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Abstract. For a ∈ (0,1) and r ∈ (0,1), let Ea(r) be the generalized elliptic integral of the second
kind and R(a) be Ramanujan’s constant. In this paper, we prove the following inequalities
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1. INTRODUCTION

For real numbers a,b and c with c ̸= 0,−1,−2, . . . , the Gaussian hypergeometric
function is defined by

2F1(a,b;c;x)≡
∞

∑
n=0

(a,n)(b,n)
(c,n)

xn

n!
, |x|< 1.

Here (a,0) = 1 for a ̸= 0, and (a,n) is the shifted factorial function

(a,n)≡ a(a+1)(a+2) · · ·(a+n−1)

for n ∈ N≡ {k : k is a positive integer}.
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The generalized elliptic integrals can be represented by the Gaussian hypergeo-
metric function as follows [2]: for a ∈ (0,1),

Ka = Ka(r) =
π

2 2F1
(
a,1−a;1;r2) ,

K ′
a = K ′

a(r) = Ka(r′),

Ka(0) =
π

2
, Ka(1) = ∞,

and 
Ea = Ea(r) =

π

2 2F1
(
1−a,a−1;1;r2) ,

E ′
a = E ′

a(r) = Ea(r′),

Ea(0) =
π

2
, Ea(1) = 1.

Here and hereafter, we always let r′ = (1− r2)1/2. It is easy to see that Ka is strictly
increasing and Ea is strictly decreasing on (0,1). The generalized elliptic integrals
satisfy the following Legendre relation:

Ka(r)E ′
a(r)+K ′

a(r)Ea(r)−Ka(r)K ′
a(r) =

πsin(πa)
4(1−a)

.

For a = 1/2, the generalized elliptic integrals reduce to the classical complete
elliptic integrals K and E , respectively. It is well known that the complete elliptic
integrals K and E have many applications in several fields of mathematics as well as
in physics and engineering. Numerous properties have been obtained for K and E
(for instance, see [1, 4–7, 9, 18]).

In 2000, Anderson, et al [2] investigated certain combinations of the generalized
elliptic integrals which occur in Ramanujan’s modular equations and approximations
to π. They showed the monotonicity and convexity properties of these quantities
and obtained various sharp inequalities for them. Recently, the generalized elliptic
integrals have attracted the attention of many mathematicians. In particular, many
remarkable properties and inequalities for the generalized elliptic integrals can be
found in the literature [2, 6, 8, 10–13, 15, 17, 19].

During the past few decades, many authors obtained various sharp elementary
estimates for E and Ea. For instance, in 2004, Alzer and Qiu [1] proved the inequality
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where η = 3/2 and θ = log2/ log(π/2) are best possible. This result improves pre-
vious known bounds and gives symmetric upper and lower bounds.
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In 2011, Wang et al. [13, Theorem 1.2] obtained the following sharp bounds for
E(r):

π
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The purpose of this paper is to study some monotonicity properties for the gener-
alized elliptic integrals of the second kind and obtain the following theorem.

Theorem 1. Given a ∈ (0,1), let R(a) be Ramanujan’s constant defined as (2.1).
Then, for all r ∈ (0,1),
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As an application, we obtain a sharp functional inequality for the generalized
Hersch-Pfluger distortion function
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The definition of the generalized Hersch-Pfluger distortion function is in Section 3.

2. PROOF OF MAIN RESULT

Throughout this paper, let γ = 0.577215 . . . be the Euler constant and let

R(a,b) =−2γ−ψ(a)−ψ(b), R(a) = R(a,1−a), R(1/2) = log16 (2.1)

be Ramanujan’s constant, where ψ is the classical psi function.
The functions Ka and Ea satisfy the following derivative formulas [2]:
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We shall prove monotonicity properties of some functions defined by the general-
ized elliptic integrals.

Lemma 1. The function

v(a) = (1−a)2(4a2 −8a)π+8(1−a)sin(πa)

is positive on (0,1).

