so it is obvious that $A \in \mathcal{T}$ if and only if $A \in \mathcal{T}_s$

Let us denote by \mathcal{P} the class of all prime rings. Let (η, ξ) be a partition of simple rings. Let us consider the following class:

$$s(\xi) = \{A \in \mathcal{P} \mid A \text{ is subdirectly irreducible with heart } H(A) \in \xi\}$$

We denote by $\mathcal{L}_{sp}\eta$ the lower special radical generated by η .

Theorem 2. [5]
$$\mathcal{L}_{sp} \eta \subsetneq \mathcal{U}(s(\xi))$$
.

Let us put:

$$\eta_{\mathcal{T}} = \{ A \in \mathcal{T} \mid A \text{ is a simple ring} \}
\xi_{\mathcal{T}} = \{ A \in S\mathcal{T} \mid A \text{ is a simple ring} \}
\eta_{\mathcal{T}_s} = \{ A \in \mathcal{T}_s \mid A \text{ is a simple ring} \}
\xi_{\mathcal{T}_s} = \{ A \in S\mathcal{T}_s \mid A \text{ is a simple ring} \}$$

Corollary 2.
$$\mathcal{L}_{sp}(\eta_{\mathcal{T}}) = \mathcal{L}_{sp}(\eta_{\mathcal{T}_s}) \subseteq \mathcal{T}_s \subseteq \mathcal{T} \subsetneq \mathcal{U}(s(\xi_{\mathcal{T}})) = \mathcal{U}(s(\xi_{\mathcal{T}_s})).$$

Proof. By the notations above and Proposition 4 and 6, we have $\mathcal{L}_{sp}(\eta_{\mathcal{T}_s}) \subseteq \mathcal{T}_s \subseteq \mathcal{T} \subseteq \mathcal{U}(s(\xi_{\mathcal{T}_s})) = \mathcal{U}(s(\xi_{\mathcal{T}_s}))$. Let J be the ring defined on Corollary 1. Then in a similar to the proof of the Theorem 2, we can show that $J \notin \mathcal{T}$ and $J \in \mathcal{U}(s(\xi_{\mathcal{T}_s}))$. Thus $\mathcal{T} \subsetneq \mathcal{U}(s(\xi_{\mathcal{T}_s}))$.

Theorem 3. Let A be a commutative ring, satisfying the minimum condition on ideals. Let $\gamma \in \{\mathcal{T}, \mathcal{T}_s\}$. Then $A \in S\gamma$ if only if $A = F_1 \oplus F_2 \oplus \cdots \oplus F_n$, where F_i is an infinite field for any i, $1 \le i \le n$. Moreover, this statement is true for any radical γ such that $\mathcal{L}_{sp}(\eta_{\mathcal{T}_s}) \subseteq \gamma \subseteq \mathcal{U}(s(\xi_{\mathcal{T}_s}))$.

Proof. Let $A \in S\gamma$. Since A satisfies the minimum condition on ideals, there exists a non-zero minimal ideal $I \subseteq A$. $A \in S\gamma$ implies that A is a semiprime ring. Therefore I is a prime simple ring. Since A is a commutative ring, I is a commutative ring. Hence aI = I, for every non-zero $a \in I$. Thus I is a field. It is well known that I is a direct summand of A. So we have $A = I_1 \oplus A_1$, where $I = I_1$ and $A_1 \in S\gamma$. Also, A_1 satisfies all the conditions of the theorem. Hence if we continue this procedure, then we have $A = I_1 \oplus I_2 \oplus \cdots \oplus I_n \oplus \ldots$

Put

$$J_1 = A,$$

 $J_2 = I_2 \oplus \cdots \oplus I_n \oplus \ldots$
 \vdots
 $J_n = I_n \oplus \cdots \oplus I_{n+s} \ldots$

Then $J_1 \supseteq J_2 \supseteq \cdots \supseteq J_n \supseteq \cdots$ and $J_i \subseteq A$, for each $i = 1, 2, \ldots$ By assumption there exists $n \in \mathbb{N}$, such that

$$J_n = J_{n+1} = \cdots = .$$

It implies $I_{n+1} = 0$. Since I_i , $1 \le i \le n$, is a field, we have

$$A = F_1 \oplus \cdots \oplus F_n$$
, where $I_i = F_i$.

