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FIRST ORDER SWEEPING PROCESS WITH SUBSMOOTH SETS

DORIA AFFANE AND LOUBNA BOULKEMH

Received 28 March, 2020

Abstract. In this paper, we introduce a perturbed first order non-convex sweeping process for a
class of subsmooth moving sets depending on the time and the state. In the first result we study
the existence of solution and the compactness of the attainable set, the perturbation considered
here is an upper semi-continuous set-valued mapping with nonempty closed convex values un-
necessarily bounded. In the second result, we prove the existence of solution for the autonomous
problem under assumptions that do not require the convexity of the values of the perturbation
and that weaken the assumption on the upper semi-continuity. Then, we deduce a solution of the
time optimality problem and we describe the attainable set.
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1. INTRODUCTION

The perturbed state-dependent sweeping process is an evolution differential inclu-
sion governed by the normal cone to a mobile set depending on both time and state
variables, of the following form:{

−u̇(t) ∈ NC(t,u(t))(u(t))+G(t,u(t)), a.e t ∈ [T0,T ]
u(t) ∈C(t,u(t)), ∀t ∈ [T0,T ], u(T0) = u0,

(1.1)

where NC(t,u(t))(u(t)) is the normal cone to C(t,u(t)) at u(t) and G is a set-valued
mapping playing the role of a perturbation to the problem, that is an external force
applied on the system. This type of problems was initiated by J. J. Moreau (see [18])
for time-dependent sets C(t) and G ≡ {0}. After, many generalizations have been
obtained, see for example [1, 2, 5, 7–10, 19] and the references therein. When the
moving set C depends also on the state, one obtain a generalization of the classical
sweeping process known as the state-dependent sweeping process. This problem has
been studied in [12, 13, 16] when C(t,u(t)) are convex or non-convex sets.

In the study of existence of solutions for differential inclusions, the use of con-
vexity assumptions on the perturbation is widely known, it is the property required
in order to pass to a weak limit along a sequence, be it a minimizing sequence or
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a sequence of successive approximations, preserving the properties that are needed.
Because of its generality, this approach need not always provide the best results, since
it does not take into account possible additional information for example the presence
of symmetries in the problem. In [11], a generalization of convexity has been defined,
that is the almost convexity of sets, the authors have shown the existence of solution
to the upper semi-continuous differential inclusions u̇(t) ∈ G(u(t)), u(0) = u0. This
almost convexity condition has been used successfully by [2–4] to study the perturbed
first order Moreau’s sweeping process, the right-hand side contains a set-valued per-
turbation with almost convex values.

In this work, we extend the results in [2] in many direction. In the setting of a
finite dimensional space, we provide the existence of solution and the compactness
of the attainable sets for the problem (1.1), when the moving sets C(t,u) are equi-
uniform-subsmooth and the perturbation G is a set-valued mapping with nonempty
closed convex values, upper semi-continuous and such that its element of minimum
norm satisfies a linear growth condition.

On the other hand, under the almost convexity of the values of the perturbation and
weakening the assumption of the upper semi-continuity, we provide the existence of
solution for the autonomous problem:{

−u̇(t) ∈ NC(u(t))(u(t))+G(u(t)), a.e t ∈ [T0,T ]
u(t) ∈C(u(t)), ∀t ∈ [T0,T ], u(T0) = u0 ∈C(u0).

(1.2)

And, we deduce the existence of solutions to the time optimal control problem

u̇(t) ∈ −NC(u(t))(u(t))+h(u(t),z(t)), for z(t) ∈ Z(t), (1.3)

where the set G(u(t)) = h(u(t),Z(u(t))) is compact and almost convex, then we use
the minimal time function to describe the attainable set of this problem.

The paper is organized as follows. In Section 2, we introduce notation and prelim-
inaries needed throughout the paper. Section 3 is devoted to the study of (1.1) when
the perturbation is convex. In Section 4, we prove the existence of solutions of (1.2)
under the almost convexity and the upper semi-continuity of co(G). Then, we present
an application to an optimal time problem.

2. PRELIMINARIES

Let Rn be a n-dimensional Euclidean space and I = [T,T0], T > T0 ≥ 0 be an
interval. We denote by B the unit closed ball of Rn, B(x,r) the open ball of center
x ∈ Rn and radius r > 0, CRn(I) the Banach space of all continuous mapping from
I and L1

Rn(I) the space of all Lebesgue integrable Rn-valued mappings defined on I.
We say that the mapping u : I → Rn is absolutely continuous if there is f ∈ L1

Rn(I)
such that u(t) = u(T0)+

∫ t
T0

f (s) ds, for all t ∈ I.
Let S be a nonempty closed subset of Rn, IS is the characteristic function of the set

S, that is, IS(x) = 1 if x ∈ S and IS(x) = 0 otherwise. We denote by dS(·) or d(·,S) the
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usual distance function associated with S, i.e., dS(x) = inf
y∈S

∥y− x∥ and by Pro jS(x)

the projection of x on S defined by Pro jS(x) = {y ∈ S : dS(x) = ∥y−x∥}. The convex
hull of S is denoted by co(S) and the closed convex hull by co(S) is characterized by

co(S) =
{

x ∈ Rn,∀x′ ∈ Rn,⟨x′,x⟩ ≤ δ
∗(x′,S)

