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Abstract. A non-autonomous evolution semi-linear differential system under non-instantaneous
impulses, delays, and perturbed by non-local conditions is studied. Its piece-wise continuous
solutions belong to a finite dimensional Banach space. The existence and uniqueness of solutions
on the interval [−r,τ] are obtained by applying Karakostas’ fixed-point theorem. Further results
concerning solution prolongation are developed. An example is presented, and several remarks
on the infinite-dimensional case are included.
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1. INTRODUCTION

Impulsive systems are of vital importance on most scientific fields. They can be
found in applications ranging from biology and population dynamics to economics
and engineering. Usually, many situations are modeled by differential equations.
Controls, delays, impulses, and non-linear perturbations are added to capture either
feedback or activity characterization.

The interest of this article is the non-autonomous non-instantaneous impulsive
semi-linear system involving state-delay and non-local conditions, which is moti-
vated by applications, such as species population, nanoscale electronic circuits con-
sisting of single-electron tunneling junctions, and mechanical systems with impacts
[13, 24, 26]. In particular, impulses represent sudden deviations of the states at spe-
cific times, by either instantaneous jumps or continuous intervals.

Our mathematical motivation is to extend the existence and uniqueness of solutions
on a finite-dimensional Banach space [2, 5, 20] for the aforementioned semi-linear
system. It is worth to highlight that some existence and controllability results on the
impulsive autonomous case have been done by [4, 21, 22, 25], and [14]. The latter
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authors are the pioneer in implementing Karakostas’ fixed-point theorem to prove
the existence of solutions on semi-linear equations with instantaneous impulses.

Furthermore, techniques from [6] and Rothe’s fixed-point theorem have been used
in [8, 9, 19] for studying the approximate and exact controllability of this family of
systems with delays, instantaneous impulses, and memory considerations. Important
results on autonomous impulsive systems involving delay were developed by [7, 10,
18]. In addition, problems with non-local conditions including impulses can be found
in [16].

Finally, [11] introduced the class of non-instantaneous impulsive systems, and [23]
showed the existence of solutions for these systems. Later, [1, 3, 17] showcased rele-
vant studies for models on non-instantaneous impulsive differential equations. How-
ever, it is not of our knowledge that there are results on the existence of solutions for
semi-linear non-autonomous systems including all conditions simultaneously. This
is the center of our research work.

This article is structured as follows. Section 2 describes the analyzed system and
notation. Section 3 deals with preliminary concepts, definitions, and hypotheses used
throughout this work. Section 4 is devoted to the existence and uniqueness of solu-
tions for the system in the light of Karakostas’ fixed-point theorem, which is an ex-
tension of the fixed-point theorem due to M. A. Krasnosel’skiı̌ developed in [12].
Finally, sections 5 and 6 illustrate these results with an example of the considered
system and present conclusions and guidelines for open problems.

2. SYSTEM DESCRIPTION

Let N ∈ N, and denote IN as the set {1,2, . . . ,N}. In this article, the existence
and uniqueness of solutions for the following semi-linear non-autonomous system
are proved: 

z′(t) = A(t)z(t)+ f (t,zt), t ∈
N⋃

i=0
(si, ti+1] ,

z(t) = Gi(t,z(t)), t ∈ (ti,si], i ∈ IN ,

z(t) = φ(t)−g(zθ1 ,zθ2 , . . . ,zθq)(t), t ∈ [−r,0],

(2.1)

where si, ti,θ j,r ∈ (0,τ), with ti ≤ si < ti+1, θ j < θ j+1, for i∈ IN and j ∈ Iq, s0 = t0 = 0,
and tN+1 = θq+1 = τ, all fixed real numbers. The system solutions are denoted
by z : J = [−r,τ] −→ Rn and the non-instantaneous impulses are represented by
Gi : (ti,si]×Rn −→ Rn, i ∈ IN . A is a continuous matrix such that A(t) ∈ Rn×n,
t ∈ R. zt stands for the translated function of z defined by zt(s) = z(t + s), with
s ∈ [−r,0]. The function f : R+×PCr([−r,0];Rn) −→ Rn represents the non-linear
perturbation of the differential equation in the system, where R+ = [0,+∞), and
g : PCq

r ([−r,0];(Rn)q) −→ PCr([−r,0];Rn) indicates the behavior in the non-local
conditions. The function

φ : [−r,0]−→ Rn (2.2)
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represents the historical pass on the time interval [−r,0].
In order to properly set system (2.1), the following Banach spaces are considered.