Also $A \in S\gamma$ and $F_i \in S\gamma$. Thus by Proposition 5, each F_i is an infinite field. Let $A = F_1 \oplus \cdots \oplus F_n$, where F_i is an infinite field. Then by Proposition 4 each $F_i \in S\gamma$. Thus $A \in S\gamma$.

We denote by A_{ss} all associative rings and by C_{ss} all commutative associative rings. It is clear that C_{ss} is a universal subclass of A_{ss} .

Remark 1. It follows from Proposition 1 that $\mathcal{T} \cap C_{ss}$ and $\mathcal{T}_s \cap C_{ss}$ are radicals in C_{ss} .

Theorem 4. Let $\gamma \in \{\mathcal{T}, \mathcal{T}_s\}$ and A be a subdirectly irreducible semiprime ring. Then A is $\sigma = \mathcal{L}_{A_{ss}}(\gamma \cap C_{ss})$ -semisimple if and only if A is not a finite field.

Proof. It is easy to see that $\sigma \subseteq \gamma$ and A is a prime ring. Suppose that A is not a finite field and not σ -semisimple. Therefore $\sigma(A) \neq 0$ and $\sigma(A) \triangleleft A$. It is clear that $\sigma(A)$ is a subdirectly irreducible ring. Let $H(\sigma(A))$ denote the heart of $\sigma(A)$. Since $\sigma(A) \in \sigma$, there exists a nonzero accessible subring I_0 of $\sigma(A)$, which is in $\gamma \cap C_{ss}$. Since A is a prime ring $H(\sigma(A)) \subseteq I_0$. This implies that $H(\sigma(A))$ is a simple commutative ring. Therefore $F = H(\sigma(A))$ is a field. It is easy to see that F = A. Thus by Proposition 6, $F \in \mathcal{T}_s \cap C_{ss}$. Then by Proposition 5, A is a finite field, which leads to a contradiction. Hence A is a σ -semisimple ring.

Suppose A is σ -semisimple and A = F is a finite field. Then again by Proposition 5, $A = F \in \gamma \cap C_{ss}$, which leads to a contradiction.

A class δ of rings is said to be a matrix-extensible class if for all natural numbers $n, A \in \delta$ if and only if $M_n(A) \in \delta$, where $M_n(A)$ is the $n \times n$ matrix ring.

Corollary 3. $\sigma = \mathcal{L}_{A_{ss}}(\gamma \cap C_{ss})$ is not a matrix-extensible class.

Proof. Let F be a finite field. Then $F \in \gamma \cap C_{ss}$. Thus, by Theorem 4, $M_n(F)$ is a σ -semisimple class.

For the next theorem we use the following notations:

 β - Baer radical, \mathcal{L} - Levitzki radical, \mathcal{N} - Nil radical, \mathcal{I} - Jacobson radical and G – Brown-McCoy radical. The notation $\alpha \uparrow \uparrow r$ means that α and r are not comparable radicals.

Theorem 5.

- (i) $\beta = \mathcal{L}_{A_{ss}}(\beta \cap C_{ss});$
- (ii) $\mathcal{L} \neq \mathcal{L}_{A_{ss}}(\mathcal{L} \cap C_{ss}) = \beta;$
- (iii) $\mathcal{N} \neq \mathcal{L}_{A_{ss}}(\mathcal{N} \cap C_{ss}) = \beta;$ (iv) $\mathcal{L}_{A_{ss}}(\mathcal{I} \cap C_{ss}) \uparrow \mathcal{N};$
- (v) $\mathcal{L}_{A_{ss}}(\mathcal{G} \cap C_{ss}) \uparrow \mathcal{N}$.

