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KLEENE POSETS AND PSEUDO-KLEENE POSETS
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Received 07 October, 2020

Abstract. The concept of a Kleene algebra (sometimes also called Kleene lattice) was already
generalized by the first author for non-distributive lattices under the name pseudo-Kleene algebra.
We extend these concepts to posets and show how (pseudo-)Kleene posets can be characterized
by identities and implications of assigned commutative meet-directoids. Moreover, we prove that
the Dedekind-MacNeille completion of a pseudo-Kleene poset is a pseudo-Kleene algebra and
that the Dedekind-MacNeille completion of a finite Kleene poset is a Kleene algebra. Further,
we introduce the concept of a strict (pseudo-)Kleene poset and show that under an additional
assumption a strict Kleene poset can be organized into a residuated structure. Finally, we prove
by using the so-called twist-product construction that every poset can be embedded into a pseudo-
Kleene poset in some natural way.
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1. INTRODUCTION

Kleene algebras, or in another terminology Kleene lattices (see [7] and [11]), are
special cases of De Morgan algebras, i.e. distributive lattices with an antitone involu-
tion satisfying the so-called normality condition, i.e. the identity x∧x′ ≤ y∨y′. These
algebras were also called normal i-lattices (see [11]) or quasi-Boolean algebras (by
A. Bialynicki and H. Rasiova). They are important models in the field of logic since
they generalize Boolean algebras, Łukasiewicz algebras and Post algebras. The name
“Kleene algebra” was introduced by R. Cignoli ([7]). The case when the underlying
lattice need not be distributive was treated by the first author in [4] under the name
pseudo-Kleene algebras.
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In some propositional logics the identification of disjunction with lattice join ∨
turns out to be problematic. For example, the logic of quantum mechanics was ori-
ginally modeled by orthomodular lattices (which are special pseudo-Kleene algebras)
and later on by orthomodular posets in which the existence of the join x∨ y of two
elements x and y is guaranteed only in the case when these elements are orthogonal
to each other, i.e., x ≤ y′ (or, equivalently, y ≤ x′). Similar problems may occur also
in other models of non-classical logics. Hence the question arises whether results
obtained for Kleene algebras or pseudo-Kleene algebras can be generalized to posets
with an antitone involution satisfying some condition analogous to normality. In this
paper we solve this problem by investigating so-called Kleene posets, pseudo-Kleene
posets and strong pseudo-Kleene posets. We believe that these may be successfully
applied in the algebraic axiomatization of several non-classical logics. Moreover, we
introduce some kind of residuation which may be applied in fuzzy logic.

For the reader’s convenience, we recall several concepts concerning posets.
Let P = (P,≤) be a poset, a,b ∈ P and A,B ⊆ P. We write a ∥ b if a and b are

incomparable. We extend ≤ to subsets by defining

A ≤ B if and only if x ≤ y for all x ∈ A and y ∈ B.

Instead of {a} ≤ B and A ≤ {b} we also write a ≤ B and A ≤ b, respectively. Ana-
logous notations are used for the reverse order ≥. Moreover, we define

L(A) := {x ∈ P | x ≤ A},
U(A) := {x ∈ P | A ≤ x}.

Instead of L(A∪ B), L({a} ∪ B), L(A∪ {b}) and L({a,b}) we also write L(A,B),
L(a,B), L(A,b) and L(a,b), respectively. Analogous notations are used for U . Instead
of L(U(A)) we also write LU(A). Analogously, we proceed in similar cases. Some-
times we identify singletons with their unique element, so we often write L(a,b) = 0
and U(a,b) = 1 instead of L(a,b) = {0} and U(a,b) = {1}, respectively. We have

A ⊆ B imply L(B)⊆ L(A),

A ⊆ LU(A),

LUL(A) = L(A),

LU(a) = L(a),

L(A,B) = L(A)∩L(B),

L(U(a),B) = L(a,B),

L(A) =
⋃

x∈L(A)

L(x),

L(A) =
⋂
x∈A

L(x).
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There also hold the corresponding statements obtained by duality. The poset P is
called downward directed if L(x,y) ̸=∅ for all x,y∈P. The poset P is called bounded
if it has a least element 0 and a greatest element 1. This fact will be expressed
by notation (P,≤,0,1). The poset P is called distributive if it satisfies one of the
following equivalent identities:

L
(
U(x,y),z

)
≈ LU

(
L(x,z),L(y,z)

)
,

UL
(
U(x,y),z

)
≈U

(
L(x,z),L(y,z)

)
,

U
(
L(x,y),z

)
≈UL

(
U(x,z),U(y,z)

)
,

LU
(
L(x,y),z

)
≈ L

(
U(x,z),U(y,z)

)
.