Denote C(U;Rn) as the space of continuous functions on a set U ⊂ R. PCr =
PCr([−r,0];Rn) is the space of continuous functions of the form (2.2) except on a
finite number of points ri, i ∈ Il , with l ≤ N, where the side limits φ(r+i ), φ(r−i )
exist, and φ(ri) = φ(r−i ), for all i ∈ IN , endowed with the supremum norm.

The natural Banach space for the solutions of system (2.1) is defined as:

PCrτ = PCrτ(J ;Rn) =
{

z : J −→ Rn
∣∣∣ z
∣∣
[−r,0] ∈ PCr, z

∣∣
[0,τ] ∈C(J ′;Rn),

there exist z(t+k ), z(t−k ), and z(tk) = z(t−k ), k ∈ IN

}
,

where J ′ = [0,τ]\{t1, t2, . . . , tN}, and endowed with the norm

∥z∥= ∥z∥0 = sup
t∈J

∥z(t)∥Rn , z ∈ PCrτ.

The cartesian product space given by (Rn)q = Rn ×Rn × ·· · ×Rn =
q

∏
i=1

Rn is

equipped with the norm ∥z∥(Rn)q =
q

∑
i=1

∥zi∥Rn , for z ∈ (Rn)q .

The space PCq
r = PCq

r ([−r,0];(Rn)q) is defined analogously and endowed with the
norm

∥z∥PCq
r
= sup

t∈[−r,0]
∥z(t)∥(Rn)q , z ∈ PCq

r .

3. PRELIMINARY THEORY AND HYPOTHESES

In this section, the evolution operator based on the corresponding linear system
is defined. This work can be extended to infinite-dimensional Banach spaces. Thus,
the properties of the evolution operator are included, aiming to establish their sim-
ilarities with the latter case, where uniform continuity is lost unless the evolution
operator is assumed to be compact. Finally, the system solutions are characterized,
and hypotheses for applying Karakostas’ fixed-point theorem are presented.

Let U be the evolution operator corresponding to system (2.1)

U(t,s) = Φ(t)Φ−1(s), for all t,s ∈ R, (3.1)

where Φ is the fundamental matrix solution of the associated linear system

z′(t) = A(t)z(t). (3.2)

Therefore, there exist constants M̂, ω > 0 and M ≥ 1 such that:

∥U(t,s)∥ ≤ M̂eω(t−s) ≤ M, 0 ≤ s ≤ t ≤ τ,

The following proposition exhibits a characterization of solutions of the system
(2.1), and is based on the works done in [16] and [23].
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Proposition 1. The semi-linear system (2.1) has a solution z ∈ PCrτ(J ;Rn) if, and
only if,

z(t) =



U(t,0)[φ(0)−g(zθ1 ,zθ2 , . . . ,zθq)(0)]

+
∫ t

0
U(t,s) f (s,zs)ds, t ∈ (0, t1],

U(t,si)Gi(si,z(si))+
∫ t

si

U(t,s) f (s,zs)ds, t ∈ (si, ti+1] , i ∈ IN ,

Gi(t,z(t)), t ∈ (ti,si], i ∈ IN ,

φ(t)−g(zθ1 ,zθ2 , . . . ,zθq)(t), t ∈ [−r,0].

(3.3)

Observe that on some interval [−r, p1), if a solution z of the form (3.3) is defined,
and there is no p2 > p1 such that a solution can be defined on [−r, p2), then, [−r, p1)
is a maximal interval of existence.

In this work, the following hypotheses are assumed:
H1 The next conditions hold:

(i) The function g fulfills that g(0) = 0, and there exists Nq > 0 such that,
for all y, z ∈ PCq

r and t ∈ [−r,0],

∥g(y)(t)−g(z)(t)∥Rn ≤ Nq∥y(t)− z(t)∥(Rn)q .

(ii) There exists a constant L > 0 such that, for all i ∈ IN , the functions Gi
satisfy Gi(·,0) = 0, and, if ϕ1,ϕ2 ∈ PCrτ, for t ∈ (ti,si], then,

∥Gi(t,ϕ1(t))−Gi(t,ϕ2(t))∥Rn ≤ L∥ϕ1 −ϕ2∥, where L+Nqq <
1
2
.

H2 The function f satisfies the following conditions:

∥ f (t,ϕ1)− f (t,ϕ2)∥Rn ≤ K(∥ϕ1∥,∥ϕ2∥)∥ϕ1 −ϕ2∥,
∥ f (t,ϕ)∥Rn ≤ Ψ(∥ϕ∥),

where K : R+ ×R+ −→ R+ and Ψ : R+ −→ R+ are continuous and non-
decreasing functions in their arguments, and ϕ,ϕ1,ϕ2 ∈ PCr([−r,0];Rn).

