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Abstract. Matrix factorizations have been widely used in recent years, especially in engineering
problems, to facilitate performance-requiring computations. In this paper, we investigate some
interesting relationships between some combinatorial matrices such as Pascal matrix, Stirling
matrices and k-order Fibonacci matrices. We give factorizations and inverse factorizations of
the Pascal and Stirling matrices via k-order Fibonacci matrices. Moreover, we derive various
combinatorial properties by using relationships between these matrices. Finally, compared to
previous studies, we present more general results for specific values of k.
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1. INTRODUCTION

The Pascal matrix arises in linear algebra, probability and combinatorial analysis.
Until now, several researchers have studied the factorizations, generalizations and
eigenvalues of some combinatorial matrices [1, 2, 4, 6, 11, 13–15]. In [2], the authors
produced some combinatorial identities and an existence theorem for diophantine
equation systems by applying linear algebra. Lee et al. gave a factorization of the
Pascal matrix via Fibonacci matrix and they obtained some combinatorial identities
by using Pascal matrix, the Stirling matrices of the first kind and the second kind and
the Fibonacci matrix [11]. In another way, Zhang and Wang presented a factorization
of the Pascal matrix and they found various combinatorial properties with the help
of the Fibonacci matrix [15]. For more information about Pascal matrices, Stirling
matrices and properties of the binomial coefficients, the reader is referred to book
such as [5].

For any positive integer n, the n×n lower triangular Pascal matrix Pn = [pi j] and
its inverse P−1

n = [p′i j] are defined by

pi j =


(

i−1
j−1

)
if i ⩾ j,

0 otherwise,
p′i j =

 (−1)i− j
(

i−1
j−1

)
if i ⩾ j,

0 otherwise,
(1.1)
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where the binomial coefficient
( i

j

)
counts the number of lattice paths from (0,0) to

(i− j, j) with steps (1,0) and (0,1).
For example

P5 =


1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

 and P−1
5 =


1 0 0 0 0
−1 1 0 0 0
1 −2 1 0 0
−1 3 −3 1 0
1 −4 6 −4 1

 .
For nonnegative integers n,k and n ⩾ k ⩾ 0, the Stirling numbers of the first kind

s(n,k) and of the second kind S(n,k), which are the coefficients of polynomials that
commonly arise in combinatorial problems, are defined as the coefficients in the fol-
lowing expansions (see [3]):

[x]n =
n

∑
k=0

s(n,k)xk and xn =
n

∑
k=0

S(n,k)[x]k

where

[x]n =
{

x(x−1) · · ·(x−n+1) if n ⩾ 1,
1 if n = 0.

Moreover, the S(n,k) satisfy the following formula

S(n,k) =
n−1

∑
l=k−1

(
n−1

l

)
S(l,k−1). (1.2)

For the Stirling numbers s(i, j) and S(i, j) of the first kind and of the second kind,
respectively, define S

(1)
n = [si j] and S

(2)
n = [Si j] to be the n×n matrices by

si j =

{
s(i, j) if i ⩾ j,

0 otherwise, and Si j =

{
S(i, j) if i ⩾ j,

0 otherwise.

We call the matrices S
(1)

n and S
(2)

n Stirling matrix of the first kind and of the second
kind, respectively (see [5]). For example,

S
(1)

5 =


1 0 0 0 0
−1 1 0 0 0
2 −3 1 0 0
−6 11 −6 1 0
24 −50 35 −10 1

 and S
(2)

5 =


1 0 0 0 0
1 1 0 0 0
1 3 1 0 0
1 7 6 1 0
1 15 25 10 1

 .
The Fibonacci numbers are one of the most well-known numbers, and have many

important applications to a wide variety of research areas such as mathematics, com-
puter science, physics, biology, and statistics [8]. The Fibonacci numbers, {Fn}∞

n=0,
are the terms of the sequence 0,1,1,2,3,5, . . . where each term is the sum of the
two previous terms, and starting with the initial values F0 = 0 and F1 = 1. Up to
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this time, some researchers have studied the generalizations and applications of the
k-generalized Fibonacci numbers [7, 9, 12].