In fact, the inclusions

LU
(
L(x,z),L(y,z)

)
⊆ L

(
U(x,y),z

)
,

UL
(
U(x,z),U(y,z)

)
⊆U

(
L(x,y),z

)
hold in every poset. Hence, to check distributivity, we need only to confirm one of
the converse inclusions. A unary operation ′ on P is called

• antitone if, for all x,y ∈ P, x ≤ y implies y′ ≤ x′,
• an involution if it satisfies the identity x′′ ≈ x.

For A ⊆ P we define A′ := {x′ | x ∈ A}. If the poset is bounded and distributive, we
can prove the following property of an antitone involution.

Lemma 1. Let P = (P,≤, ′,0,1) be a bounded distributive poset with an antitone
involution ′ and a,b ∈ P with a ≤ b and L(b,a′) = {0}. Then the following hold:

L(a,a′) = L(b,b′) = {0},
U(a,a′) =U(b,b′) = {1}.

Proof. Using distributivity of P we obtain

L(a,a′) = LUL(a,a′) = LU
(
L(a,a′),0

)
= LU

(
L(a,a′),L(b,a′)

)
= L

(
U(a,b),a′

)
= L

(
U(b),a′

)
= L(b,a′) = {0},

L(b,b′) = LUL(b′,b) = LU
(
0,L(b′,b)

)
= LU

(
L(a′,b),L(b′,b)

)
= L

(
U(a′,b′),b

)
= L

(
U(a′),b

)
= L(a′,b) = {0}.

By De Morgan’s laws we finally have

U(a,a′) =
(
L(a′,a)

)′
= {0}′ = {1},

U(b,b′) =
(
L(b′,b)

)′
= {0}′ = {1}.

□
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2. KLEENE POSETS AND PSEUDO-KLEENE POSETS

The concept of a Kleene algebra is taken from [7] and that of a pseudo-Kleene
algebra from [4]. One can easily check that the normality condition mentioned in the
introduction can be translated into the language of posets as follows.

Definition 1. A pseudo-Kleene poset is a poset P = (P,≤, ′) with an antitone in-
volution satisfying

(K) L(x,x′)≤U(y,y′) for all x,y ∈ P.
An element a of P is called a fixed point of P if a′ = a. By a Kleene poset we mean a
distributive pseudo-Kleene poset.

Lemma 2. Let P = (P,≤, ′) be a pseudo-Kleene poset. Then P has at most one
fixed point.

Proof. If a and b are fixed points of P then

a ∈ L(a) = L(a,a) = L(a,a′)≤U(b,b′) =U(b,b) =U(b),

b ∈ L(b) = L(b,b) = L(b,b′)≤U(a,a′) =U(a,a) =U(a)

and hence b ≤ a and a ≤ b, i.e. a = b. □

Example 1. The poset visualized in Figure 1 is a Kleene poset which is not a
lattice:
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Fig. 1

Example 2. The poset (P,≤, ′) visualized in Figure 2 is a pseudo-Kleene poset
which is neither a lattice nor a Kleene poset since

L(U(a,c),b) = L(1,b) = L(b) ̸= {0}= L(P) = LU(0) = LU(0,0)

= LU
(
L(a,b),L(c,b)

)
.
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Fig. 2

Recall that a pseudo-Kleene algebra (see [4]) is a lattice (L,∨,∧, ′) with an antitone
involution satisfying the identity

x∧ x′ ≤ y∨ y′ for all x,y ∈ L.

A Kleene algebra (see [11]) is a distributive pseudo-Kleene algebra. Observe that
a lattice with an antitone involution is a (pseudo-)Kleene poset if and only if it is a
(pseudo-)Kleene algebra. Hence, our concepts defined above are appropriate gen-
eralizations of pseudo-Kleene algebras and Kleene algebras as will be shown in the
next section.

Example 3. The lattice visualized in Figure 3 is a pseudo-Kleene algebra which is
not a Kleene algebra since the lattice is not distributive:
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Example 4. The lattice visualized in Figure 4 is a Kleene algebra:
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3. DEDEKIND-MACNEILLE COMPLETION

It is a natural question when a Dedekind-MacNeille completion DM(P) of a poset
P is a pseudo-Kleene or Kleene algebra. We get the answer in next two theorems. At
first, we recall several necessary concepts taken e.g. from [1].

Let P = (P,≤, ′) be a poset with an antitone involution. Define

DM(P) := {L(A) | A ⊆ P},
A∗ := L(A′) for all A ∈ DM(P),

DM(P) :=
(

DM(P),⊆, ∗
)
.