H3 The following relations hold for τ and ρ > 0:
(i) MNqq

(
∥φ̃∥+ρ

)
+MτΨ

(
∥φ̃∥+ρ

)
≤ ρ,

(ii) ML
(
∥φ̃∥+ρ

)
+∥α∥Rn +MτΨ

(
∥φ̃∥+ρ

)
≤ ρ,

(iii) L
(
∥φ̃∥+ρ

)
+∥β∥Rn ≤ ρ,

where α,β ∈ Rn are arbitrarily fixed, and the function φ̃ is defined as:

φ̃(t) =



U(t,0)φ(0), t ∈ (0, t1],

α, t ∈
N⋃

i=1
(si, ti+1],

β, t ∈
N⋃

i=1
(ti,si],

φ(t), t ∈ [−r,0].

(3.4)
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H4 The following relations hold for τ and ρ > 0:
(i) MNqq+MτK

(
∥φ̃∥+ρ,∥φ̃∥+ρ

)
< 1,

(ii) ML+MτK
(
∥φ̃∥+ρ,∥φ̃∥+ρ

)
< 1.

Before the statement of Karakostas’ fixed-point theorem (see [12,14]), we first recall
the meaning of equicontractivity

Definition 1. The family {T (·,x) : x} is called equicontravtive if there is a l ∈ [0,1)
such that

∥T (y1,x)−T (y2,x)∥ ≤ l ∥y1 − y2∥ ,
for all (y1,x) ,(y2,x) in the domain of T .

Theorem 1 (Karakostas). Let P and Q be Banach spaces, D ⊂ P a closed and
convex subset, and J : D−→Q a continuous compact operator. Let F : D×J(D)−→
D be a continuous operator such that the family given by

{
F(·,y) : y ∈ J(D)

}
is

equicontractive. Then, F(z,J(z)) = z admits a solution in D.

4. EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this section, the proofs of the existence and uniqueness of the solution for system
(2.1) are presented. To apply Karakostas’ fixed-point theorem, the operators J and
F are defined. Then, a fixed point on a subset of PCrτ for equation (4.3) is proved.
Therefore, the problem of finding a solution of the form (3.3) becomes a fixed-point
problem.

Consider the following continuous operators

J : PCrτ(J ;Rn)−→ PCrτ(J ;Rn),

F : PCrτ(J ;Rn)×PCrτ(J ;Rn)−→ PCrτ(J ;Rn),

and a fixed η ∈ Rn. For y, z ∈ PCrτ,

J(y)(t) =



U(t,0)
[
φ(0)−g(yθ1 ,yθ2 , . . . ,yθq)(0)

]
+
∫ t

0
U(t,s) f (s,ys)ds, t ∈ (0, t1],

U(t,si)Gi(si,y(si))

+
∫ t

si

U(t,s) f (s,ys)ds, t ∈ (si, ti+1], i ∈ IN ,

η, t ∈
N⋃

i=1
(ti,si],

φ(t), t ∈ [−r,0],

(4.1)

F(z,y)(t) =


y(t), t ∈

N⋃
i=0

(si, ti+1],

Gi(t,z(t)), t ∈ (ti,si], i ∈ IN ,

φ(t)−g(zθ1 ,zθ2 , . . . ,zθq)(t), t ∈ [−r,0].

(4.2)
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From the J and F definition, the following fixed-point equation is equivalent to
solve system (2.1):

F(z,J(z)) = z, z ∈ PCrτ. (4.3)

First, it is observed that J is compact, and the set
{

F(·,y) : y ∈ J(Dρ)
}

is equicon-
tractive, where

Dρ = Dρ(τ,φ) :=
{

ϕ ∈ PCrτ(J ;Rn) : ∥ϕ− φ̃∥ ≤ ρ
}
, for ρ > 0. (4.4)

This set is closed and convex, and φ̃ is given by (3.4). So, the hypotheses of
Theorem 1 are satisfied. Lemma 1 highlights the relevance of hypotheses H1, H2,
and how they fit into the main results. Theorems 2, 3 and 4 follow on this foundation.

Lemma 1. Let hypotheses H1 and H2 be satisfied. Then, the operators J and F
satisfy the following assertions:

(i) J is continuous.
(ii) J maps bounded sets onto bounded sets.

(iii) J maps bounded sets onto equicontinuous sets.
(iv) J is a compact operator.
(v) The set

{
F(·,y) : y ∈ J(Dρ)

}
is comprised of equicontractive operators, with

Dρ as in (4.4).

Proof. (i) J is continuous.

Taking y, z ∈ PCrτ, trivially, for t ∈ [−r,0],

∥J(z)(t)− J(y)(t)∥Rn = ∥φ(t)−φ(t)∥Rn = 0.

