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Abstract. Let U be a universal subclass of a universal class V of rings. We investigate connec-
tions between radicals in U and V . We define T and Ts as follows:

T = {A ∈ Ass | every prime homomorphic image of A is not

a hereditary Amitsur ring}
Ts = {A ∈ Ass | every prime homomorphic image of A has no nonzero

ideal which is a hereditary Amitsur ring}.
Let γ ∈ {T ,Ts} and let A be a commutative ring with minimum condition on ideals. We give a
sufficient and necessary condition for A to be γ-semisimple.
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1. INTRODUCTION

In this note, all rings considered will belong to some arbitrary (but fixed) universal
class V of not necessarily associative rings. A universal class of rings is a class of
rings that is hereditary (that is, if A ∈ V and I is an ideal of A, then I ∈ V ) and
homomorphically closed (that is, if A ∈V and I is an ideal of A, then A/I ∈V ). All
radicals considered in this paper are in the sense of Kurosh and Amitsur. For the
fundamental definitions and properties of radicals, we refer the reader to [1].

For any ring A, let A0 denote the ring with additive group (A,+) and with mul-
tiplication defined by xy = 0 for all x,y ∈ R. Such a ring A0 is called a zero ring.
The notation I ⊴ A means that I is an ideal of A. A subring B of a ring A is said
to be an accessible subring of A if there exists a finite sequence C1, . . . ,Cn of sub-
rings of A such that Ci ⊴ Ci+1, for i = 1, . . . ,n− 1, C1 = B and Cn = A. We recall
that a radical γ of rings has the ADS property if γ(I) ⊴ A for every I ⊴ A. Let
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M be a subclass of the universal class V . If M determines an upper radical, let
UV (M ) = {A ∈ V | A has no nonzero homomorphic image in M } that is, the upper
radical generated by M in V . The lower radical in V , induced by the class M ,
is denoted by LV (M ). For a radical γ, the semisimple class of γ in V is given by
(SV )γ = {A ∈V | γ(A) = 0}.

2. GENERAL RINGS

In what follows, U denotes a universal subclass of the universal class V .

Proposition 1. Let γ be a radical class in V . Then γ∩U is a radical class in U.

Proof. Clear. □

Proposition 2. Let γ be a radical class in U. Then γ = LV (γ)∩U.

Proof. It is clear that γ ⊆ LV (γ)∩U .
If the semisimple class (SU)γ of γ is equal to 0, then γ =U and γ ⊇ LV (γ)∩U .
Suppose (SU)γ ̸= 0. Then UV ((SU)γ)⊇ LV (γ)⊇ LV (γ)∩U . If there exists a non-

zero ring A ∈ LV (γ)∩U with γ(A) = 0, then A ∈ (SU)γ and we have A ∈ UV ((SU)γ)∩
(SU)γ = 0. This leads to a contradiction, so γ ⊇ LV (γ)∩U □

Now let us consider the following condition in the universal class V .
(ADS) : Every radical γ in V has the ADS property.

Theorem 1. Let U ⊆V be universal classes of rings with property (ADS) and let
γ be a radical in V . If for every ring A ∈ γ, there exists a nonzero accessible subring
I0 with I0 ∈ γ∩U, then LV (γ∩U) = γ.

Proof. We put γ′ = LV (γ∩U).
It is clear that γ′ ⊆ γ.
Let us suppose that 0 ̸= A ∈ γ \ γ′, then 0 ̸= A = A/γ′(A) and A ∈ γ. Hence by

assumption there exits a nonzero accessible subring I0 ⊴ I1 ⊴ I2 ⊴ · · ·⊴ In = A such
that I0 ∈ γ∩U. Therefore γ′(I1) ̸= 0 and by ADS property we have γ′(I1)⊴ I2. Then
by induction γ′(In) ̸= 0. Thus γ′(A) ̸= 0. But γ′(A/γ′(A)) = 0, which leads to a con-
tradiction. Hence γ ⊆ γ′. □

3. ASSOCIATIVE RINGS

In this section, all rings are associative not necessarily with a unity element. In
[4], we introduced (hereditary) Amitsur rings and also constructed radicals T and Ts.
A ring A is said to be a (hereditary) Amitsur ring if γ(A[x]) = (γ(A[x])∩A)[x], for all
(hereditary) radicals γ. Let us recall the definitions of T and Ts.