}
,

where δ∗(x′,S) = sup
y∈S

⟨x′,y⟩ is the support function of S at x′ ∈ Rn. Let t̃ ∈ I, we

denoted by

Accu0(t̃) = {z ∈ Rn : z = u(t̃) such that u(·) ∈ St̃(u0)},
the attainable set of (1.1) at the time t̃, where St̃(u0) is the set of the trajectories of
(1.1) on the interval [T0, t̃] and by T : Accu0 → I the minimal time mapping defined
by

T(z) = inf{t ∈ I : z ∈ Accu0(t)}.
For a locally Lipschitzian function ϕ :Rn →R∪{∞}, the Clarke subdifferential ∂ϕ(x)
of ϕ at x is defined by (see [15])

∂ϕ(x) = {ξ ∈ Rn : ϕ
0(x,ν)≥ ⟨ν,ξ⟩, for all ν ∈ Rn},

where ϕ0(x,ν) = limsup
y→x

t↓0

ϕ(y+ tν)−ϕ(y)
t

is the generalized directional derivative of

ϕ at x in the direction ν. The Clarke normal cone NS(x) at x ∈ S is defined from TC
S

by polarity, that is,

NS(x) = {ξ ∈ Rn : ⟨ξ,ν⟩ ≤ 0, for all ν ∈ TC
S (x)},

where TC
S (x) is the Clarke tangent cone at x ∈ S given by

TC
S (x) =

{
ν ∈ Rn : d0

S(x,ν) = 0
}
,

where d0
S(x,ν) is the generalized directional derivative of dS at x in the direction ν.

A vector ξ ∈ Rn is said to be in the Fréchet subdifferential of ϕ at x (see [15, 17])
denoted by ∂Fϕ(x), provided that for every ε > 0, there exists δ > 0 such that

⟨ξ,y− x⟩ ≤ ϕ(y)−ϕ(x)+ ε∥y− x∥, for all y ∈ B(x,δ).

We always have the inclusion ∂Fϕ(x)⊂ ∂ϕ(x), for all x ∈ S. The Fréchet normal cone
NF

S (x) at x ∈ S is given by NF
S (x) = ∂FψS(x), where ψS is the indicator function of

S, that is, ψS(x) = 0 if x ∈ S and ψS(x) = +∞, otherwise. So we have the inclusion
NF

S (x) ⊂ NS(x), for all x ∈ S. On the other hand, the Fréchet normal cone is also
related ([17]) to the Fréchet subdifferential, since for all x ∈ S

∂
FdS(x) = NF

S (x)∩B. (2.1)

Another important property is that, whenever y ∈ Pro jS(x), one has

x− y ∈ NF
S (y) then x− y ∈ NS(y). (2.2)
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Now, we introduce the definition of equi-uniform subsmoothness for a family of sets.
We begin with some basic definitions from subsmoothness while referring the reader
to [6].

Definition 1. Let S be a closed subset of Rn. The set S is called subsmooth at
x0 ∈ S, if for every ε > 0 there exists δ > 0, such that for all x1,x2 ∈ B(x0,δ)∩S and
ξi ∈ NS(xi)∩B, i ∈ {1,2}, one has

⟨ξ1 −ξ2,x1 − x2⟩ ≥ −ε∥x1 − x2∥. (2.3)

The set S is called subsmooth if it is subsmooth at every x0 ∈ S. We say that S is
uniformly-subsmooth if for every ε > 0 there exists δ > 0, such that (2.3) holds for
all x1,x2 ∈ S satisfying ∥x1 − x2∥< δ and all ξi ∈ NS(xi)∩B, i ∈ {1,2}.

The following subdifferential regularity of the distance function also holds true for
subsmooth sets (see [6]).

Proposition 1. Let S be a closed set of Rn. If S is subsmooth at x ∈ S, then

∂dS(x) = ∂
FdS(x) and NS(x) = NF

S (x). (2.4)

Now we introduce the definition of equi-uniformly-subsmoothness.

Definition 2. Let (S(q))q∈Q be a family of closed sets of Rn with parameter q ∈ Q.
This family is called equi-uniformly- subsmooth, if for every ε > 0, there exists δ > 0
such that, for each q ∈ Q, the inequality (2.3) holds for all x1,x2 ∈ S(q) satisfying
∥x1 − x2∥< δ and all ξi ∈ NS(q)(xi)∩B, i ∈ {1,2}.

For the proof of the next proposition, we refer the reader to [16].

Proposition 2. Let {S(t,x) : (t,x) ∈ I ×Rn} be a family of closed and nonempty
sets of Rn, which is equi-uniformly-subsmooth and let a real η ≥ 0. Assume that
there exist a real constant L ≥ 0 and a continuous function v : I → R such that, for
any x,x′,y,y′ ∈ Rn and s, t ∈ I∣∣dS(t,x)(y)−dS(s,x′)(y

′)
∣∣≤ ∥∥y− y′

∥∥+ |v(t)− v(s)|+L
∥∥x− x′

∥∥.
Then,

(i) for all (t,x,y) ∈ GphS, we have η∂dS(t,x)(y)⊂ ηB;
(ii) for any sequence

(
tn,xn

)
n in I ×Rn converging to (t,x), (yn)n converging to

y ∈ S(t,x) with yn ∈ S(tn,xn) and any ξ ∈ Rn, we have

limsup
n→+∞

δ
∗
(

ξ,η∂dS(tn,xn)(yn)
)
≤ δ

∗
(

ξ,η∂dS(t,x)(y)
)
.