Thus,
sup

t∈[−r,0]
∥J(z)(t)− J(y)(t)∥Rn = 0. (4.5)

By H1, H2, and t ∈ (0, t1], the following estimate holds:

∥J(z)(t)− J(y)(t)∥Rn ≤ M∥g(yθ1 , . . . ,yθq)(0)−g(zθ1 , . . . ,zθq)(0)∥Rn

+M
∫ t

0
∥( f (s,zs)− f (s,ys))∥Rnds

≤ MNq

q

∑
i=1

∥y− z∥

+M
∫ t

0
K (∥zs∥,∥ys∥)∥zs − ys∥ds

≤ MNqq∥z− y∥+Mt1K(∥z∥,∥y∥)∥z− y∥.
Taking the sup,

sup
t∈(0,t1]

∥J(z)(t)− J(y)(t)∥ ≤ M [Nqq+ t1K(∥z∥,∥y∥)]∥z− y∥. (4.6)
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Now, for i ∈ IN and t ∈ (si, ti+1],

∥J(z)(t)− J(y)(t)∥Rn ≤ M∥Gi(si,z(si))−Gi(si,y(si))∥Rn

+M
∫ t

si

∥( f (s,zs)− f (s,ys))∥Rnds

≤ ML∥z(si)− y(si)∥Rn

+M
∫ t

si

K(∥zs∥,∥ys∥)∥zs − ys∥ds

≤ ML∥z− y∥+MτK(∥z∥,∥y∥)∥z− y∥.

Thus,

sup
t∈(si,ti+1]

∥J(z)(t)− J(y)(t)∥ ≤ M [L+ τK(∥z∥,∥y∥)]∥z− y∥.

Together with (4.5), (4.6), and since J is constant on
N⋃

i=1
(ti,si], it yields that

there exists Ny,z > 0 such that:

∥J(z)− J(y)∥ ≤ Ny,z∥z− y∥.

Hence, J is continuous. And, in fact, it is Lipschitz continuous.

(ii) J maps bounded sets onto bounded sets.

Without loss of generality, set R > 0 arbitrarily and prove that there exists
d > 0 such that, for every y ∈ BR = BR(0) = {z ∈ PCrτ : ∥z∥ ≤ R}, it follows
that ∥J(y)∥ ≤ d.

For t ∈ [−r,0], it gives that:

∥J(y)(t)∥Rn = ∥φ(t)∥Rn ≤ ∥φ∥=: d0.

Let y ∈ BR and t ∈ (0, t1]. H2 yields

∥J(y)(t)∥Rn ≤
∥∥U(t,0)

[
φ(0)−g(yθ1 , . . . ,yθq)(0)

]∥∥
Rn

+
∫ t

0
∥U(t,s) f (s,ys)∥Rnds

≤ M (∥φ(0)∥Rn +Nqq∥y∥)+Mt1Ψ(∥y∥)
≤ M (∥φ(0)∥Rn +NqqR)+Mt1Ψ(R) =: d1.

Similarly, for each i ∈ IN , if t ∈ (si, ti+1], then,

∥J(y)(t)∥Rn ≤ ∥U(t,si)Gi(si,y(si))∥Rn +
∫ t

si

∥U(t,s) f (s,ys)∥Rnds

≤ ML∥y∥+M(ti+1 − si)Ψ(∥y||)
≤ MLR+MτΨ(R) =: d2.
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Finally, whenever t ∈ (ti,si], for i ∈ IN , it follows that:

∥J(t)∥Rn = ∥η∥=: d3.

Taking d = max
0≤i≤3

{di}, boundedness is proved.

(iii) J maps bounded sets onto equicontinuous sets.

Let BR as in (ii), and y ∈ BR, arbitrary. For some 0 < ν1 < ν2 ≤ t1, the
following estimate holds:

∥J(y)(ν2)− J(y)(ν1)∥Rn

≤
∥∥[U(ν2,0)−U(ν1,0)]

[
φ(0)−g(yθ1 , . . . ,yθq)(0)

]∥∥
Rn

+

∥∥∥∥∫ ν2

0
U(ν2,s) f (s,ys)ds−

∫
ν1

0
U(ν1,s) f (s,ys)ds

∥∥∥∥
Rn

≤ ∥U(ν2,0)−U(ν1,0)∥

(
∥φ(0)∥Rn +Nq

q

∑
i=1

∥yθi(0)∥Rn

)

+
∫

ν1

0
∥(U(ν2,s)−U(ν1,s)) f (s,ys)∥Rn ds

+
∫

ν2

ν1

∥U(ν2,s) f (s,ys)∥Rnds

≤ ∥U(ν2,0)−U(ν1,0)∥(∥φ(0)∥Rn +NqqR)

+Ψ(R)
∫

ν1

0
∥U(ν2,s)−U(ν1,s)∥ds+MΨ(R)(ν2 −ν1).