If Ass denotes the class of all associative rings, then

T = {A ∈ Ass | every prime homomorphic image of A is not a hereditary

Amitsur ring}.
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Ts = {A ∈ Ass | every prime homomorphic image of A has no nonzero

ideal which is a hereditary Amitsur ring}.
Working in the class A of associative rings, we denote the semisimple class of a

radical γ by Sγ.

Proposition 3. If F is a finite field, then F is not a hereditary Amitsur ring.

Proof. Let F be a finite field and let us consider the class {F}. It is clear that {F}
is a special class of rings. Therefore the upper radical γ = U({F}) is a special radical
class of rings. Hence γ is a hereditary radical class.

Also it is easy to check that γ(F [x]) is the ideal of F [x], generated by xpn − x,
where pn is the number of elements in F . So γ(F [x]) ⊆ xF [x]. Therefore γ(F [x]) ̸=
(γ(F [x])∩F)[x]. Thus F is not a hereditary Amitsur ring. □

Proposition 4. [4] Let A be a ring without proper prime homomorphic images. If
A is an infinite integral domain, then A is a hereditary Amitsur ring.

Corollary 1. Let J =

{
2x

2y+1
| x,y ∈ Z,(2x,2y+1) = 1

}
. Then J is a hereditary

Amitsur ring.

Proposition 5. Let γ ∈ {T ,Ts} and F be a field. Then
(1) F ∈ Sγ if and only if F is an infinite field.
(2) F ∈ γ if and only if F is a finite field.

Proof. It follows from Propositions 3 and 4. □

Proposition 6. For all simple rings A, T (A) = Ts(A).

Proof. If A is a simple ring, then A has no nonzero proper ideals and so it is obvious
that A ∈ T if and only if A ∈ Ts □

Let us denote by P the class of all prime rings. Let (η,ξ) be a partition of simple
rings. Let us consider the following class:

s(ξ) = {A ∈ P | A is subdirectly irreducible with heart H(A) ∈ ξ}
We denote by Lspη the lower special radical generated by η.

Theorem 2. [5] Lspη ⫋ U(s(ξ)).

Let us put:

ηT = {A ∈ T | A is a simple ring}
ξT = {A ∈ ST | A is a simple ring}
ηTs = {A ∈ Ts | A is a simple ring}
ξTs = {A ∈ STs | A is a simple ring}
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Corollary 2. Lsp(ηT ) = Lsp(ηTs)⊆ Ts ⊆ T ⫋ U(s(ξT )) = U(s(ξTs)).

Proof. By the notations above and Proposition 4 and 6, we have Lsp(ηTs)⊆ Ts ⊆
T ⊆ U(s(ξT )) = U(s(ξTs)). Let J be the ring defined on Corollary 1. Then in a
similar to the proof of the Theorem 2, we can show that J ̸∈ T and J ∈ U(s(ξTs)).
Thus T ⫋ U(s(ξTs)). □

Theorem 3. Let A be a commutative ring, satisfying the minimum condition on
ideals. Let γ ∈ {T ,Ts}. Then A ∈ Sγ if only if A = F1 ⊕F2 ⊕·· ·⊕Fn, where Fi is an
infinite field for any i, 1 ≤ i ≤ n. Moreover, this statement is true for any radical γ

such that Lsp(ηTs)⊆ γ ⊆ U(s(ξTs)).

Proof. Let A ∈ Sγ. Since A satisfies the minimum condition on ideals, there exists
a non-zero minimal ideal I ⊴ A. A ∈ Sγ implies that A is a semiprime ring. Therefore
I is a prime simple ring. Since A is a commutative ring, I is a commutative ring.
Hence aI = I, for every non-zero a ∈ I. Thus I is a field. It is well known that I is a
direct summand of A. So we have A = I1 ⊕A1, where I = I1 and A1 ∈ Sγ. Also, A1
satisfies all the conditions of the theorem. Hence if we continue this procedure, then
we have A = I1 ⊕ I2 ⊕·· ·⊕ In ⊕ . . .

Put

J1 = A,
J2 = I2 ⊕·· ·⊕ In ⊕ . . . .

...
Jn = In ⊕·· ·⊕ In+s . . . .

Then J1 ⫌ J2 ⫌ · · ·⫌ Jn ⫌ . . . and Ji ⊴ A, for each i = 1,2, ....
By assumption there exists n ∈ N, such that

Jn = Jn+1 = · · ·= .

It implies In+1 = 0. Since Ii, 1 ≤ i ≤ n, is a field, we have

A = F1 ⊕·· ·⊕Fn, where Ii = Fi.