Next we give the definition of the almost convex sets.

Definition 3 ([11]). For a vector space X , a set Q ⊂ X is called almost convex if
for every ξ ∈ co(Q) there exist λ1 and λ2, 0 ≤ λ1 ≤ 1 ≤ λ2, such that λ1ξ ∈ Q and
λ2ξ ∈ Q.
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Trivially, any convex set is almost convex, since Q = co(K). If K is a convex set
not containing the origin, Q = ∂K is almost convex, and if the convex set K contains
the origin, one takes Q = {0}∪∂K.

The following lemma is a direct consequence of discrete Gronwall’s inequality
proved in [14] (by using the inequality 1+bk ≤ exp(bk)).

Lemma 1. Let A > 0 and let (an) and (bn) be two nonnegative sequences such
that

an ≤ A+
n−1

∑
k=0

bkak, for all n ∈ N.

Then,

an ≤ Aexp

(
n−1

∑
k=0

bk

)
.

3. SWEEPING PROCESS WITH CONVEX PERTURBATION

In this section, we prove the existence of solution for (1.1), where the perturbation
is an upper semicontinuous set-valued mapping with nonempty closed convex values
unnecessarily bounded and without any compactness assumptions.

Theorem 1. Let C : I ×Rn ⇒ Rn be a set-valued mapping with nonempty closed
values such that:
(H1) for all (t,x) ∈ I ×Rn, the sets C(t,x) are equi-uniformly-subsmooth;
(H2) there are two constants L1 ≥ 0, L2 ∈ [0,1[ such that, for all s, t ∈ I, and any

x1,x2,y ∈ Rn∣∣dC(t,x1)(y)−dC(s,x2)(y)
∣∣≤ L1|t − s|+L2

∥∥x1 − x2
∥∥.

And let G : I×Rn ⇒Rn be a set-valued mapping with nonempty closed convex values,
upper semi-continuous such that:
(H3) for some real α ≥ 0, d

(
0,G(t,x)

)
≤ α

(
1+∥x∥

)
, ∀(t,x) ∈ I ×Rn.

Then, for every u0 ∈C
(
T0,u0

)
,

(1) (1.1) admits an absolutely continuous solution u : I → Rn.
(2) For t̃ ∈ I fixed the attainable set Accu0(t̃) is compact on Rn.

Proof. (1) For each integer n ≥ 1, we consider the following partition of I by

In
k = [tn

k , t
n
k+1[, tn

k = T0+ken, en =
T −T0

n
, k ∈ {0,1, · · · ,n−1} and In

n = {tn
n}= {T}.

For all (t,x)∈ I×Rn, we denote by g(t,x) the element of minimal norm of the closed
convex set G(t,x), i.e., g(t,x) = Pro jG(t,x)(0).
Step 1. We construct the sequence (xn

k) as follows: set xn
0 = u0 ∈C(tn

0 ,x
n
0), as C(tn

1 ,x
n
0)

is closed, we can choose

xn
1 ∈ Pro jC(tn

1 ,x
n
0)
(xn

0 + eng(tn
0 ,x

n
0)),
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according to (2.2), we get xn
1 ∈ C

(
tn
1 ,x

n
0

)
, xn

0 + eng(tn
0 ,x

n
0)− xn

1 ∈ N
C
(

tn
1 ,x

n
0

)(xn
1), and∥∥g(tn

0 ,x
n
0)
∥∥≤ α

(
1+∥xn

0∥
)
. By (H2) and the last inequalities, we obtain∥∥xn

1 − xn
0
∥∥≤ ∥xn

1 −
(
xn

0 + eng(tn
0 ,x

n
0)
)
∥+
∥∥eng(tn

0 ,x
n
0)
∥∥

= d
C
(

tn
1 ,x

n
0

)(xn
0 + eng(tn

0 ,x
n
0)
)
+
∥∥eng(tn

0 ,x
n
0)
∥∥

≤
∣∣∣d

C
(

tn
1 ,x

n
0

)(xn
0)−d

C
(

tn
0 ,x

n
0

)(xn
0)
∣∣∣+2en

∥∥g(tn
0 ,x

n
0)
∥∥

≤ L1en +2αen(1+∥xn
0∥). (3.1)

By induction, we define xn
k+1 satisfying

xn
k+1 ∈C(tn

k+1,x
n
k); (3.2)

xn
k + eng

(
tn
k ,x

n
k
)
− xn

k+1 ∈ N
C
(

tn
k+1,x

n
k

)(xn
k+1). (3.3)

Using (H2) and (H3), we obtain

∥xn
k+1 − xn

k∥ ≤
∥∥xn

k+1 − (xn
k + eng(tn

k ,x
n
k))
∥∥+∥∥eng(tn

k ,x
n
k)
∥∥

= d
C
(

tn
k+1,x

n
k

)(xn
k + eng(tn

k ,x
n
k)
)
+
∥∥eng(tn

k ,x
n
k)
∥∥

≤
∣∣∣d

C
(

tn
k+1,x

n
k

)(xn
k
)
−d

C
(

tn
k ,x

n
k−1

)(xn
k
)∣∣∣+2en

∥∥g(tn
k ,x

n
k)
∥∥

≤ L1en +L2∥xn
k − xn

k−1∥+2αen(1+∥xn
k∥).