(4.7)

Similarly, for each i ∈ IN and every ν1,ν2, with si < ν1 < ν2 ≤ ti+1, it
follows that:

∥J(y)(ν2)− J(y)(ν1)∥Rn

≤ ∥U(ν2,si)−U(ν1,si)∥∥Gi(si,y(si))∥Rn

+

∥∥∥∥∫ ν2

si

U(ν2,s) f (s,ys)ds−
∫

ν1

si

U(ν1,s) f (s,ys)ds
∥∥∥∥
Rn

≤ ∥U(ν2,si)−U(ν1,si)∥L∥y∥

+
∫

ν1

si

∥U(ν2,s)−U(ν1,s)∥Ψ(∥ys∥)ds+M
∫

ν2

ν1

Ψ(∥ys∥)ds

≤ ∥U(ν2,si)−U(ν1,si)∥LR

+Ψ(R)
∫

ν1

si

∥U(ν2,s)−U(ν1,s)∥ds+MΨ(R)(ν2 −ν1).

(4.8)

By (4.7) and (4.8), the continuity and boundedness of U(t,s) yield that,
as ν2 approaches to ν1, ∥J(y)(ν2)− J(y)(ν1)∥Rn goes to zero, independently
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of y. Therefore, J(BR) is equicontinuous on the set
N⋃

i=0
(si, ti+1]. In the same

fashion, equicontinuity on [−r,0] and
N⋃

i=1
(ti,si] is obtained. And, the family

of functions J(BR) is equicontinuous on the interval J \{t1, . . . , tN}.

(iv) J is a compact operator.

Let B ⊂ PCrτ be a bounded subset, and {ωn}n∈N, a sequence on J(B).
Then, (ii) and (iii) imply that it is uniformly bounded and equicontinuous on
[−r, t1]. Note that

{
ωn|[−r,0]

}
n∈N = {φ}. Arzelà-Ascoli theorem on{

ωn|[0,t1]
}

n∈N ⊂ C ([0, t1];Rn) implies there is a uniformly convergent sub-
sequence

{
ω1

n
}

n∈N on [−r, t1].
Consider the sequence

{
ω1

n
}

n∈N on the interval [s1, t2]. It is uniformly
bounded and equicontinuous, and as before, it has a convergent subsequence{

ω2
n
}

n∈N on [s1, t2]. Therefore, a uniformly convergent subsequence
{

ω2
n
}

n∈N
of {ωn}n∈N on the interval [−r, t2] is obtained, since each ω2

n has the same
definition on [t1,s1].

Continuing this process on the intervals [t2,s2], [s2, t3], [t3,s3], . . . , [sN ,τ], it
is concluded that there is a subsequence

{
ωN+1

n
}

n∈N of {ωn}n∈N, uniformly
convergent on [−r,τ]. Thus, the set J(B) is compact, and by the characteriz-
ation of sequentially compact spaces, J is compact.

(v) The set
{

F(·,y) : y ∈ J(Dρ)
}

is comprised of equicontractive operators.

Let ρ > 0, y ∈ J(Dρ), x, z ∈ PCrτ, and t ∈ [−r,0]. Thus, H1 yields

∥F(z,y)(t)−F(x,y)(t)∥Rn ≤
∥∥g(xθ1 , . . . ,xθq)(t)−g(zθ1 , . . . ,zθq)(t)

∥∥
Rn

≤ Nqq∥z− x∥.
(4.9)

For each i ∈ IN and t ∈ (ti,si], it follows that:

∥F(z,y)(t)−F(x,y)(t)∥Rn ≤ ∥Gi(t,z(t))−Gi(t,x(t))∥Rn

≤ L∥z− x∥.
(4.10)

Moreover, on the intervals (si, ti+1], i ∈ {0}∪ IN , it follows that:

∥F(z,y)(t)−F(x,y)(t)∥Rn = ∥y(t)− y(t)∥Rn = 0. (4.11)

Combining (4.9)-(4.11), the next estimate holds:

∥F(z,y)−F(x,y)∥ ≤ 1
2
∥z− x∥.

Hence, F is a contraction on the first variable, independently of y ∈ J(Dρ).
□
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Theorem 2. Assume H1 - H3. Then, problem (2.1) has, at least, one solution on
the interval J = [−r,τ].

Proof. For ρ > 0, let Dρ as in (4.4), and define the operators J̃ and F̃ as:

J̃ = J
∣∣
Dρ

: Dρ −→ PCrτ(J ;Rn) and F̃ = F
∣∣
Dρ×J̃(Dρ)

: Dρ × J̃(Dρ)−→ Dρ.