Then DM(P) is a complete lattice with an antitone involution, called the Dedekind-
MacNeille completion of P. One can show that

DM(P) = {LU(B) | B ⊆ P}= {C ⊆ P | LU(C) =C}.

That ∗ is an antitone involution on (DM(P),⊆) can be seen as follows. Let A,B ∈
DM(P). If A ⊆ B then A′ ⊆ B′ and hence B∗ = L(B′) ⊆ L(A′) = A∗. Moreover,
A∗∗ = L((L(A′))′) = LU(A) = A since

(
L(A′)

)′
=U(A). We have(

L(A)
)∗

= L
((

L(A)
)′)

= LU(A′) (since
(
L(A)

)′
=U(A′)) for all A ⊆ P,

A∨B = LU(A,B) for all A,B ∈ DM(P),
A∧B = A∩B for all A,B ∈ DM(P).
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Theorem 1. Let P = (P,≤, ′) be a poset with an antitone involution. Then DM(P)
is a pseudo-Kleene algebra if and only if P is a pseudo-Kleene poset.

Proof. Assume that P is a pseudo-Kleene poset. We use the properties of L and U
mentioned in the introduction. The following are equivalent:

DM(P) is a pseudo-Kleene algebra,

C∧C∗ ⊆ D∨D∗ for all C,D ∈ DM(P),

L(A)∧
(
L(A)

)∗ ⊆ L(B)∨
(
L(B)

)∗ for all A,B ⊆ P,

L(A)∩LU(A′)⊆ LU
(
L(B),LU(B′)

)
for all A,B ⊆ P,

L
(
A,U(A′)

)
⊆ L

(
UL(B)∩ULU(B′)

)
for all A,B ⊆ P,

L
(
A,U(A′)

)
⊆ L

(
UL(B)∩U(B′)

)
for all A,B ⊆ P,

L
(
A,U(A′)

)
⊆ LU

(
L(B),B′) for all A,B ⊆ P,

L
(
A,U(A′)

)
≤U

(
L(B),B′) for all A,B ⊆ P.

Now let A,B be fixed subsets of P. Then

L
(
A,U(A′)

)
= L(A)∩LU(A′) =

⋃
x∈L(A)

L(x)∩
⋂

y∈U(A′)

L(y)

=
⋃

x∈L(A)

(
L(x)∩

⋂
y∈U(A′)

L(y)
)
⊆

⋃
x∈L(A)

(
L(x)∩L(x′)

)
=

⋃
x∈L(A)

L(x,x′),

U
(
L(B),B′)=UL(B)∩U(B′) =

⋂
x∈L(B)

U(x)∩
⋃

y∈U(B′)

U(y)

=
⋃

y∈U(B′)

( ⋂
x∈L(B)

U(x)∩U(y)
)
⊆

⋃
y∈U(B′)

(
U(y′)∩U(y)

)
=

⋃
y∈U(B′)

U(y,y′)

and ⋃
x∈L(A)

L(x,x′)≤
⋃

y∈U(B′)

U(y,y′).

Hence DM(P) is a pseudo-Kleene algebra provided P is a pseudo-Kleene poset. The
converse is evident since the mapping x 7→ L(x) is an embedding of P into DM(P).

□

Theorem 2. The Dedekind-MacNeille completion of a finite Kleene poset is a
Kleene algebra.

Proof. According to a result by M. Erné ([8]), the Dedekind-MacNeille comple-
tion of a finite distributive poset is a distributive lattice. Hence, by Theorem 1 the
Dedekind-MacNeille completion of a finite Kleene poset is a Kleene algebra. □

The Dedekind-MacNeille completion of the Kleene poset from Example 1 is visu-
alized in Figure 5:
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4. A REPRESENTATION BY COMMUTATIVE MEET-DIRECTOIDS

Now we recall the concept of a commutative meet-directoid. This concept was
introduced by J. Ježek and R. Quackenbush ([10]), an overview of results on direct-
oids can be found in the authors’ monograph [6]. We will use commutative meet-
directoids for the characterization of pseudo-Kleene posets, Kleene posets, strong
pseudo-Kleene posets and strict pseudo-Kleene posets. The advantage of this ap-
proach is that we characterize properties of posets by means of identities and quasi-
identities of algebras. Hence, one can use algebraic tools for their investigation.

A commutative meet-directoid (see [6] and [10]) is a groupoid D = (D,⊓) satisfy-
ing the following identities:

x⊓ x ≈ x (idempotency),
x⊓ y ≈ y⊓ x (commutativity),(

x⊓ (y⊓ z)
)
⊓ z ≈ x⊓ (y⊓ z) (weak associativity).