Then, for 0 ≤ k ≤ n−1, we have

∥xn
k+1 − xn

k∥ ≤ (L1 +2α)en

k

∑
j=0

L j
2 +2αen

k

∑
j=0

Lk− j
2 ∥xn

j∥,

since L2 ∈ [0,1[, we get

∥xn
k+1 − xn

k∥ ≤
L1 +2α

1−L2
en +2αen

k

∑
j=0

Lk− j
2 ∥xn

j∥. (3.4)

On the other hand, we have

∥xn
k − xn

0∥ ≤ ∥xn
k − xn

k−1∥+∥xn
k−1 − xn

k−2∥+ · · ·+∥xn
1 − xn

0∥

≤ L1 +2α

1−L2
en +2αen

k−1

∑
j=0

Lk− j
2 ∥xn

j∥+
L1 +2α

1−L2
en +2αen

k−2

∑
j=0

Lk− j
2 ∥xn

j∥

+ · · ·+ en(L1 +2α)+2αen∥xn
0∥

≤ L1 +2α

1−L2
en(k−1)+2αen∥xn

0∥
k−1

∑
j=0

L j
2 +2αen∥xn

1∥
k−1

∑
j=0

L j
2
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+2αen∥xn
2∥

k−1

∑
j=0

L j
2 + · · ·+2αen∥xn

k−1∥
k−1

∑
j=0

L j
2

≤ T
L1 +2α

1−L2
+

2αT
1−L2

k−1

∑
j=0

∥xn
j∥.

So,

∥xn
k∥ ≤ ∥xn

0∥+T
L1 +2α

1−L2
+

2αT
1−L2

k−1

∑
j=0

∥xn
j∥.

By Lemma 1, for all k ∈ {0,1, · · · ,n−1}, we can write

∥xn
k∥ ≤

(
∥xn

0∥+T
L1 +2α

1−L2

)
exp
( 2αT

1−L2

)
= β. (3.5)

Step 2. Construction of sequence
(
un(·)

)
n≥0.

For every n ≥ 1 and for any t ∈ In
k with k ∈ {0,1, · · · ,n−1}, we define

un(t) =
tn
k+1 − t

en
xn

k +
t − tn

k
en

xn
k+1.

Thus, un(tn
k ) = xn

k and on ]tn
k , t

n
k+1[

u̇n(t) =
xn

k+1 − xn
k

en
. (3.6)

By (3.2) and (3.3) we obtain

un(tn
k+1) ∈C(tn

k+1,un(tn
k )) (3.7)

u̇n(t) ∈ −N
C
(

tn
k+1,un(tn

k )
)(un(tn

k+1))+g(tn
k ,un(tn

k )) a.e. t ∈ In
k , (3.8)

and by (3.4) and (3.5) we get

∥xn
k+1 − xn

k∥
en

≤ L1 +2α

1−L2
+2α

k

∑
j=0

Lk− j
2 β ≤ 1

1−L2

(
L1 +2α+2αβ

)
. (3.9)

The relations (3.6) and (3.9) give

∥u̇n(t)∥ ≤
1

1−L2

(
L1 +2α+2αβ

)
= γ. (3.10)

For each t ∈ I and n ≥ 1, let define the function

δn(t) =
{

tn
k if t ∈ In

k ,
tn
n−1 if t = T.

θn(t) =
{

tn
k+1 if t ∈ In

k ;
T if t = T,

and we have
lim

n→+∞

∣∣δn(t)− t
∣∣= lim

n→+∞

∣∣θn(t)− t
∣∣= 0. (3.11)
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Furthermore, the definitions of δn(·) and θn(·) combined with (3.5), (3.7) and (3.8)
yield

un
(
θn(t)

)
∈C
(
θn(t),un

(
δn(t)

))
, for all t ∈ I, (3.12)

u̇n(t) ∈ −N
C
(

θn(t),un(δn(t))
) (un(θn(t))

)
+g(δn(t),un(δn(t))) a.e. t ∈ I, (3.13)∥∥g(δn(t),un(δn(t)))

∥∥≤ α(1+β) = η for all t ∈ I. (3.14)
Step 3. Convergence of the sequences.
From (3.5) it follows that (un(θn(t)) is relatively compact and by (3.10) we have∥∥un(θn(t))−un(t)

∥∥≤ ∫
θn(t)

t

∥∥u̇n(s)
∥∥ ds ≤ γ

(
θn(t)− t

)
,

then
lim

n→+∞

∥∥un(θn(t))−un(t)
∥∥= 0. (3.15)

So, (un(t))n≥1 is relatively compact for all t ∈ I, on the other hand (un(·))n≥1 is equi-
continuous according to (3.10). Using Ascoli-Arzelà’s theorem