Proof.

- (i) Let A be a ring in β . Then there exists a non-zero accessible subring I^0 of A, which is a zero ring. Hence $I^0 \in \beta \cap C_{ss}$. Thus by Theorem 1, $\beta = \mathcal{L}_{A_{ss}}(\beta \cap C_{ss})$ C_{ss}). Also, we know that $\beta \cap C_{ss} = \mathcal{L} \cap C_{ss} = \mathcal{N} \cap C_{ss}$.
- (ii) and (iii) In [6], E.I. Zelmanov constructed a ring A, which is locally nilpotent as well as prime. So $\beta(A) = 0$ while $\mathcal{L}(A) = A$, which implies $\beta \neq \mathcal{L}$. Also, it is easy to see that $\beta \subseteq \mathcal{L}_{A_{ss}}(\mathcal{L} \cap C_{ss}) \subseteq \mathcal{L}_{A_{ss}}(\mathcal{N} \cap C_{ss})$ and $\mathcal{N} \cap C_{ss} \subseteq \beta$. Thus $\beta =$ $\mathcal{L}_{A_{ss}}(\mathcal{L} \cap C_{ss}) = \mathcal{L}_{A_{ss}}(\mathcal{N} \cap C_{ss})$. Also, it is easy to see that $\mathcal{L}_{A_{ss}}(\mathcal{N} \cap C_{ss}) \neq \mathcal{N}$.
 - (iv) We shall show that $\mathcal{L}_{A_{ss}}(\mathcal{I} \cap C_{ss}) \nsubseteq \mathcal{N}$. Let

$$J = \{ \frac{2x}{2y+1} \mid x, y \in \mathbb{Z}, (2x, 2y+1) = 1 \}.$$

Then we know that J is a commutative Jacobson radical ring. So $J \in \mathcal{J} \cap C_{ss}$, also $J \in \mathcal{L}_{A_{ss}}(\mathcal{J} \cap C_{ss})$. But J has no nonzero nilpotent elements. Thus $J \notin \mathcal{N}$. In [2] A.Smoktunowicz proved that there exists a simple nil prime ring A. It is clear that $A \notin \mathcal{L}_{A_{ss}}(\mathcal{J} \cap C_{ss})$. Thus $\mathcal{N} \nsubseteq \mathcal{L}_{A_{ss}}(\mathcal{J} \cap C_{ss})$.

(v) It is clear.

Corollary 4. $\mathcal{I} \neq \mathcal{L}_{A_{ss}}(\mathcal{I} \cap C_{ss}) \neq \beta$ and $\mathcal{G} \neq \mathcal{L}_{A_{ss}}(\mathcal{G} \cap C_{ss}) \neq \beta$.

Corollary 5. Let $\gamma \in \{T, T_s\}$. Then $\beta \subsetneq L_{A_{ss}}(\gamma \cap C_{ss})$.

Proof. All zero rings and all finite fields are in $\gamma \cap C_{ss}$. Thus $\beta \subseteq \mathcal{L}_{A_{ss}}(\gamma \cap C_{ss})$. \square

4. ALTERNATIVE RINGS

In this section all rings are alternative. An alternative rings is a ring in which multiplication need not be associative, only alternative, that is, $x^2y = x(xy)$ and $yx^2 = (yx)x$, for all $x, y \in A$. We denote the class of all alternative rings by Alt. Let \mathcal{M} be a nonempty class of alternative rings and assume that \mathcal{M} is homomorphically closed. Let us define $\mathcal{M}_1 = \mathcal{M}$. Assuming that \mathcal{M}_{α} has been defined for every ordinal number α such that $1 \leq \alpha < \beta$, we define \mathcal{M}_{β} to be the class of all alternative rings A such that every nonzero homomorphic image of A contains a nonzero ideal I, which is in \mathcal{M}_{α} for some $\alpha < \beta$. It is clear that $\mathcal{M}_{\alpha} \leq \mathcal{M}_{\beta}$ if $\alpha \leq \beta$ and each class \mathcal{M}_{α} is homomorphically closed. Let $\mathcal{L}_{Alt}(\mathcal{M}) = \bigcup_{\alpha} \mathcal{M}_{\alpha}$. Then $\mathcal{L}_{Alt}(\mathcal{M})$ determines a radical property and this is the smallest radical class containing \mathcal{M} (see [6]).