If P = (P,≤) is a downward directed poset, if we define x⊓y := x∧y for comparable
x,y ∈ P and if we put for x⊓ y = y⊓ x an arbitrary element of L(x,y) if x,y ∈ P are
incomparable, then D(P) := (P,⊓) is a commutative meet-directoid which is called
a meet-directoid assigned to P. Conversely, if D = (D,⊓) is a commutative meet-
directoid and we define

x ≤ y if and only if x⊓ y = x

for all x,y ∈ D then P(D) := (D,≤) is a downward directed poset, the so-called poset
induced by D. Though the assignment P 7→ D(P) is not necessarily unique, we have
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P(D(P)) = P for every downward directed poset P. Sometimes we consider posets
and commutative meet-directoids together with a unary operation. Let (D,⊓, ′) be a
commutative meet-directoid (D,⊓, ′) with an antitone involution. We define

x⊔ y := (x′⊓ y′)′ for all x,y ∈ D.

Then ⊔ is also idempotent, commutative and weakly associative and we have for all
x,y ∈ D

x⊔ y = x∨ y if x,y are comparable,

x⊔ y = y⊔ x ∈U(x,y) if x ∥ y,
x⊓ y = x if and only if x⊔ y = y,

L(x) = {z⊓ x | z ∈ P},
U(x) = {z⊔ x | z ∈ P},

L(x,y) = {(z⊓ x)⊓ (z⊓ y) | z ∈ P},
U(x,y) = {(z⊔ x)⊔ (z⊔ y) | z ∈ P}.

Posets with an antitone involution can be characterized in the language of commutat-
ive meet-directoids by identities as follows.

Lemma 3. Let P = (P,≤, ′) be a downward directed poset with a unary operation
and D(P) an assigned meet-directoid. Then P is a poset with an antitone involution
if and only if D(P) satisfies the identities

x′′ ≈ x, (4.1)

(x⊓ y)′⊓ y′ ≈ y′. (4.2)

Proof. Condition (4.1) is evident by definition. Since {x⊓ y | x ∈ P} = L(y), the
following are equivalent:

(4.2),

x′⊓ y′ = y′ for all x,y ∈ P with x ≤ y,

y′ ≤ x′ for all x,y ∈ P with x ≤ y,
′ is antitone.

□

Now we characterize pseudo-Kleene posets by identities of an assigned commut-
ative meet-directoid.

Theorem 3. Let P=(P,≤, ′) be a downward directed poset with a unary operation
and D(P) an assigned meet-directoid. Then P is a pseudo-Kleene poset if and only if
D(P) satisfies identities (4.1) – (4.3):

(z⊓ x)⊓ (z⊓ x′)≤ (w⊔ y)⊔ (w⊔ y′). (4.3)
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Proof. It is easy to check that (4.3) is equivalent to L(x,x′) ≤ U(y,y′) for all
x,y ∈ P. Applying Lemma 3 completes the proof. □

In fact, condition (4.3) is not an identity, but it can easily be rewritten as an identity.
Hence we can call it an identity. Similarly, we proceed in the following.

In order to characterize Kleene posets in a similar way we need to capture dis-
tributivity of posets in the language of commutative meet-directoids.

Theorem 4. Let P=(P,≤, ′) be a downward directed poset with a unary operation
and D(P) an assigned meet-directoid. Then P is a Kleene poset if and only if D(P)
satisfies identities (4.1) – (4.3) and the following implication:

w⊓
(
(t ⊔ x)⊔ (t ⊔ y)

)
= w⊓ z = w and s⊔

(
(t ⊓ x)⊓ (t ⊓ z)

)
= s⊔

(
(t ⊓ y)⊓ (t ⊓ z)

)
= s for all t ∈ P imply w ≤ s.

(4.4)

Proof. Since

U(x,y) = {(t ⊔ x)⊔ (t ⊔ y) | t ∈ P},
w⊓u = w is equivalent to w ∈ L(u),

w⊓
(
(t ⊔ x)⊔ (t ⊔ y)

)
= w⊓ z = w for all t ∈ P is equivalent to w ∈ L(U(x,y),z).

Further, since

L(x,z) = {(t ⊓ x)⊓ (t ⊓ z) | t ∈ P},
L(y,z) = {(t ⊓ y)⊓ (t ⊓ z) | t ∈ P},
s⊔u = s is equivalent to s ∈U(u),

s ⊔
(
(t ⊓ x) ⊓ (t ⊓ z)

)
= s ⊔

(
(t ⊓ y) ⊓ (t ⊓ z)

)
= s for all t ∈ P is equivalent to

s ∈U
(
L(x,z),L(y,z)

)
. Hence the following are equivalent:

(4.4),

w ∈ L
(
U(x,y),z

)
and s ∈U

(
L(x,z),L(y,z)

)
imply w ≤ s,

L
(
U(x,y),z

)
⊆ LU

(
L(x,z),L(y,z)

)
,

P is distributive.