(
un
)

n≥1 is relatively
compact in CRn(I), so we can extract a subsequence of (un)n≥1 (that we do not rela-
bel) which converges uniformly to some mapping u ∈CRn(I) and (u̇n)n≥1 converges
weakly in L1

Rn(I) to mapping z ∈ L1
Rn(I) with ∥z(t)∥ ≤ γ a.e. t ∈ I. Fixing t ∈ I and

taking any ξ ∈ Rn, the above weak convergence in L1
Rn(I) yields

lim
n→+∞

∫ T

T0

⟨II(s) ξ, u̇n(s)⟩ ds =
∫ T

T0

⟨II(s) ξ,z(s)⟩ ds

or equivalently

lim
n→+∞

⟨ξ,u0 +
∫ t

T0

u̇n(s) ds⟩= ⟨ξ,u0 +
∫ t

T0

z(s) ds⟩.

Then, lim
n→+∞

∫ t

T0

u̇n(s) ds =
∫ t

T0

z(s) ds, since un(·) is an absolutely continuous map-

ping, we get

lim
n→+∞

(
un(t)−u0

)
= lim

n→+∞

∫ t

T0

u̇n(s) ds =
∫ t

T0

z(s) ds,

so u(·) is an absolutely continuous mapping, and z = u̇.
Let put

(
g(δn(·),un(δn(·))

)
n =
(
hn(·)

)
n, so (hn)n≥1 is a measurable because G(·, ·)

is upper semi-continuous and ∥hn(t)∥≤η, then (hn(·))∈L∞
Rn(I), taking a subsequence

if necessary we conclude that
(
hn(·)

)
n≥1 weakly converges to a mapping h ∈ L∞

Rn(I)
with ∥h(t)∥ ≤ η a.e.
Step 4. We prove in this step that u is a solution of (1.1).
Fix any t ∈ I, by (H2) and (3.12), we have

d(un(t),C(t,u(t)))≤ ∥un(θn(t))−un(t)∥+d(un(θn(t)),C(t,u(t)))

≤ ∥un(θn(t))−un(t)∥+∥d(un(θn(t)),C(t,u(t)))−d(un(θn(t)),C(θn(t),u(δn(t))))∥
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≤ ∥un(θn(t))−un(t)∥+L1(θn(t)− t)+L2∥un(δn(t))−u(t)∥.
Using (3.11) and (3.15) and by passing to the limit in the last inequality, we get
u(t) ∈C(t,u(t)) for all t ∈ I thanks to the closedness of C(t,u(t)). We have∥∥− u̇n(t)+hn(t)

∥∥≤ (γ+η) = M a.e. t ∈ I,

that is, −u̇n(t)+hn(t) ∈ MB, then

−u̇n(t)+hn(t) ∈ N
C
(

θn(t),un(δn(t))
) (un(θn(t))

)
∩MB,

we get by relation (2.1) and Proposition 1

− u̇n(t)+hn(t) ∈ M∂d
C
(

θn(t),un(δn(t))
) (un(θn(t))

)
a.e. t ∈ I. (3.16)

Note that
(
− u̇n + hn,hn

)
weakly converges in L1

Rn×Rn(I) to
(
− u̇+ h,h

)
according

to Mazur’s lemma, there exists a sequence
(
ξn,ζn

)
n≥1 which strongly converges in

L1
Rn×Rn(I) to

(
− u̇+h,h

)
such that

ξn ∈ co{−u̇q +hq, q ≥ n} and ζn ∈ co{hq, q ≥ n}. (3.17)

Extracting a subsequence if necessary, we may assume that
(
ξn(·),ζn(·)

)
n≥1 con-

verges almost every to
(
− u̇(·)+h(·),h(·)

)
. Then, there is, a Lebesgue negligible set

N ⊂ I such that for every t ∈ I\N

−u̇(t)+h(t) ∈
⋂
n≥0

{ξq(t), q ≥ n} ⊂
⋂
n≥0

co{−u̇q(t)+hq(t), q ≥ n}, (3.18)

and
h(t) ∈

⋂
n≥0

{ζq(t), q ≥ n} ⊂
⋂
n≥0

co{hq(t), q ≥ n}. (3.19)

Fix any t ∈ I\N and µ ∈ Rn. Then, relations (3.16) and (3.18) give

⟨µ,−u̇(t)+h(t)⟩ ≤ limsup
n→+∞

δ
∗
(

µ,M∂d
C
(

θn(t),un(δn(t))
)(un(θn(t))

))
.

By using Proposition 2, we obtain

⟨µ,−u̇(t)+h(t)⟩ ≤ δ
∗
(

µ,M∂dC(t,u(t))
(
u(t)

))
.

Since M∂d
C
(

t,u(t)
)(u(t)) is closed and convex, we conclude that

− u̇(t)+h(t) ∈ M∂dC(t,u(t))
(
u(t)

)
⊂ N

C
(

t,u(t)
)(u(t)) a.e. t ∈ I\N. (3.20)

Further, by relation (3.19) we have

⟨µ,h(t)⟩ ≤ limsup
n→+∞

δ
∗
(

µ,G(δn(t),un(δn(t))
)
.