Also A ∈ Sγ and Fi ∈ Sγ. Thus by Proposition 5, each Fi is an infinite field.
Let A = F1 ⊕ ·· · ⊕Fn, where Fi is an infinite field. Then by Proposition 4 each

Fi ∈ Sγ. Thus A ∈ Sγ. □

We denote by Ass all associative rings and by Css all commutative associative rings.
It is clear that Css is a universal subclass of Ass.

Remark 1. It follows from Proposition 1 that T ∩Css and Ts ∩Css are radicals in
Css.

Theorem 4. Let γ ∈ {T ,Ts} and A be a subdirectly irreducible semiprime ring.
Then A is σ = LAss(γ∩Css)-semisimple if and only if A is not a finite field.
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Proof. It is easy to see that σ ⊆ γ and A is a prime ring. Suppose that A is not
a finite field and not σ-semisimple. Therefore σ(A) ̸= 0 and σ(A) ⊴ A. It is clear
that σ(A) is a subdirectly irreducible ring. Let H(σ(A)) denote the heart of σ(A).
Since σ(A) ∈ σ, there exists a nonzero accessible subring I0 of σ(A), which is in
γ∩Css. Since A is a prime ring H(σ(A)) ⊆ I0. This implies that H(σ(A) is a simple
commutative ring. Therefore F = H(σ(A) is a field. It is easy to see that F = A. Thus
by Proposition 6, F ∈ Ts ∩Css. Then by Proposition 5, A is a finite field, which leads
to a contradiction. Hence A is a σ-semisimple ring.

Suppose A is σ-semisimple and A = F is a finite field. Then again by Proposition
5, A = F ∈ γ∩Css, which leads to a contradiction. □

A class δ of rings is said to be a matrix-extensible class if for all natural numbers
n, A ∈ δ if and only if Mn(A) ∈ δ, where Mn(A) is the n×n matrix ring.

Corollary 3. σ = LAss(γ∩Css) is not a matrix-extensible class.

Proof. Let F be a finite field. Then F ∈ γ∩Css. Thus, by Theorem 4, Mn(F) is a
σ-semisimple class. □

For the next theorem we use the following notations:
β− Baer radical, L− Levitzki radical, N − Nil radical, J− Jacobson radical and

G− Brown-McCoy radical. The notation α ⇈ r means that α and r are not compar-
able radicals.

Theorem 5.

(i) β = LAss(β∩Css);
(ii) L ̸= LAss(L ∩Css) = β;

(iii) N ̸= LAss(N ∩Css) = β;
(iv) LAss(J ∩Css)⇈ N ;
(v) LAss(G ∩Css)⇈ N .

Proof.

(i) Let A be a ring in β. Then there exists a non-zero accessible subring I0 of A,
which is a zero ring. Hence I0 ∈ β∩Css. Thus by Theorem 1, β = LAss(β∩
Css). Also, we know that β∩Css = L ∩Css = N ∩Css.

(ii) and (iii) In [6], E.I. Zelmanov constructed a ring A, which is locally nilpotent as well
as prime. So β(A) = 0 while L(A) = A, which implies β ̸= L . Also, it is easy
to see that β ⊆ LAss(L ∩Css) ⊆ LAss(N ∩Css) and N ∩Css ⊆ β. Thus β =
LAss(L ∩Css) = LAss(N ∩Css). Also, it is easy to see that LAss(N ∩Css) ̸= N .

(iv) We shall show that LAss(J ∩Css)⊈ N . Let

J = { 2x
2y+1

| x,y ∈ Z,(2x,2y+1) = 1}.
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Then we know that J is a commutative Jacobson radical ring. So J ∈ J ∩Css,
also J ∈ LAss(J ∩Css). But J has no nonzero nilpotent elements. Thus J ̸∈ N .
In [2] A.Smoktunowicz proved that there exists a simple nil prime ring A. It
is clear that A ̸∈ LAss(J ∩Css). Thus N ⊈ LAss(J ∩Css).

(v) It is clear.
□

Corollary 4. J ̸= LAss(J ∩Css) ̸= β and G ̸= LAss(G ∩Css) ̸= β.

Corollary 5. Let γ ∈ {T ,Ts}. Then β ⫋ LAss(γ∩Css).