Lemma 1 ([3]). If B is a nonzero accessible subring of an alternative ring A and if B is in \mathcal{M} , then \bar{B} , the ideal of A generated by B, is in $\mathcal{M}_{q\cdot w_0}$, where q is finite and w_0 is the first infinite ordinal.

Proposition 7. An alternative ring A is in $\gamma = \mathcal{L}_{Alt}(\mathcal{M})$ if and only if every nonzero homomorphic image of \overline{A} of A contains a nonzero accessible subring B, such that B is in \mathcal{M} .

Proof. Suppose that A is not in γ . Then $\overline{A} = A/\gamma(A) \neq \overline{0}$. By assumption, \overline{A} contains a nonzero accessible subring B such that B is in \mathcal{M} . From Lemma 1, \overline{B} is the ideal of \overline{A} generated by B, which is in $\mathcal{M}_{q \cdot w_0}$. Hence \overline{B} is a γ -radical ideal. Therefore $\overline{0} = \gamma(A/\gamma(A)) = \gamma(\overline{A}) \neq \overline{0}$, which leads to a contradiction. Let $A \in \gamma$. Then every nonzero homomorphic image \overline{A} of A is in γ . By Lemma 1 of [2] and the proof of Theorem 3 of [3], $0 \neq \overline{A}$ contains a nonzero accessible subring \overline{B} such that \overline{B} is in \mathcal{M} .

Theorem 6. Let γ be a radical in Alt. Then $\mathcal{L}_{Alt}(\gamma \cap A_{ss}) = \gamma$ if and only if every nonzero ring $A \in \gamma$ contains a nonzero accessible subring $B \in \gamma \cap A_{ss}$.

Proof. It is well known that every radical γ in Alt has the ADS property. Thus the result follows from Theorem 1 and Proposition 7.

Corollary 6. Let γ be a hereditary radical in Alt. Then $\mathcal{L}_{Alt}(\gamma \cap A_{ss}) = \gamma$ if and only if every nonzero ring $A \in \gamma$ contains a nonzero associative accessible subring B.

Proof. Let γ be a radical in Alt such that $\mathcal{L}_{Alt}(\gamma \cap A_{ss}) = \gamma$. By Theorem 6, every nonzero ring $A \in \gamma$ contains a nonzero accessible subring B such that $B \in \gamma \cap A_{ss}$. Thus B is an associative ring.

Let A be a nonzero ring in γ . Then, by the assumption, there exists a nonzero associative accessible subring B such that $B = B_1 \subseteq B_2 \subseteq \cdots \subseteq B_{n-1} \subseteq B_n = A$. Since γ is a hereditary radical, $B_n \in \gamma$. Also $B_{n-1} \in \gamma \dots B_1 \in \gamma$. Hence $B_1 = B \in \gamma \cap A_{ss}$. Therefore, by Theorem 6, we have $\mathcal{L}_{Alt}(\gamma \cap A_{ss}) = \gamma$.

Let us denote by \mathcal{B} the Baer radical in Alt. We define a chain of subsets in a ring A by setting $A^{(1)} = A^2, \dots, A^{(n)} = (A^{(n-1)})^2$. We recall that a ring A is solvable if $A^{(n)} = 0$, for some n. Also it is clear that $A^{(n)} \leq A^{(n-1)}$.

Remark 2. From the definition of \mathcal{B} it is easy to prove that \mathcal{B} is generated by all solvable alternative rings. (see [6]).