Since G is upper semi-continuous with closed values, we obtain h(t) ∈ G
(
t,u(t)

)
.

Consequently, u̇(t) ∈ −NC(t,u(t))
(
u(t)

)
+G

(
t,u(t)

)
a.e. t ∈ I.
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(2) To prove that the attainable set Accu0(t̃) is compact it suffices to show that St̃(u0)
is compact for t̃ ∈ I. By the part (1), we get St̃(u0) ̸=∅. Let (un)n ⊂ St̃(u0), then, for
each n ∈ N, un is an absolutely continuous solution of (1.1) with∥∥u̇n(t)

∥∥≤ γ a.e. t ∈ [T0, t̃]. (3.21)

and ∥∥un(t)
∥∥≤ ∥∥u0

∥∥+∫ t

T0

∥∥u̇n(s)
∥∥ ds ≤

∥∥u0
∥∥+ γ(t −T0). (3.22)

Then, (un(t))n is relatively compact in Rn, in addition, it is equi-continuous according
to (3.21). By Arzelà-Ascoli theorem (un)n is relatively compact in CRn([T0, t̃]), so, we
can extract a subsequence of (un)n (that we do not relabel) which converges uniformly
to some mapping u on [T0, t̃] and (u̇n)n converges in L1

Rn([T0, t̃]) to u̇(·) with
∥∥u̇(t)

∥∥≤
γ a.e. t ∈ [T0, t̃] and u(t) = u0 +

∫ t
T0

u̇(s)ds. For the rest of the demonstration we can
follow the proof of part (1) to get

u̇(t) ∈ −NC(t,u(t))
(
u(t)

)
+G

(
t,u(t)

)
a.e. t ∈ [T0, t̃].

□

4. SWEEPING PROCESS WITH ALMOST CONVEX PERTURBATION

In the following theorem we prove the existence of solution of (1.2), when the per-
turbation G takes almost convex values and with weaker assumption on upper semi-
continuity. In the previous results, one takes the perturbation upper semi-continuous,
an analysis of the proof, shows that we need only the upper semi-continuity of the
co(G).

Theorem 2. Let C : Rn ⇒ Rn be a set-valued mapping with nonempty closed val-
ues satisfying:

(A1) for all x ∈ Rn the sets C(x) are equi-uniformly-subsmooth;
(A2) there is a constant L2 ∈ [0,1[ such that, for all x1,x2,y ∈ Rn∣∣d(y,C(x1)

)
−d
(
y,C(x2)

)∣∣≤ L2
∥∥x1 − x2

∥∥.
And let G : Rn ⇒ Rn be a measurable set-valued mapping with compact and almost
convex values such that

(A3) the set-valued mapping co(G(·)) is upper semi-continuous on Rn;
(A4) for some real α ≥ 0, d

(
0,co

(
G(x)

))
≤ α(1+∥x∥) for all x ∈ Rn.

Then, for every u0 ∈C
(
u0
)
,

(1) (1.2) admits an absolutely continuous solution;
(2) for t̃ ∈ I fixed, the attainable set of (1.2) at t̃, Accu0(t̃), coincides with Accco

u0
(t̃)

the attainable set at t̃ of the convexified problem.
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Proof. (1) Step 1. We start by proving the existence of two integrable functions
λ1(·) and λ2(·) defined on I, such that 0 ≤ λ1(t)≤ 1 ≤ λ2(t) and for t ∈ I

λ1(t)m(u(t)) ∈ G(u(t)), λ2(t)m(u(t)) ∈ G(u(t)), (4.1)

where m(u(t)) = Pro jco(G(u(t)))(0). Since for every t ∈ I, G(u(t)) is almost convex,
there exists two nonempty sets Λ1(t) and Λ2(t) such that

Λ1(t) =
{

λ1 ∈ [0,1] : λ1m(u(t)) ∈ G(u(t))
}
,

Λ2(t) =
{

λ2 ∈ [1,+∞[ : λ2m(u(t)) ∈ G(u(t))
}
.

Consider Gph(Λ1) the graph of Λ1 defined by

Gph(Λ1) = {(t,λ1) ∈ I × [0,1] : λ1m(u(t)) ∈ G(u(t)
)
}

= {(t,λ1) ∈ I × [0,1] : d
(
λ1m(u(t)),G(u(t))

)
= 0}

= ϕ
−1({0}

)
∩
(
I × [0,1]

)
,

where ϕ : (t,λ1)→ d
(
λ1m(u(t)),G(u(t))

)
is measurable. Then Gph(Λ1) is measur-

able. So, there exists an integrable selection λ1(·) of Λ1(·) satisfying 0 ≤ λ1(t) ≤ 1
and λ1(t)m(u(t)) ∈ G(u(t)) for t ∈ I. The existence of an integrable selection λ2(·)
of Λ2(·), satisfying λ2(t) ≥ 1 and λ2(t)m(u(t)) ∈ G(u(t)), can be proved using the
same reasoning as above with the fact that G(u(t)) is bounded.
Step 2. (a) Let [a,b] ⊂ I be an interval and assume that there exist two integrable
functions λ1(·) and λ2(·) define on [a,b], such that 0 ≤ λ1(τ) ≤ 1 ≤ λ2(τ), for all
τ ∈ I. Using the same procedure as in the proof of Theorem 4.1. in [2], we con-
clude the existence of two measurable subsets of [a,b], having characteristic func-
tions I1 and I2 such that I1(·)+ I2(·) = I[a,b](·) and an absolutely continuous function
s : [a,b]→ [a,b] with s(b)− s(a) = b−a, such that

ṡ(τ) =
1

λ1(τ)
I1(τ)+

1
λ2(τ)

I2(τ).