Applying Theorem 3 completes the proof. □

Let us note that the class of all directoids assigned to downward directed pseudo-
Kleene posets forms a variety due to Theorem 3. As shown in [6] and [5], every
variety of directoids with an antitone involution is congruence distributive.

Definition 2. A strong pseudo-Kleene poset is a poset (P,≤, ′) with an antitone
involution satisfying

x ∥ y implies L(x,x′) = L(y,y′).

Lemma 4. Let P = (P,≤, ′) be a strong pseudo-Kleene poset. Then P is a pseudo-
Kleene poset.
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Proof. Let a,b ∈ P.
If a ≤ b then L(a,a′)≤ a ≤ b ≤U(b,b′).
If b ≤ a then a′ ≤ b′ and hence L(a,a′)≤ a′ ≤ b′ ≤U(b,b′).
If a ∥ b then L(a,a′) = L(b,b′)≤ b ≤U(b,b′). □

Example 5. The poset visualized in Figure 6 is a strong pseudo-Kleene poset which
is not a lattice and hence not a pseudo-Kleene algebra:
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We are going to determine the class of directoids assigned to strong pseudo-Kleene
posets.

Theorem 5. Let P=(P,≤, ′) be a downward directed poset with a unary operation
and D(P) an assigned meet-directoid. Then P is a strong pseudo-Kleene poset if and
only if D(P) satisfies identities (4.1) and (4.2) and the following implication:

x ̸= x⊓ y ̸= y and x⊓ z = x′⊓ z = z imply y⊓ z = y′⊓ z = z. (4.5)
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Proof. Since

x⊓ y = x is equivalent to x ≤ y,
x⊓ y = y is equivalent to y ≤ x

we have that x ̸= x⊓ y ̸= y is equivalent to x ∥ y. Further, since

x⊓ z = x′⊓ z = z is equivalent to z ∈ L(x,x′),

y⊓ z = y′⊓ z = z is equivalent to z ∈ L(y,y′),

the following are equivalent:

(4.5),

x ∥ y and z ∈ L(x,x′) imply z ∈ L(y,y′),

x ∥ y implies L(x,x′)⊆ L(y,y′),

x ∥ y implies L(x,x′) = L(y,y′).

Applying Lemma 3 completes the proof. □

The following concept will be used in the sequel.

Definition 3. A strict pseudo-Kleene poset is a bounded poset (P,≤, ′) with an
antitone involution satisfying

x,y ̸= 0,1 implies L(x,x′) = L(y,y′).

A strict Kleene poset is a distributive strict pseudo-Kleene poset.

Obviously, every strict pseudo-Kleene poset is a strong pseudo-Kleene poset and
hence a pseudo-Kleene poset according to Lemma 4, but not conversely (see Ex-
ample 5 where L(a,a′) = a ̸= b = L(b,b′)).

Of course, every Boolean poset, i.e. every bounded distributive poset where the
antitone involution is a complementation (i.e. L(x,x′)≈ {0} and U(x,x′) = {1}), is a
strict Kleene poset. In the next example we show a strict Kleene poset which is not
Boolean.

Example 6. The poset visualized in Figure 7 is a strict Kleene poset which is not
a lattice and hence not a Kleene algebra.

Analogously as above, also strict pseudo-Kleene posets and strict Kleene posets
can be characterized by means of properties of assigned meet-directoids.
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Theorem 6. Let P=(P,≤, ′) be a downward directed poset with a unary operation
and D(P) an assigned meet-directoid. Then the following hold:

(i) P is a strict pseudo-Kleene poset if and only if D(P) satisfies identities (4.1) and
(4.2) and the following implication:

x,y /∈ {0,1} and x⊓ z = x′⊓ z = z imply y⊓ z = y′⊓ z = z. (4.6)

(ii) P is a strict Kleene poset if and only if D(P) satisfies identities (4.1) and (4.2)
and implications (4.4) and (4.6).

Proof. (i) The following are equivalent:

(4.6),

x,y /∈ {0,1} and z ∈ L(x,x′) imply z ∈ L(y,y′),

x,y /∈ {0,1} implies L(x,x′)⊆ L(y,y′),

x,y /∈ {0,1} implies L(x,x′) = L(y,y′).