Corollary 7.
$$\beta = \mathcal{B} \cap A_{ss}$$
 and $\mathcal{L}_{Alt}(\beta) = \mathcal{B}$.

Proof. By Remark 2 $\beta \subseteq \mathcal{B}$ and $\beta \subseteq A_{ss}$. Hence $\beta \subseteq \mathcal{B} \cap A_{ss}$. It is easy to see that $\mathcal{B} \cap A_{ss} \subseteq \beta$. Hence $\beta = \mathcal{B} \cap A_{ss}$. By Theorem 9 of [6] \mathcal{B} is a hereditary radical. By Proposition 7 and Remark 2, for every ring $A \in \mathcal{B}$ there exists an accessible subring B of A such that B is a solvable ring, that is $B^k = 0$ and $B^{k-1} \neq 0$. Since B is an accessible subring of A, B^{k-1} is an accessible subring of A. But B^{k-1} is a zero ring. Thus $0 \neq B^{k-1} \in A_{ss}$. By Corollary 6, $\mathcal{L}_{Alt}(\beta) = \mathcal{B}$, because \mathcal{B} is a hereditary radical. \square

Remark 3. $\mathcal{T} = \mathcal{T}_s$ if and only if $\mathcal{L}_{Alt}(\mathcal{T}) = \mathcal{L}_{Alt}(\mathcal{T}_s)$.

Indeed, by Proposition 2, $\mathcal{T} = \mathcal{L}_{Alt}(\mathcal{T}) \cap A_{ss} = \mathcal{L}_{Alt}(\mathcal{T}_s) \cap A_{ss} = \mathcal{T}_s$.

ACKNOWLEDGEMENT

The authors thanks to the referee for his/her valuable comments for improving this paper.

The second and third authors were supported in part by the Science and Technology Fund of Mongolia, Grant No.Shuss 2017/64

REFERENCES

- J. W. Gardner and R. Wiegandt, *Radical theory of rings*. New York, NY: Marcel Dekker, 2004, vol. 261, doi: 10.1201/9780203913352.
- [2] A. Smoktunowicz, "A simple nil ring exists," Commun. Algebra, vol. 30, no. 1, pp. 27–59, 2002, doi: 10.1081/AGB-120006478.
- [3] A. Suliński, R. Anderson, and N. Divinsky, "Lower radical properties for associative and alternative rings," *J. Lond. Math. Soc.*, vol. 41, pp. 417–424, 1966, doi: 10.1112/jlms/s1-41.1.417.
- [4] S. Tumurbat, "On Amitsur rings," Quaest. Math., vol. 42, no. 5, pp. 665–672, 2019, doi: 10.2989/16073606.2018.1480542.

- [5] S. Tumurbat and R. Wiegandt, "A note on special radicals and partitions of simple rings," *Commun. Algebra*, vol. 30, no. 4, pp. 1769–1777, 2002, doi: 10.1081/AGB-120013214.
- [6] E. I. Zel'manov, An example of a finitely generated primitive ring. Springer US, New York, NY; Pleiades Publishing, New York, NY; MAIK "Nauka/Interperiodica", Moscow, 1979, vol. 20, doi: 10.1007/BF00970042.

Authors' addresses

S. Tumurbat

Department of Mathematics, National University of Mongolia, Ikh Surguuliin Gudamj-1, Ulaanbaatar, Mongolia and, School of Applied Science, Mongolian University of Science and Technology, P.O.Box 75, Ulaanbaatar, Mongolia

E-mail address: stumurbat@hotmail.com

T. Khulan and D. Dayantsolmon

(Corresponding author) National University of Mongolia, Department of Mathematics, Ikh Surguuliin Gudamj-1, Ulaanbaatar, Mongolia, P.O.Box-46A/523,210646

E-mail address: hulangaaa@yahoo.com and dayantsolmon@num.edu.mn