For n > k ⩾ 2, an interesting generalization of the Fibonacci sequence, k-order
Fibonacci sequence, k-order Fibonacci sequence {g(k)n}∞

n=0, were defined in [9] by

g(k)n = g(k)n−1 +g(k)n−2 + · · ·+g(k)n−k,

with the initial conditions g(k)0 = · · · = g(k)k−2 = 0,g(k)k−1 = g(k)k = 1. For ex-
ample, if k = 2, then {g(2)n}∞

n=0 is the Fibonacci sequence, {Fn}∞
n=0 and if k = 3, then

{g(3)n}∞
n=0 is the 3-Fibonacci sequence, namely the Tribonacci sequence {Tn}∞

n=0.
For any positive integer n, the n × n k-order Fibonacci matrix, F

(k)
n = [ fi j], is

defined by [10]

fi j =

{
gi− j+1 if i− j ⩾ 0,

0 otherwise.
(1.3)

where gt = g(k)t+k−2, 1 ≤ t ≤ n. Here we note that fn1 = gn and each column of
F

(k)
n is the vector of k-order Fibonacci numbers. For example, the Fibonacci and

4-Fibonacci matrices are as follows:

F
(2)
6 =


1 0 0 0 0 0
1 1 0 0 0 0
2 1 1 0 0 0
3 2 1 1 0 0
5 3 2 1 1 0
8 5 3 2 1 1

 and F
(4)
6 =


1 0 0 0 0 0
1 1 0 0 0 0
2 1 1 0 0 0
4 2 1 1 0 0
8 4 2 1 1 0
15 8 4 2 1 1

 .

From (1.3), the matrix F
(k)
n is lower triangular and det

(
F

(k)
n

)
= 1 ̸= 0. Thus, the

matrix F
(k)
n has an inverse. Therefore, for any positive integer n, the n× n inverse

k-order Fibonacci matrix,
(
F

(k)
n

)−1
= [ f ′i j], is defined by [10]

f ′i j =

 1 if i = j,
−1 if i− k ⩽ j ⩽ i−1,
0 otherwise.

(1.4)

The relations between the Pascal matrix, Stirling matrices and Fibonacci matrix
motivate us to study a more generalized situation. Thus, motivated by the above
cited works, we give the factorizations of the Pascal and Stirling matrices via k-order
Fibonacci matrices. We derive various generalized combinatorial identities by using
these matrices. As compared to earlier works [11],[15] and [14], we give k-extended
results.

2. FIRST FACTORIZATION OF THE PASCAL MATRIX

In this section, we consider the first factorization of the Pascal matrix by means of
the k-order Fibonacci matrices.
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Definition 1. For n ∈ N, the n×n matrix L
(k)

n = [li j] is defined by

li j =

(
i−1
j−1

)
−

k

∑
t=1

(
i− t −1

j−1

)
. (2.1)

By Definition 1, we observe that l11 = 1, l1 j = 0, for j ⩾ 2, l21 = 0, l22 = 1, l2 j = 0,
for j ⩾ 3, l31 =−1, l32 = 1, l33 = 1, l3 j = 0, for j ⩾ 4 and

li1 =
{

2− i, 1 ⩽ i ⩽ k,
1− k, i > k. (2.2)

Moreover, for i, j ⩾ 2 we have the recursion li j = li−1, j−1 + li−1, j. In particular, if we
take n = 8 and k = 5, we get

L
(5)

8 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
−1 1 1 0 0 0 0 0
−2 0 2 1 0 0 0 0
−3 −2 2 3 1 0 0 0
−4 −5 0 5 4 1 0 0
−4 −9 −5 5 9 5 1 0
−4 −13 −14 0 14 14 6 1


.

By virtue of the equations (1.1), (1.3) and (2.1), we can derive the following theorem.

Theorem 1. Let L
(k)

n be the matrix as in (2.1). For the Pascal matrix Pn and the
k-order Fibonacci matrix F

(k)
n , we have

Pn = F
(k)
n L

(k)
n .

Proof. Since the matrix F
(k)
n is invertible, we will prove that

(
F

(k)
n

)−1
Pn =

L
(k)

n .

Let
(
F

(k)
n

)−1
= [ f ′i j] be the inverse of F

(k)
n . Since f ′1 j = 0 for j ⩾ 2, f ′11 p11 = 1

and l11 = 1=∑
n
t=1 f ′1t pt1. Since p1 j = 0 and f ′1 j = 0 for j ⩾ 2,∑n

t=1 f ′1t pt j = 0= l1 j for
j ⩾ 2. Since f ′2 j = 0 for j ⩾ 3, f ′21 =−1 and f ′22 = 1, we have ∑

n
t=1 f ′2t pt1 = l21 = 0.