Applying Lemma 3 completes the proof.
(ii) This follows from (i) and the proof of Theorem 4.

□
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5. RESIDUATION IN KLEENE POSETS

In the study of non-classical logics we prefer to have a logical connective im-
plication which enables deduction, i.e. to derive new propositions from given ones.
The question arises how to define implication in the logic based on pseudo-Kleene
posets and Kleene posets. Usually implication is considered to be well-behaved if
it is related with conjunction by means of adjointness. For a systematic overview
on residuated structures we recommend the monographs [3] and [9]. These mono-
graphs contain both the basic concepts and results on residuated structures as well as
applications to the formalization of substructural and fuzzy logics.

In the following we will study residuation in strict pseudo-Kleene posets. Contrary
to the case of lattices, ⊙ and → cannot be binary operations, they are only operators,
i.e. mappings from P2 to 2P. We extend ⊙ to (2P)2 by defining

A⊙B :=
⋂

x∈A,y∈B

(x⊙ y)

for all A,B ⊆ P.

Definition 4. A Kleene residuated poset is an ordered six-tuple (P,≤,⊙,→,0,1),
where (P,≤,0,1) is a bounded strict pseudo-Kleene poset and ⊙ and → are mappings
from P2 to 2P satisfying the following conditions for all x,y,z ∈ P:

• x⊙ y ≈ y⊙ x,
• x⊙1 ≈ 1⊙ x ≈ L(x),
• (x⊙ y)⊙ z ≈ x⊙ (y⊙ z),
• x⊙ y ≤ z if and only if x ≤ y → z (adjointness).

Let (P,≤, ′) be a poset with an antitone involution. Define mappings ⊙ and →
from P2 to 2P as follows:

x⊙ y :=
{

0 if x ≤ y′,
L(x,y) otherwise x → y :=

{
1 if x ≤ y,
U(x′,y) otherwise (5.1)

Theorem 7. Let P = (P,≤, ′,0,1) be a bounded strict Kleene poset satisfying

L(x,y) ̸= 0 for all x,y ∈ P\{0} (5.2)

and let ⊙ and → be defined by (5.1). Then (P,≤,⊙,→,0,1) is a Kleene residuated
poset.

Proof. Let a,b,c ∈ P. One can easily see that x⊙0 ≈ 0⊙ x ≈ 0. Since 0 ∈ L(x,y)
for all x,y ∈ P and therefore 0 ∈ x⊙y for all x,y ∈ P, we have 0 ∈ a⊙b and 0 ∈ b⊙c
and hence (a⊙b)⊙c = 0 = a⊙ (b⊙c) proving associativity of ⊙. Because a ≤ b′ is
equivalent to b ≤ a′ and, moreover, L(a,b) = L(b,a), ⊙ is commutative. Further,

if a = 0 then a⊙1 = 0 = L(0) = L(a),

if a ̸= 0 then a⊙1 = L(a,1) = L(a).
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Now x⊙ 1 ≈ 1⊙ x ≈ x follows by commutativity of ⊙. We consider the following
cases:

• a ≤ b′ and b ≤ c.
Then a⊙b = 0 ≤ c and a ≤ 1 = b → c.

• a ≤ b′ and b ̸≤ c.
Then a⊙b = 0 ≤ c and a ≤ b′ ≤U(b′,c) = b → c.

• a ̸≤ b′ and b ≤ c.
Then a⊙b = L(a,b)≤ b ≤ c and a ≤ 1 = b → c.

• a ̸≤ b′, b ̸≤ c and a = 1.
Then a⊙b = L(a,b) = L(1,b) = L(b) ̸≤ c. Moreover, b,c′ ̸= 0 and therefore,
using De Morgan’s laws and (5.2), b → c = U(b′,c) =

(
L(b,c′)

)′ ̸= 0′ = 1
whence a = 1 ̸≤ b → c.

• a ̸≤ b′, b ̸≤ c and b = 1.
Then the following are equivalent:

a⊙b ≤ c,

L(a,b)≤ c,

L(a,1)≤ c,

L(a)≤ c,
a ≤ c,

a ≤U(c),

a ≤U(0,c),

a ≤U(b′,c),
a ≤ b → c.

• a ̸≤ b′, b ̸≤ c and c = 0.
Then a,b ̸= 0 and therefore a⊙ b = L(a,b) ̸= 0 according to (5.2) whence
a⊙b ̸≤ c. Moreover, a ̸≤U(b′) =U(b′,0) =U(b′,c) = b → c.