Because of Lemma 1, J̃ is continuous and compact, and the family{
F(·,y) : y ∈ J(Dρ)

}
is equicontractive. Continuity of F̃ follows analogously. The

goal is to prove that, indeed, F̃
(

Dρ, J̃(Dρ)
)
⊂ Dρ. Thus, Theorem 1 assumptions

will be satisfied, and an equivalent solution will be obtained.
Take an arbitrary z ∈ Dρ, for t ∈ [−r,0], it yields∥∥∥F̃

(
z, J̃(z)

)
(t)− φ̃(t)

∥∥∥
Rn

= ∥g(zθ1 , . . . ,zθq)(t)∥Rn

≤ Nq

q

∑
j=1

∥zθ j(t)∥Rn

≤ MNqq∥z∥
≤ MNqq(∥φ̃∥+ρ)≤ ρ.

(4.12)

Similarly, t ∈ (0, t1] imply∥∥∥F̃
(

z, J̃(z)
)
(t)− φ̃(t)

∥∥∥
Rn

≤ M
∥∥g(zθ1 , . . . ,zθq)(0)

∥∥
Rn

+
∫ t

0
∥U(t,s) f (s,zs)∥Rn ds

≤ MNq

q

∑
i=1

∥z∥+M
∫ t

0
∥ f (s,zs)∥ds

≤ MNqq∥z∥+Mt1Ψ(∥z||)
≤ MNqq

(∥∥φ̃
∥∥+ρ

)
+MτΨ

(∥∥φ̃
∥∥+ρ

)
≤ ρ.

(4.13)

Likewise, t ∈ (si, ti+1], i ∈ IN , gives∥∥∥F̃
(

z, J̃(z)
)
(t)− φ̃(t)

∥∥∥
Rn

≤ ∥U(t,si)Gi(si,z(si))−α∥Rn

+
∫ t

si

∥U(t,s) f (s,zs)∥Rn ds

≤ ML∥z∥+∥α∥Rn +M(ti+1 − si)Ψ(∥z||)
≤ ML

(∥∥φ̃
∥∥+ρ

)
+∥α∥Rn +MτΨ

(∥∥φ̃
∥∥+ρ

)
≤ ρ.

(4.14)
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Additionally, for i ∈ IN , if t ∈ (ti,si], then,∥∥∥F̃
(

z, J̃(z)
)
(t)− φ̃(t)

∥∥∥
Rn

= ∥Gi(t,z(t))−β∥Rn

≤ L∥z∥+∥β∥Rn

≤ L
(∥∥φ̃
∥∥+ρ

)
+∥β∥Rn ≤ ρ.

(4.15)

Thus, equations (4.12) through (4.15) give∥∥∥F̃
(

z, J̃(z)
)
− φ̃

∥∥∥= sup
t∈J

∥∥∥F̃
(

z, J̃(z)
)
(t)− φ̃(t)

∥∥∥
Rn

≤ ρ.

Applying Theorem 1 to J̃ and F̃ , it follows F̃
(

z, J̃(z)
)
= z, i.e., there exists a

fixed-point solution z ∈ Dρ ⊂ PCrτ, equivalent to the system (2.1) solution given by
Proposition 1. □

The following theorem proves the uniqueness of the solution to system (2.1).

Theorem 3. Asumming H1 - H4, system (2.1) has a unique solution on J = [−r,τ].

Proof. Consider two solutions z1 and z2 to (2.1), which satisfy (3.3). Let ρ > 0
such that z1, z2 ∈ Dρ. Then, for t ∈ [−r,0], the following estimate holds:

∥z1(t)− z2(t)∥Rn ≤
∥∥∥g
(

z2θ1
, . . . ,z2θq

)
(t)−g

(
z1θ1

, . . . ,z1θq

)
(t)
∥∥∥
Rn

≤ Nqq∥z1 − z2∥

≤ 1
2
∥z1 − z2∥.

(4.16)

If t ∈ (0, t1], H2 implies

∥z1(t)− z2(t)∥Rn

≤ ∥U(t,0)∥
∥∥∥g
(

z2θ1
, . . . ,z2θq

)
(0)−g

(
z1θ1

, . . . ,z1θq

)
(0)
∥∥∥
Rn

+
∫ t

0
∥U(t,s)( f (s,z1s)− f (s,z2s))∥ds

≤ [MNqq+Mt1K (∥z1∥,∥z2∥)]∥z1 − z2∥
≤
[
MNqq+MτK

(
∥φ̃∥+ρ,∥φ̃∥+ρ

)]
∥z1 − z2∥,

(4.17)

and, t ∈ (si, ti+1], i ∈ IN , yields

∥z1(t)− z2(t)∥Rn ≤ ∥U(t,si)∥∥Gi (si,z1(si))−Gi (si,z2(si))∥Rn

+
∫ t

si

∥U(t,s)( f (s,z1s)− f (s,z2s))∥ds

≤ [ML+M(ti+1 − si)K (∥z1∥,∥z2∥)]∥z1 − z2∥
≤
[
ML+MτK

(∥∥φ̃
∥∥+ρ,

∥∥φ̃
∥∥+ρ

)]
∥z1 − z2∥.