By virtue of (1.4), we have, for i = 3,4, . . . ,n,∑n
t=1 f ′it pt1 = li1.

Now, we consider i ⩾ 3 and j ⩾ 2. From (1.4) and the recurrence relation of li j,

we have ∑
n
t=1 f ′it pt j = li j. Therefore, we have

(
F

(k)
n

)−1
Pn = L

(k)
n , and the proof is

completed. □

By virtue of Theorem 1, we have the following Corollary.
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Corollary 1. For 1 ⩽ r ⩽ n, we have(
n−1
r−1

)
=

n

∑
t=r

gn−t+1

[(
t −1
r−1

)
−

k

∑
s=1

(
t − s−1

r−1

)]
. (2.3)

In particular, if r = 1 then

gn = 1+
k

∑
i=2

(i−2)gn−i+1 +(k−1)
n

∑
i=k+1

gn−i+1.

Proof. Since Pn = F
(k)
n L

(k)
n , g1 = 1,g2 = 1 and li j = 0 for i ⩽ j−1, we have(

n−1
r−1

)
= pnr = gnl1r +gn−1l2r +gn−2l3r + · · ·+g3ln−2,r +g2ln−1,r +g1lnr.

From (2.2) and Theorem 1, we know l11, l21, l22, li1 and the recurrence li j = li−1, j−1
+li−1, j. Thus we obtain

pnr =
n

∑
t=r

gn−t+1lt,r,

which is equal to (2.3). In particular, if we take r = 1, we have

pn1 = gnl11 +gn−1l21 +gn−2l31 + · · ·+gn−klk+1,1 + · · ·+g1ln1.

By virtue of (2.2), we get

1 = gn +(0)gn−1 +(−1)gn−2 +(−2)gn−3 +(−3)gn−4 + · · ·+(2− k)gn−k+1

+(1− k)
(
gn−k +gn−k+1 + · · ·+g2 +g1

)
.

By arranging the above expressions, we find that

gn = 1+
k

∑
i=2

(i−2)gn−i+1 +(k−1)
n

∑
i=k+1

gn−i+1.

Hence the proof is completed. □

From (2.1), we can find the inverse of the matrix
(
L

(k)
n

)−1
= [l′i j] as

l′i j =
i

∑
t= j

(−1)i+t
(

i−1
t −1

)
gt− j+1. (2.4)

We observe that l′11 = 1, l′1 j = 0, for j ⩾ 2, l′21 = 0, l′22 = 1, l′2 j = 0, for j ⩾ 3 and

the recursion l′i j = l′i−1, j−1− l′i−1, j holds for i, j ⩾ 2. Since F
(k)
n =Pn

(
L

(k)
n

)−1
, we

have
fnr = pn1l′1r + pn2l′2r + pn3l′3r + · · ·+ pn,n−1l′n−1,r + pn,nl′nr.
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From (1.1) and (2.4), we get

gn−r+1 =
n

∑
t=r

[(
n−1
t −1

)[ t

∑
s=r

(−1)t+s
(

t −1
s−1

)
gs−r+1

]]
.

In particular, if r = 1, we obtain

gn =
n

∑
t=1

[(
n−1
t −1

)[ t

∑
s=1

(−1)t+s
(

t −1
s−1

)
gs

]]
.

Let In be the identity matrix of order n, and let Lk be the k× k lower triangular
matrix as follows:

Lk =



1 0 0 0 · · · 0
1 1 0 0 · · · 0
1 0 1 0 · · · 0
1 0 0 1 · · · 0
...

...
...

. . . . . .
...

1 0 0 · · · 0 1


Set Sl = Lk+1⊕Il, l = 1,2, . . . Further we define n by n matrices F

(k)
n = [1]⊕F

(k)
n−1,

G1 = In,G2 = In−2 ⊕L2, G3 = In−3 ⊕L3, . . . , Gk = In−k ⊕Lk Gk+1In−k−1 ⊕Lk+1, and,
for k+ 2 ⩽ l ⩽ n,Gl = In−l ⊕ Sl−k−1. In particular S0 = Lk+1 and Gn = Sn−k−1. In
[10], the authors gave the factorization of the k-order Fibonacci matrix as: F

(k)
n

= G1G2G3 · · ·Gn.
For k ⩾ 2, we define the n×n matrices H(k)

n and H i by

H(2)
n =



1 0 0 0 · · · 0
0 1 0 0 · · · 0
−1 1 1 0 · · · 0
−1 1 1 1 · · · 0

...
...