• a ̸≤ b′, b ̸≤ c, a,b ̸= 1 and c ̸= 0.
Then a,b,c ̸= 0,1. If a⊙b ≤ c then, by distributivity of P and (5.2),

b → c =U(b′,c)⊆U(b′,a⊙b) =U
(
b′,L(a,b)

)
=UL

(
U(b′,a),U(b′,b)

)
=UL

(
U(b′,a),U(a′,a)

)
⊆ULU(a) =U(a)

and hence a ≤ b → c. If, conversely, a ≤ b → c then, again by distributivity
of P and (5.2),

a⊙b = L(a,b)⊆ L(b → c,b) = L
(
U(b′,c),b

)
= LU

(
L(b′,b),L(c,b)

)
= LU

(
L(c′,c),L(c,b)

)
⊆ LUL(c) = L(c)

and hence a⊙b ≤ c.
This shows that in any case a⊙b ≤ c is equivalent to a ≤ b → c. □
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Remark 1. It seems to be impossible to generalize Theorem 7 in such a way that
the assumption of distributivity is replaced by the weaker assumption of modularity.
If, e.g., L(x,y) and U(x′,y) in (5.1) are replaced by L

(
U(x,y′),y

)
and U

(
x′,L(x,y)

)
,

respectively, then adjointness cannot be proved in the last case considered in the proof
of Theorem 7.

As it is usual in logics satisfying the double negation law, the connectives con-
junction (i.e. ⊙) and implication (i.e. →) can be derived one by the other by means
of involution.

Theorem 8. Let P = (P,≤, ′,0,1) be a bounded poset with an antitone involution,
⊙ and → defined by (5.1) and a,b ∈ P. Then the following hold:

(i) a⊙b = (a → b′)′,
(ii) a → b = (a⊙b′)′.

If, moreover, P satisfies (5.2) then
(iii) a⊙b = 0 if and only if a ≤ b′,
(iv) a → b = 1 if and only if a ≤ b.

If, moreover, P is a strict Kleene poset (not necessarily satisfying (5.2)) then
(v) If a ≤ b and L(a′,b) = 0 then a = b.

Proof. (i)

If a ≤ b′ then a⊙b = 0 = 1′ = (a → b′)′,

if a ̸≤ b′ then a⊙b = L(a,b) =
(
U(a′,b′)

)′
= (a → b′)′ according to De Morgan’s

laws.

(ii) According to (i) we have a → b = (a → b′′)′′ = (a⊙b′)′.
(iii)

If a ≤ b′ then a⊙b = 0 by definition,

if a ̸≤ b′ then a,b ̸= 0 and hence a⊙b = L(a,b) ̸= 0 according to (5.2).

(iv) According to (ii) and (iii) the following are equivalent:

a → b = 1,

(a⊙b′)′ = 1,

a⊙b′ = 0,

a ≤ b′′,
a ≤ b.

(v)

If a = 0 then L(b) = L(1,b) = L(a′,b) = 0 and hence a = 0 = b,
if a = 1 then b = 1 because of a ≤ b and hence a = 1 = b,
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if b = 0 then a = 0 because of a ≤ b and hence a = 0 = b,

if b = 1 then L(a′) = L(a′,1) = L(a′,b) = 0 and hence a′ = 0, i.e. a = 1 = b,

if a,b ̸= 0,1 then because of the distributivity of P and U(b′,b)⊆U(b) we have

U(a) =U(0,a) =U
(
L(a′,b),a

)
=UL

(
U(a′,a),U(b,a)

)
=UL

(
U(b′,b),U(b)

)
=ULU(b) =U(b) which implies a = b.

□

6. TWIST-PRODUCT CONSTRUCTION

Now we show how to construct pseudo-Kleene posets and Kleene posets from
posets and distributive posets, respectively. We embed an arbitrary given poset into a
pseudo-Kleene poset by using the so-called twist-product construction known already
for distributive lattices.

The concept of a twist-product was introduced recently. It is broadly used in al-
gebra and lattice theory. As a source for this construction we mention the paper [2].
For our purposes, we modify this construction for posets as follows.

For an arbitrary poset Q = (Q,≤) and an arbitrary element a of Q we define

Pa(Q) := {(x,y) ∈ Q2 | L(x,y)≤ a ≤U(x,y)}.
Let p1 and p2 denote the first and second projection from Pa(Q) to Q, respectively.
In Pa(Q) we introduce a binary relation ≤ and a unary operation ′ as follows:

(x,y)≤ (z,v) :⇔ x ≤ z and v ≤ y,

(x,y)′ := (y,x).

Put Pa(Q) := (Pa(Q),≤, ′).