(b) Using Theorem 1, there exists an absolutely continuous solution x : I →Rn of the
convexified problem{

u̇(t) ∈ −NC(u(t))(u(t))+ co
(
G(u(t))

)
, a.e. t ∈ I;

u(t) ∈C(u(t)), ∀t ∈ I; u(T0) = u0 ∈C(u0).

Consider the set Ω = {τ ∈ I : 0 ∈ co
(
G(x(τ))

)
}. Since co(G(·)) is an upper semi-

continuous set-valued mapping with compact values and x(·) is continuous, we obtain
the closedness of Ω.

If Ω is empty, in this case λ1(τ) > 0 on I, so, we can apply part (a) to interval
I. Set s(τ) = T0 +

∫
τ

T0
ṡ(ω)dω, s is increasing and we have (s(T0),s(T )) = (T0,T ),

so s defined from I into itself. Let γ : I → I be its inverse, then (γ(T0),γ(T )) =
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(T0,T ),
d
dτ

s(γ(τ)) = ṡ(γ(τ)) γ̇(τ) = 1, and

γ̇(τ) =
1

ṡ(γ(τ))
= λ1

(
γ(τ)

)
I1
(
γ(τ)

)
+λ2

(
γ(τ)

)
I2
(
γ(τ)

)
.

Consider x̃ : I → Rn the mapping defined by x̃(τ) = x(γ(τ)), then we get

d
dτ

x̃(τ) = ẋ
(
γ(τ)

)(
λ1
(
γ(τ)

)
I1
(
γ(τ)

)
+λ2

(
γ(τ)

)
I2
(
γ(τ)

))
,

using the properties of the normal cone and (4.1), we obtain

d
dτ

x̃(τ) ∈ (−NC(x(γ(τ)))(x(γ(τ)))+m(x(γ(τ))))(λ1
(
γ(τ)

)
I1
(
γ(τ))+λ2(γ(τ))I2(γ(τ))

)
∈ −NC(x(γ(τ)))(x(γ(τ)))+G(x(γ(τ))) =−NC(x̃(τ))(x̃(τ))+G(x̃(τ)).

If Ω is nonempty, let l = sup{τ, τ ∈ Ω} ∈ Ω. The complement of Ω is open relatively
to I, it consists of at most countably many overlapping open intervals ]ai,bi[, with
the possible exception of the form [aii ,bii [ with aii = T0 and one of the form ]ai f ,bi f ]
with ai f = l. For each i, we can apply the part (a) to the ]ai,bi[, so, there exist two
measurable subsets of ]ai,bi[ with characteristic functions Ii

1(·) and Ii
2(·) such that

Ii
1(·)+Ii

2(·)= I]ai,bi[(·). Setting ṡ(τ)= 1
λ1(τ)

Ii
1(τ)+

1
λ2(τ)

Ii
2(τ), we obtain

∫ bi
ai

ṡ(ω)dω=

bi −ai. For all τ ∈ [T0, l], set

ṡ(τ) =
1

λ2(τ)
IΩ(τ)+∑

i

( 1
λ1(τ)

Ii
1(τ)+

1
λ2(τ)

Ii
2(τ)

)
,

where the sum is over all intervals of the complementary of Ω contained in [T0, l], in

addition to that λ2(τ)≥ 1 and
∫ l

T0

ṡ(ω)dω= p≤ l−T0. Setting s(t)= T0+
∫

τ

T0

ṡ(ω)dω,

then s(·) is an invertible map from [T0, l] to [T0, p]. Let define γ : [T0, p] → [T0, l] to
be the inverse function of s(·). Extend γ(·) as an absolutely continuous map γ̃(·) on
[T0, l], setting ˙̃γ(τ) = 0 for τ ∈ [p, l]. Let us show that the mapping x̃(τ) = x

(
γ̃(τ)

)
is

a solution of the problem (1.2) for all τ ∈ [T0, l].
On [T0, p], we have γ̃(τ) = γ(τ), γ is invertible and

γ̇(τ) = λ2
(
γ(τ)

)
IΩ

(
γ(τ)

)
+∑

i

(
λ1
(
γ(τ)

)
Ii

1
(
γ(τ)

)
+λ2

(
γ(τ)

)
Ii

2
(
γ(τ)

))
,

as
d
dτ

x̃(τ) = ẋ
(
γ(τ)

)
γ̇(τ), we get

d
dτ

x̃(τ) ∈ γ̇(τ)
(
−NC(x(γ(τ)))(x(γ(τ)))+m(x(γ(τ)))

)
∈ −NC(x(γ(τ)))(x(γ(τ)))+G(x(γ(τ))) =−NC(x̃(τ))(x̃(τ))+G(x̃(τ)).