Proof. All zero rings and all finite fields are in γ∩Css. Thus β ⫋ LAss(γ∩Css). □

4. ALTERNATIVE RINGS

In this section all rings are alternative. An alternative rings is a ring in which
multiplication need not be associative, only alternative, that is, x2y = x(xy) and yx2 =
(yx)x, for all x,y ∈ A. We denote the class of all alternative rings by Alt. Let M be a
nonempty class of alternative rings and assume that M is homomorphically closed.
Let us define M1 = M . Assuming that Mα has been defined for every ordinal number
α such that 1 ≤ α < β, we define Mβ to be the class of all alternative rings A such
that every nonzero homomorphic image of A contains a nonzero ideal I, which is
in Mα for some α < β. It is clear that Mα ≤ Mβ if α ≤ β and each class Mα is
homomorphically closed. Let LAlt(M ) =∪αMα. Then LAlt(M ) determines a radical
property and this is the smallest radical class containing M (see [6]).

Lemma 1 ([3]). If B is a nonzero accessible subring of an alternative ring A and
if B is in M , then B, the ideal of A generated by B, is in Mq·w0 , where q is finite and
w0 is the first infinite ordinal.

Proposition 7. An alternative ring A is in γ=LAlt(M ) if and only if every nonzero
homomorphic image of A of A contains a nonzero accessible subring B, such that B
is in M .

Proof. Suppose that A is not in γ. Then A = A/γ(A) ̸= 0. By assumption, A con-
tains a nonzero accessible subring B such that B is in M . From Lemma 1, B is the
ideal of A generated by B, which is in Mq·w0 . Hence B is a γ-radical ideal. Therefore
0̄ = γ(A/γ(A)) = γ(A) ̸= 0̄, which leads to a contradiction. Let A ∈ γ. Then every
nonzero homomorphic image A of A is in γ. By Lemma 1 of [2] and the proof of
Theorem 3 of [3], 0 ̸= A contains a nonzero accessible subring B such that B is in
M . □

Theorem 6. Let γ be a radical in Alt. Then LAlt(γ∩Ass) = γ if and only if every
nonzero ring A ∈ γ contains a nonzero accessible subring B ∈ γ∩Ass.

Proof. It is well known that every radical γ in Alt has the ADS property. Thus the
result follows from Theorem 1 and Proposition 7. □
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Corollary 6. Let γ be a hereditary radical in Alt. Then LAlt(γ∩Ass) = γ if and
only if every nonzero ring A ∈ γ contains a nonzero associative accessible subring B.

Proof. Let γ be a radical in Alt such that LAlt(γ∩Ass) = γ. By Theorem 6, every
nonzero ring A ∈ γ contains a nonzero accessible subring B such that B ∈ γ∩Ass.
Thus B is an associative ring.

Let A be a nonzero ring in γ. Then, by the assumption, there exists a nonzero
associative accessible subring B such that B = B1 ⊴ B2 ⊴ · · ·⊴ Bn−1 ⊴ Bn = A. Since
γ is a hereditary radical, Bn ∈ γ. Also Bn−1 ∈ γ . . .B1 ∈ γ. Hence B1 = B ∈ γ∩Ass.
Therefore, by Theorem 6, we have LAlt(γ∩Ass) = γ. □

Let us denote by B the Baer radical in Alt. We define a chain of subsets in a ring
A by setting A(1) = A2, . . . ,A(n) = (A(n−1))2. We recall that a ring A is solvable if
A(n) = 0, for some n. Also it is clear that A(n) ⊴ A(n−1).

Remark 2. From the definition of B it is easy to prove that B is generated by all
solvable alternative rings. (see [6]).

Corollary 7. β = B ∩Ass and LAlt(β) = B.

Proof. By Remark 2 β ⊆ B and β ⊆ Ass. Hence β ⊆ B ∩Ass. It is easy to see that
B ∩Ass ⊆ β. Hence β = B ∩Ass. By Theorem 9 of [6] B is a hereditary radical. By
Proposition 7 and Remark 2, for every ring A ∈ B there exists an accessible subring B
of A such that B is a solvable ring, that is Bk = 0 and Bk−1 ̸= 0. Since B is an accessible
subring of A, Bk−1 is an accessible subring of A. But Bk−1 is a zero ring. Thus
0 ̸= Bk−1 ∈ Ass. By Corollary 6, LAlt(β) = B , because B is a hereditary radical. □

Remark 3. T = Ts if and only if LAlt(T ) = LAlt(Ts).

Indeed, by Proposition 2, T = LAlt(T )∩Ass = LAlt(Ts)∩Ass = Ts.
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