...
. . . . . .

...
−1 1 1 · · · 1 1


, H(k)

n =



1 0 0 0 0 0 · · · 0
0 1 0 0 0 0 · · · 0
−1 1 1 0 0 0 · · · 0
−2 1 1 1 0 0 · · · 0

...
...

...
...

...
... · · ·

...
1− k 1 1 1 1 1 · · · 0

...
...

...
. . . . . . . . . . . .

...
1− k 1 1 · · · 1 1 1 1


,

H i = In−i ⊕H(k)
i . From the definition of H i, we have H1 = H2 = In. Thus, we have

the following lemma by the definition of the matrix product.

Lemma 1. The matrix L
(k)

n can be factored by the H i’s as follows:

L
(k)

n = HnHn−1Hn−2 · · ·H2H1.

By virtue of Lemma 1, we have the following theorem.
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Theorem 2. For the n×n Pascal matrix, Pn, we have

Pn =
n

∏
i=1

Gi

n

∏
i=1

Hn−i+1.

3. SECOND FACTORIZATION OF THE PASCAL MATRIX

In this section, we consider the second factorization of the Pascal matrix by means
of the k-order Fibonacci matrix.

Definition 2. For n ∈ N, the n×n matrix R
(k)
n = [ri j] is defined by

ri j =

(
i−1
j−1

)
−

k

∑
t=1

(
i−1

j+ t −1

)
. (3.1)

From Definition 2, we observe that r11 = 1, r1 j = 0, for j ⩾ 2, r21 = 0, r22 = 1,
r2 j = 0, for j ≥ 3, r31 =−2, r32 = 1, r33 = 1, r3 j = 0, for j ≥ 4 and

ri1 =

{
2−2i−1, 2 ⩽ i ⩽ k+1,

1−∑
k
t=1
(i−1

t

)
, i > k+1.

Moreover, for i, j ⩾ 2 we have the recursion ri j = ri−1, j−1 + ri−1, j. For example, if
we take n = 8 and k = 5, we get

R
(5)
8 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
−2 1 1 0 0 0 0 0
−6 −1 2 1 0 0 0 0
−14 −7 1 3 1 0 0 0
−30 −21 −6 4 4 1 0 0
−61 −51 −27 −2 8 5 1 0
−118 −112 −78 −29 6 13 6 1


.

By virtue of the equations (1.1), (1.3) and (3.1), we can derive the following theorem.

Theorem 3. Let R
(k)
n be the matrix as in (3.1). For the Pascal matrix Pn and the

k-order Fibonacci matrix F
(k)
n , we have

Pn = R
(k)
n F

(k)
n .

Proof. Since the matrix F
(k)
n is invertible, we will prove that Pn

(
F

(k)
n

)−1

= R
(k)
n .

Let
(
F

(k)
n

)−1
= [ f ′i j] be the inverse of F

(k)
n . Since f ′1 j = 0 for j ⩾ 2, p11 f ′11 = 1

and r11 = 1 = ∑
n
t=1 p1t f ′t1. Since p1 j = 0 and f ′1 j = 0 for j ⩾ 2,∑n

t=1 p1t f ′t j = 0 = r1 j

for j ⩾ 2. Since f ′2 j = 0 for j ⩾ 3, f ′21 = −1 and f ′22 = 1, we have ∑
n
t=1 p2t f ′t1 = r21

= 0. By virtue of (1.4), we have, for i = 3,4, . . . ,n,∑n
t=1 pit f ′t1 = ri1.
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Now, we consider i ⩾ 3 and j ⩾ 2. From (1.4) and the recurrence relation of ri j,

we have ∑
n
t=1 pit f ′t j = ri j. Therefore, we have Pn

(
F

(k)
n

)−1
= R

(k)
n , and the proof is

completed. □

By virtue of Theorem 3, we have the following Corollary.