Theorem 9. Let Q = (Q,≤) be a poset and a ∈ Q. Then the following hold:
(i) Pa(Q) is a pseudo-Kleene poset with fixed point (a,a),

(ii) the mapping x 7→ (x,a) is an embedding of Q into Pa(Q),
(iii) Q is distributive if and only if Pa(Q) is a Kleene poset.

Proof. Let (b,c),(d,e),( f ,g) ∈ Pa(Q) and h, i ∈ Q. We have

L(A) = L
(

p1(A)
)
×U

(
p2(A)

)
for all A ⊆ Pa(Q), (6.1)

U(A) =U
(

p1(A)
)
×L

(
p2(A)

)
for all A ⊆ Pa(Q). (6.2)

(6.1) can be seen as follows: For A ⊆ Pa(Q) the following are equivalent:

(h, i) ∈ L(A),

(h, i)≤ (x,y) for all (x,y) ∈ A,

(h ≤ x and y ≤ i) for all (x,y) ∈ A,(
h ≤ x for all (x,y) ∈ A

)
and

(
y ≤ i for all (x,y) ∈ A

)
,
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h ≤ x for all x ∈ p1(A)

)
and

(
y ≤ i for all y ∈ p2(A)

)
,

h ∈ L
(

p1(A)
)

and i ∈U
(

p2(A)
)
,

(h, i) ∈ L
(

p1(A)
)
×U

(
p2(A)

)
.

(6.2) follows in an analogous way.

(i) Clearly, Pa(Q) is a poset with an antitone involution and fixed point (a,a).
According to (6.1), (6.2) and the definition of Pa(Q) we conclude

L
(
(b,c),(c,b)

)
= L(b,c)×U(b,c)≤ (a,a)≤U(d,e)×L(d,e) =U

(
(d,e),(e,d)

)
.

(ii) We have (h,a),(i,a) ∈ Pa(Q). Moreover, (h,a)≤ (i,a) if and only if h ≤ i.
(iii) Using (6.1) and (6.2) we obtain

L
(

U
(
(b,c),(d,e)

)
,( f ,g)

)
= L

(
U(b,d)×L(c,e),( f ,g)

)
= L

(
U(b,d), f

)
×U

(
L(c,e),g

)
,

LU
(

L
(
(b,c),( f ,g)

)
,L
(
(d,e),( f ,g)

))
= LU

(
L(b, f )×U(c,g),L(d, f )×U(e,g)

)
= L

(
U
(
L(b, f ),L(d, f )

)
×L

(
U(c,g),U(e,g)

))
= LU

(
L(b, f ),L(d, f )

)
×UL

(
U(c,g),U(e,g)

)
.

Hence

L
(

U
(
(b,c),(d,e)

)
,( f ,g)

)
= LU

(
L
(
(b,c),( f ,g)

)
,L
(
(d,e),( f ,g)

))
is equivalent to

L
(
U(b,d), f

)
×U

(
L(c,e),g

)
= LU

(
L(b, f ),L(d, f )

)
×UL

(
U(c,g),U(e,g)

)
,

i.e. to

L
(
U(b,d), f

)
= LU

(
L(b, f ),L(d, f )

)
and U

(
L(c,e),g

)
=UL

(
U(c,g),U(e,g)

)
.

Here b,d, f can be arbitrary elements of Q since (b,a),(d,a),( f ,a)∈Pa(Q) for every
b,d, f ∈ Q. □

It is well-known (see e.g. [11]) that for an arbitrary distributive lattice Q the con-
structed poset Pa(Q) is a Kleene algebra. We have shown that this construction can
be extended to arbitrary posets.

Example 7. If Q is the poset (Q,≤) visualized in Figure 8:
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then Pa(Q) is the pseudo-Kleene poset shown in Figure 9:
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which is neither a pseudo-Kleene algebra nor a Kleene poset since

L
(

U
(
(a,c),(0,a)

)
,(a,b)

)
= L

(
U
(
(a,a)

)
,(a,b)

)
= L

(
(a,a),(a,b)

)
= {(0,b),(a,b)}

̸= {(0,b)}= L
(
Pa(Q)\{(0,c),(a,c),(b,c)}

)
= LU

(
(0,b)

)
= LU

(
L
(
(a,c),(a,b)

)
,L
(
(0,a),(a,b)

))
.
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Palacký University Olomouc, Faculty of Science, Department of Algebra and Geometry, 17. listo-

padu 12, 771 46 Olomouc, Czech Republic
E-mail address: ivan.chajda@upol.cz

Helmut Länger
(Corresponding author) TU Wien, Faculty of Mathematics and Geoinformation, Institute of Dis-

crete Mathematics and Geometry, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
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