(4.18)
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Lastly, if t ∈ (ti,si], i ∈ IN , then,

∥z1(t)− z2(t)∥Rn ≤ ∥Gi(t,z1(t))−Gi(t,z2(t))∥Rn

≤ L∥z1 − z2∥

≤ 1
2
∥z1 − z2∥.

(4.19)

Therefore, taking the sup limit of equations (4.16)-(4.19) and H4 imply that there
exists a constant m, with 0 < m < 1, such that:

∥z1 − z2∥= sup
t∈J

∥z1(t)− z2(t)∥Rn ≤ m∥z1 − z2∥.

Hence, z1 = z2. □

Finally, the next theorem and corollary extend the system solution towards [−r,+∞).

Theorem 4. Assume H1 - H4 are satisfied, and consider the solution z over a
maximal interval [−r, p1). Then, p1 = +∞, or there exists a convergent sequence
{τn}n∈N to p1, such that:

lim
n→∞

z(τn) = z̃ ∈ ∂B∥φ̃∥+ρ
⊂ Rn. (4.20)

Proof. Assume p1 < +∞, and suppose that there exists a neighborhood V of the
boundary of B∥φ̃∥+ρ

such that if t ∈ [p2, p1), with sN < p2 < p1, then, z(t) /∈V .
Without loss of generality, assume that V = B∥φ̃∥+ρ

\E, with E ⊂ B∥φ̃∥+ρ
is a

closed set and z(t) ∈ E, for t ∈ [p2, p1).
Consider p2 ≤ s < t < p1. It follows that:

∥z(t)− z(s)∥Rn ≤ ∥U(t,sN)−U(s,sN)∥∥GN(sN ,z(sN))∥Rn

+
∫ t

s
∥U(t,ξ)∥

∥∥ f (ξ,zξ)
∥∥
Rn dξ

+
∫ s

sN

∥U(t,ξ)−U(s,ξ)∥
∥∥ f (ξ,zξ)

∥∥
Rn dξ

≤ ∥U(t,sN)−U(s,sN)∥L∥z∥+M(t − s)Ψ
(∥∥φ̃
∥∥+ρ

)
+Ψ

(∥∥φ̃
∥∥+ρ

)∫ s

sN

∥U(t,ξ)−U(s,ξ)∥dξ.

Then, uniform continuity of the evolution operator yields

lim
s→p−1

∥z(t)− z(s)∥Rn = 0.

Thus, there exists z̃ ∈Rn such that z(p−1 ) = z̃ ∈ E, and a solution can be defined at
p1 through extending z by continuity, which contradicts the maximality of [−r, p1).
Thus, either p1 =+∞, or a sequence {τn}n exists and fulfills (4.20). □
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Corollary 1. Under Theorem 4 assumptions, suppose that:

∥ f (t,ϕ)∥Rn ≤ h(t)(1+∥ϕ(0)∥Rn) ,

for ϕ ∈ PCr and h : R+ −→ R+ continuous. Then, there exists a unique solution to
problem (2.1) on [−r,+∞).

Proof. Consider t ∈ [sN , p1). It follows that:

∥z(t)∥Rn ≤ ∥U(t,sN)∥∥GN(sN ,z(sN))∥Rn +
∫ t

sN

∥U(t,s)∥∥ f (s,zs)∥ds

≤ ML∥z(sN)∥Rn +
∫ p1

sN

Mh(s)ds+
∫ t

sN

Mh(s)∥z(s)∥Rnds.

Hence, Grönwall’s inequality yields

∥z(t)∥Rn ≤ M
(

L∥z(sN)∥Rn +
∫ p1

sN

h(s)ds
)

exp
(∫ p1

sN

Mh(s)ds
)
.

By Theorem 4, the solution stays bounded, as desired. □

5. EXAMPLE

In this section, particular definitions for functions Gi, g and f , i∈ IN , exemplify the
results of this work. To this end, consider an arbitrary finite-dimensional continuous
operator A, such that A(t) is a n×n matrix.