Corollary 2. For 1 ⩽ s ⩽ n, we have(
n−1
s−1

)
=

n

∑
t=s

[(
n−1
t −1

)
−

k

∑
m=1

(
n−1

t +m−1

)]
gt−s+1. (3.2)

Proof. Since Pn = R
(k)
n F

(k)
n , we have pns = ∑

n
t=s rn,tgt−s+1 which is equal to

(3.2). In particular, if we take s = 1, we have

pn1 = rn1g1 + rn2g2 + rn3g3 + · · ·+ rn,n−1gn−1 + rn,ngn

By virtue of (3.1), we get

1 = g1

[(
n−1

0

)
−
(

n−1
1

)
−·· ·−

(
n−1

k

)]
+g2

[(
n−1

1

)
−
(

n−1
2

)
−·· ·−

(
n−1
k+1

)]
+ · · ·

+gn−1

[(
n−1
n−2

)
−
(

n−1
n−1

)]
+gn

[(
n−1
n−1

)]
.

By simplifying the above expressions, we find that

gn = 1− (n−2)gn−1 −
(

n2 −5n+2
2

)
gn−2 −

n−3

∑
t=1

[(
n−1
t −1

)
−

k

∑
m=1

(
n−1

t +m−1

)]
gt .

Hence the proof is completed. □

From (3.1), we can find the inverse of the matrix
(
R

(k)
n

)−1
= [r′i j] as

r′i j =
i

∑
t= j

(−1) j+t
(

t −1
j−1

)
gi−t+1. (3.3)

Since F
(k)
n =

(
R

(k)
n

)−1
Pn, we have

fns = r′n1 p1s + r′n2 p2s + r′n3 p3s + · · ·+ r′n,n−1 pn−1,s + r′nn pns.

By virtue of (1.1) and (3.3), we get

gn−s+1 =
n

∑
t=s

[[ n

∑
m=t

(−1)t+m
(

m−1
t −1

)
gn−m+1

](
t −1
s−1

)]
.
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In particular, if s = 1 then,

gn =
n

∑
t=1

[ n

∑
m=t

(−1)t+m
(

m−1
t −1

)
gn−m+1

]
.

For k ⩾ 2, we define the n×n matrices W (k)
n and W i by

W (k)
n =



1 0 0 0 0 0 0 · · · 0
0 1 0 0 0 0 0 · · · 0
−2 1 1 0 0 0 0 · · · 0
−6 1 1 1 0 0 0 · · · 0

...
...

...
...

...
...

... · · ·
...

2−2k 1 1 1 1 1 0 · · · 0
1−∑

k
t=1
(k+1

t

)
1 1 1 1 1 1 · · · 0

...
...

...
. . . . . . . . . . . . . . .

...
1−∑

k
t=1
(n−1

t

)
1 1 · · · 1 1 1 1 1


,

W i = In−i ⊕W (k)
i . From the definition of W i, we have W 1 =W 2 = In. Thus, we have

the following lemma by the definition of the matrix product.

Lemma 2. The matrix R
(k)
n can be factored by the W i’s as follows:

R
(k)
n =W nW n−1W n−2 · · ·W 2W 1.

By virtue of Lemma 2, we have the following theorem.

Theorem 4. For the n×n Pascal matrix, Pn, we have

Pn =
n

∏
i=1

W n−i+1

n

∏
i=1

Gi.

4. STIRLING NUMBER OF THE SECOND KIND

In this section, we consider relationships between Stirling matrices of the second
kind and k-order Fibonacci matrices.

We define an n×n matrix M
(k)
n = [mi j] by using the Stirling numbers of the second

kind as follows:

mi j = S(i, j)−
k

∑
t=1

S(i− t, j). (4.1)

From (4.1), we observe that m11 = 1,m1 j = 0 for j ⩾ 2,m21 = 0,m22 = 1 m2 j = 0 for
j ⩾ 3,

mi1 =

{
2− i, 1 ⩽ i ⩽ k,
1− k, i > k, (4.2)
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and, for i, j ⩾ 2,mi j = mi−1, j−1 + jmi−1, j. From the definition of S
(2)

n ,F
(k)
n and

M
(k)
n , we have the following theorem.

Theorem 5. Let Mn be the n×n matrix as in (4.1). For the Stirling matrix of the
second kind S

(2)
n and the Fibonacci matrix F

(k)
n , we have S

(2)
n = F

(k)
n M

(k)
n .

Proof. Since the matrix F
(k)
n is invertible, we will prove that

(
F

(k)
n

)−1
S

(2)
n

= M
(k)
n .