On ]p, l], we have γ(p) = l and ˙̃γ(τ) = 0, then we get γ̃(τ) = γ̃(p) = γ(p), we obtain
x̃(τ) = x(γ̃(τ)) = x(γ(p)) = l, then x̃ is constant on ]p, l], and we have d

dτ
x̃(τ) = 0 ∈
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co
(
G(x̃(τ))

)
. Using (4.1), we conclude that for τ ∈]p, l]

d
dτ

x̃(τ) = 0 ∈ −NC(x̃(τ))(x̃(τ))+G(x̃(τ)).

On [l,T ], the set Ω is empty, and λ1(τ)> 0, then we can repeat the arguments of part
(a). We conclude, that x̃ is an absolutely continuous solution of the problem (1.2).

(2) For the proof of this part, we refer the reader to Theorem 3 in [2].
This completes the proof of the theorem. □

5. APPLICATION TO AN OPTIMAL TIME PROBLEM

Now consider the control system (1.3) under the almost convexity assumption.

Theorem 3. Let C : Rn ⇒ Rn be a set-valued mapping with nonempty closed val-
ues satisfies the hypothesis (A1) and (A2) in Theorem 2, Z : Rn ⇒Rn be a set-valued
mapping with compact valued upper semi-continuous on Rn such that 0∈ Z(x) for all
x ∈ Rn. And let h : Rn ×Rn → Rn be a continuous mapping satisfying the following
assumption
(H h

1 ) there is a nonnegative constant α, such that ∥h(x,y)∥ ≤ α(1+ ∥x∥), for all
(x,y) ∈ Rn ×Rn;

(H h
2 ) for all x ∈ Rn, h(x,0) = 0;

(H h
3 ) Let G be a measurable set-valued mapping with compact and almost convex

values such that G(x) = {h
(
x,z
)
}z∈Z(x).

Let u0,u1 be given in Rn, and assume that fore some t ∈ I, u1 ∈Accu0(t) the attainable
set of the problem (1.3). Then,

(1) the problem of reaching u1 from u0 in a minimum time admits a solution;
(2) for all t ∈ I

Accu0(t) = {u ∈ Rn : T(u)≤ t}.

Proof. (1) By the assumptions on h and Z, we conclude that co(G(·)) is an upper
semicontinuous set-valued mapping values and

d
(
0,co

(
G(x)

))
≤ α(1+∥x∥), for all x ∈ Rn.

According to Theorem 2 the problem (1.3) admits a solution.
Let t̄ = inf{τ ∈ [T0, t] : u1 ∈ Accu0(t)}, so by the lower bound property, there exists

a decreasing sequence
(
t̄n
)

in [T0, t] converging to t̄ and for each n, un(·) is solution
of the problem {

u̇(t) ∈ −NC(u(t))(u(t))+G(u(t)) a.e. t ∈ [T0, t̄n];
u(t) ∈C(u(t)), ∀t ∈ [T0, t̄n]; u(T0) = u0 ∈C(u0),

such that u1 = un(t̄n). We define the sequence (yn(·)) by yn(s) = un(s) for all s ∈
[T0, t̄]. So, (

yn(s)
)
⊂ Accu0(s) = Accco

u0
(s).



26 DORIA AFFANE AND LOUBNA BOULKEMH

By the compactness of Accco
u0
(s), we can extract a subsequence if necessary and con-

clude that
(
yn(s)

)
converges to u(s) ∈ Accco

u0
(t̄) and y(t̄) = u1 ∈ Accco

u0
(t̄) = Accu0(t̄).

Consequently, u is the solution of the problem (1.3) that reaches u1 in the minimum
time, and t̄ is the value of the minimum time.

(2) We have u1 ∈ Accu0(t), this means that there exists u(·) solution of the problem
(1.3) such that u1 = u(t). We define the mapping

ũ(s) =
{

u(s) for s ∈ [T0, t]
u1 for s ∈ [t,T ].

For s ∈ [T0, t], we can write
˙̃u(s) ∈ −N

C
(

ũ(s)
)(ũ(s))+G

(
ũ(s)) a.e. (5.1)

For s ∈ [t,T ], ˙̃u(s) = 0, by hypotheses (H h
2 ) and since 0 ∈ NC(ũ(s))(ũ(s)) we get

˙̃u(s) = 0 ∈ −NC(ũ(s))(ũ(s))+G(ũ(s)) a.e. (5.2)

By relation (5.1) and (5.2), we conclude that ũ(·) is a solution of (1.3) for all t ∈ I.
On the other hand, for all t < s, ũ(s) = u1 ∈ Accu0(s). Then

Accu0(t)⊆ Accu0(s). (5.3)

Now let z ∈ {u ∈Rn : T(u)≤ t}, according to relation (5.3), Accu0

(
T(u)

)
⊆ Accu0(t),

then z ∈ Accu0(t). Hence

{u ∈ Rn : T(u)≤ t} ⊆ Accu0(t). (5.4)

In addition, using the definition of the attainable set we get

Accu0(t)⊆ {u ∈ Rn : T(u)≤ t}. (5.5)

By (5.4) and (5.5) we conclude that

Accu0(t) = {u ∈ Rn : T(u)≤ t}.
□
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