Given N,R ∈ N, the non-linear term, f : R+×PCr([−r,0];Rn) −→ Rn, the func-
tions describing non-instantaneous impulses, Gi : (ti,si]×Rn −→ Rn, and non-local
conditions, g : PCq

r ([−r,0];(Rn)q)−→ PCr([−r,0];Rn), are given as follows, for z ∈
PCrτ and i ∈ IN ,

f (t,ϕ) =
1
R


(ϕ1(−r))2

(ϕ2(−r))2

...
(ϕn(−r))2

 , Gi(t,z(t)) =
cos(si)

R


sin(z1(t))
sin(z2(t))

...
sin(zn(t))

 ,

g(ϕ) =
q

∑
i=1

1
R

ϕi.

Clearly, g verifies that g(0) = 0, and if t ∈ [−r,0], then,

∥g(y)(t)−g(z)(t)∥Rn ≤ 1
R
∥y(t)− z(t)∥(Rn)q , for all y, z ∈ PCpq.
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The functions Gi, i ∈ IN , satisfy Gi(·,0) = 0, and, for any y, z ∈ PCrτ, given t ∈
(ti,si],

∥Gi(t,y(t))−Gi(t,z(t))∥Rn ≤
|cos(si)|

R

(
N

∑
k=1

|sin(yk(t))− sin(zk(t))|2
)1/2

≤ |cos(si)|
R

∥y− z∥.

For R sufficiently large, it yields

|cos(si)|
R

+
1
R

q <
1
2
.

Finally, given t ≥ 0, y, z ∈ PCrτ, and ϕ ∈ PCr, the function f satisfies

∥ f (t,yt)− f (t,zt)∥Rn ≤ 1
R

(
n

∑
k=1

(|yk(t − r)|+ |zk(t − r)|)2

)1/2

∥y− z∥

≤ K(∥y∥,∥z∥)∥y− z∥,
and

∥ f (t,ϕ)∥Rn =
1
R

∥∥∥∥∥∥∥∥∥


(ϕ1(−r))2

(ϕ2(−r))2

...
(ϕn(−r))2


∥∥∥∥∥∥∥∥∥
Rn

≤ Ψ(∥ϕ∥),

where K and Ψ are continuous non-decreasing functions. Hence, hypotheses H1 and
H2 are satisfied. For R sufficiently large, conditions H3 and H4 are similarly verified.
Then, by Theorem 3 and Corollary 1, system (2.1), with the foregoing definitions,
admits a unique solution on [−r,+∞).

6. FINAL REMARKS

In this work, existence and uniqueness of solutions for semi-linear systems of non-
autonomous differential equations considering non-instantaneous impulses, delay,
and non-local conditions simultaneously were proved. The technique used was based
on Karakostas’ fixed-point theorem, by transforming the existence of solutions prob-
lem into a fixed-point existence problem of a certain operator equation satisfying
the specific conditions. This led to choose the adequate hypotheses to meet the re-
quirements of that theorem. Observe that this work can be generalized to infinite-
dimensional Banach spaces. However, proving equicontinuity of specific operator
families and the main operator compactness must be carefully treated before applying
a fixed-point theorem. The strongly continuous semigroup in the non-autonomous
system requires compactness to ensure the uniform continuity away from zero. A
different version of Arzelà-Ascoli theorem must be considered on the corresponding
functional spaces. To end, the controllability of these systems is part of our outgoing
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research. In particular, the exact and approximate controllability of this system can
be proven using Rothe’s fixed-point theorem [15] and the techniques developed in
[6].
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[20] M. Muslim, A. Kumar, and M. Fečkan, “Existence, uniqueness and stability of solutions to second
order nonlinear differential equations with non-instantaneous impulses,” Journal of King Saud
University - Science, vol. 30, no. 2, pp. 204–213, 2018, doi: 10.1016/j.jksus.2016.11.005.

[21] J. J. Nieto and C. C. Tisdell, “On exact controllability of first-order impulsive differential equa-
tions,” Advances in Difference Equations, vol. 2010, 2010, doi: 10.1155/2010/136504.

[22] D. N. Pandey, S. Das, and N. Sukavanam, “Existence of solution for a second-order neutral differ-
ential equation with state dependent delay and non-instantaneous impulses,” Int. J. Nonlinear Sci,
vol. 18, no. 2, pp. 145–155, 2014.

[23] M. Pierri, D. O’Regan, and V. Rolnik, “Existence of solutions for semi-linear abstract differential
equations with not instantaneous impulses,” Applied Mathematics and Computation, vol. 219,
no. 12, pp. 6743–6749, 2013, doi: 10.1016/j.amc.2012.12.084.

[24] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations. WORLD SCI-
ENTIFIC, aug 1995. doi: 10.1142/2892.
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