Let
(
F

(k)
n

)−1
= [ f ′i j] be the inverse of F

(k)
n . Since f ′1 j = 0 for j ⩾ 2, f ′11S11 = 1

= m11. As S1 j = 0 and f ′1 j = 0 for j ⩾ 2,∑n
t=1 f ′1tSt j = 0 = m1 j for j ⩾ 2. As f ′2 j = 0

for j ⩾ 3, f ′21 = −1 and f ′22 = 1, we have ∑
n
t=1 f ′2tSt1 = m21. By virtue of (1.4), we

have, for i = 3,4, . . . ,n, ∑
n
t=1 f ′itSt1 = mi1 which is given in (4.2).

Now we consider i ⩾ 3 and j ⩾ 2. By (1.4) and (4.1), we have ∑
n
t=1 f ′itSt j = mi j.

Thus, we have M
(k)
n =

(
F

(k)
n

)−1
S

(2)
n , i.e. S

(2)
n = F

(k)
n M

(k)
n which completes the

proof. □

For example, for k = 5 and n = 8, we have

S
(2)

8 = F
(5)
8 M

(5)
8

=



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
2 1 1 0 0 0 0 0
4 2 1 1 0 0 0 0
8 4 2 1 1 0 0 0

16 8 4 2 1 1 0 0
31 16 8 4 2 1 1 0
61 31 16 8 4 2 1 1




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
−1 2 1 0 0 0 0 0
−2 3 5 1 0 0 0 0
−3 4 18 9 1 0 0 0
−4 5 58 54 14 1 0 0
−4 6 179 274 124 20 1 0
−4 8 543 1275 894 244 27 1
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=



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 3 1 0 0 0 0 0
1 7 6 1 0 0 0 0
1 15 25 10 1 0 0 0
1 31 90 65 15 1 0 0
1 63 301 350 140 21 1 0
1 127 966 1701 1050 266 28 1


.

Since Snt = S(n, t) = ∑
n
r=1 fnrmrt and for i > k

mi j =
1
j!

j

∑
l=0

(−1)l
(

j
l

)(
( j− l)i −

k

∑
t=1

( j− l)i−t

)
,

we have the following corollary.

Corollary 3. For k < j ⩽ n, we have

S(n, j) =
n

∑
i= j

gn−i+1

[
1
j!

j

∑
l=0

(−1)l
(

j
l

)(
( j− l)i −

k

∑
t=1

( j− l)i−t

)]
.

Lemma 3. For the (n−1)× (n−1) Stirling matrix of the second kind, S
(2)

n−1, we
have

M
(k)
n = L

(k)
n

(
[1]⊕S

(2)
n−1

)
.

Proof. Let Φn = [ϕi j] = L
(k)

n

(
[1]⊕S

(2)
n−1

)
. By Theorem 1, we know that l11 = 1

= m11, l21 = 0 = m21 and l22 = S(1,1) = 1 = m22. So, we have ϕi j = mi j for i = 1,2.
Now we consider the case i ⩾ 3. Since

ϕi j =
i−1

∑
t= j−1

[(
i−1

t

)
S(t, j−1)−

k

∑
s=1

(
i− s−1

t

)
S(t, j−1)

]
and from (1.2), we have ϕi j = S(i, j)−∑

k
t=1 S(i− t, j) = mi j.

Therefore, M
(k)
n = L

(k)
n

(
[1]⊕S

(2)
n−1

)
. □

The following corollary is an immediate consequence of Lemma 3.

Corollary 4. For n ⩾ 2,S (2)
n = F

(k)
n L

(k)
n

(
[1]⊕S

(2)
n−1

)
.

For (s × s) matrices F
(k)
s and L

(k)
s , we define the n × n matrix F

(k)
n L

(k)
n by

F
(k)
s L

(k)
s = In−s⊕F

(k)
s L

(k)
s . So, F (k)

n L
(k)

n =F
(k)
n L

(k)
n and F

(k)
1 L

(k)
1 = In. There-

fore, we can give the following corollary.
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Corollary 5. The Stirling matrix of the second kind, S
(2)

n , can be factorized by

the matrices F
(k)
n L

(k)
n ’s as :

S
(2)

n =
(
F

(k)
n L

(k)
n

) (
F

(k)
n−1L

(k)
n−1

)
· · ·
(
F

(k)
2 L

(k)
2

) (
F

(k)
1 L

(k)
1

)
.

Since Pn = F
(k)
n L

(k)
n and Ps = F

(k)
s L

(k)
s , we can give the following corollary as

an immediate consequence of Corollary 5.

Corollary 6. The Stirling matrix of the second kind, S
(2)

n , can be factorized by
the Pascal matrices Pn’s as :

S
(2)

n = PnPn−1 · · ·P2P1.

5. STIRLING NUMBER OF THE FIRST KIND

In this section, we consider the relationships between the Stirling matrix of the
first type S

(1)
n and k-order Fibonacci matrix F

(k)
n .

We define an n×n matrix C
(k)
n = [ci j] by using the Stirling number of the first kind

as follows:

ci j = s(i, j)−
k

∑
t=1

s(i, j+ t). (5.1)

From (5.1), we see that c11 = 1, c1 j = 0, for j ⩾ 2, c21 = −2, c22 = 1, c2 j = 0, for
j ⩾ 3, and for i, j ⩾ 2, ci j = ci−1, j−1 − (i− 1)ci−1, j. By virtue of the definition of
S

(1)
n , C

(k)
n and F

(k)
n , we can derive the following Theorem.

Theorem 6. Let C
(k)
n be the n×n matrix as in (5.1). For the Stirling matrix of the

first kind S
(1)

n and the Fibonacci matrix F
(k)
n , we have S

(1)
n = C

(k)
n F

(k)
n .

Proof. As F
(k)
n is an invertible matrix, it suffices to prove that C

(k)
n = S

(1)
n

·
(
F

(k)
n

)−1
.

Let
(
F

(k)
n

)−1
= [ f ′i j] be the inverse of F

(k)
n . Since f ′1 j = 0 for j ⩾ 2,s11 f ′11 = 1

= c11. Since s1 j = 0 and f ′1 j = 0 for j ⩾ 2,∑n
t=1 s1t f ′t j = 0 = c1 j for j ⩾ 2. Since

f ′2 j = 0 for j ⩾ 3, f ′21 =−1 and f ′22 = 1, we have ∑
n
t=1 s2t f ′t1 = c21 =−2 and c22 = 1.

By virtue of (1.4), we have, for i = 3,4, . . . ,n,∑n
t=1 sit f ′t1 = ci1.

Now, we consider i ⩾ 3 and j ⩾ 2. From (1.4) and the recurrence relation ci j

= ci−1, j−1 − (i−1)ci−1, j, we have ∑
n
t=1 sit f ′t j = ci j. Therefore, we have C

(k)
n = S

(1)
n

·
(
F

(k)
n

)−1
, and the proof is completed. □

For example, for k = 4 and n = 6, we have
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S
(1)

6 = C
(4)
6 F

(4)
6

=


1 0 0 0 0 0
−2 1 0 0 0 0
4 −4 1 0 0 0

−12 16 −7 1 0 0
48 −76 44 −11 1 0

−239 428 −296 99 −16 1




1 0 0 0 0 0
1 1 0 0 0 0
2 1 1 0 0 0
4 2 1 1 0 0
8 4 2 1 1 0
15 8 4 2 1 1



=


1 0 0 0 0 0
−1 1 0 0 0 0
2 −3 1 0 0 0
−6 11 −6 1 0 0
24 −50 35 −10 1 0

−120 274 −225 85 −15 1

 .

By virtue of Theorem 6, we can arrive at the following interesting identity:

(n−1)! =
n

∑
j=1

(−1)n+1

(
s(n, j)−

k

∑
t=1

s(n, j+ t)

)
g j.

Furthermore, by analogy to the Corollaries 4, 5 and 6, we can derive the following
theorem.

Theorem 7. For the Stirling matrix S
(1)

n of the first kind,

S
(1)

n =
(
[1]⊕S

(1)
n−1

)
F

(k)
n L

(k)
n = P1P2 · · ·Pn.
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[6] N. Irmak and C. Köme, “Linear algebra of the Lucas matrix,” Hacettepe Journal of Mathematics

and Statistics, vol. 50, no. 2, pp. 549–558, 2021, doi: 10.15672/hujms.746184.

http://dx.doi.org/10.2307/2695384
http://dx.doi.org/10.1016/0024-3795(92)90038-C
http://dx.doi.org/10.1016/S0024-3795(01)00234-8
http://dx.doi.org/10.15672/hujms.746184


294 CAHIT KÖME
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