Proof. Let w(a) = v(a)/(1− a) = (1− a)(4a2 − 8a)π+ 8sin(πa). We need to
prove w(a) is positive on (0,1). Simple computations lead to

w(0) = 0 = w(1). (2.2)

By differentiation, we have

w′(a) = (1−a)(8a−8)π− (4a2 −8a)π+8πcos(πa)

with

w′(0+) = 0 , w′(1−) =−4π, (2.3)

w′′(a) = (24−24a)π−8π
2 sin(πa)

with

w′′(0+) = 24π , w′′(1−) = 0, (2.4)

and

w′′′(a) =−24π−8π
3 cos(πa)

with

w′′′(0+) =−24π−8π
3 < 0 , w′′′(1−) =−24π+8π

3 > 0. (2.5)

Since w′′′(a) is strictly increasing in a, we see from (2.5) that there exists a0 ∈ (0,1)
such that w′′′(a) < 0 for a ∈ (0,a0) and w′′′(a) > 0 for a ∈ (a0,1) . Thus w′′(a) is
strictly decreasing on (0,a0) and strictly increasing on (a0,1) . The limiting values
(2.4) and the piecewise monotonicity of w′′(a) imply that there exists a1 ∈ (0,a0)
such that w′′(a) > 0 for a ∈ (0,a1) and w′′(a) < 0 for a ∈ (a1,1). Then w′(a) is
strictly increasing on a ∈ (0,a1) and strictly decreasing on (a1,1). It follows from
(2.3) together with the piecewise monotonicity of w′(a) that there exists a2 ∈ (a1,1)
such that w′(a)> 0 for a ∈ (0,a2) and w′(a)< 0 for a ∈ (a2,1). Thus w(a) is strictly
increasing on (0,a2) and strictly decreasing on (a2,1) . The limiting values (2.2) and
the piecewise monotonicity of w(a) imply that w(a) > 0 for a ∈ (0,1) and hence
v(a)> 0. □

Lemma 2. The function

p(a) = (1− (1−a)2)π− sin(πa)
1−a

− (1−a)sin(πa)

is negative on (0,1).
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Proof.

p(a) = π

(
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where the inequality follows from the well-known Redheffer inequality [16]:

sin(πx)
πx

>
1− x2

1+ x2 for x ∈ (0,1).

□

Lemma 3. For given a ∈ (0,1), the function

u(r) =−2(1−a)(Ka(r)−Ea(r))r′2 +2r2Ea(r)−
1+(1−a)2r′2

1−a
r2 sin(πa)

is negative on (0,1).

Proof. We denote f and g respectively the functions

f (r) = 4(1− (1−a)2)Ea(r)−
2sin(πa)

1−a
−2(1−a)sin(πa)(r′2 − r2)

and

g(r) =−8(1− (1−a)2)(1−a)
Ka(r)−Ea(r)

r2 +8(1−a)sin(πa).

Applying the derivative formulas, we obtain

u′(r) = r f (r) and f ′(r) = rg(r).

Since the function r → (Ka(r)− Ea(r))/r2 is strictly increasing from (0,1) onto
(π(1 − a)/2,∞) (see [2]), the function g is strictly decreasing from (0,1) onto
(−∞,(a − 1)2(4a2 − 8a)π + 8(1 − a)sin(πa)). It follows from Lemma 1 that
(a− 1)2(4a2 − 8a)π+ 8(1− a)sin(πa) > 0. We see that there exists a number r0 ∈
(0,1) such that rg(r) is positive on (0,r0) and negative on (r0,1). Hence, the func-
tion f is strictly increasing on (0,r0) and decreasing on (r0,1). Since f (0+) =
2(1−(1−a)2)π−2sin(πa)/(1−a)−2(1−a)sin(πa)< 0 by Lemma 2 and f (1−) =
0, we conclude that there exists a number r1 ∈ (0,1) such that r f (r) is negative on
(0,r1) and positive on (r1,1). Therefore the function u is strictly decreasing on (0,r1)
and increasing on (r1,1). Considering the fact u(0+) = 0 = u(1−), we conclude that
u(r)< 0 for r ∈ (0,1). □
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Proof of Theorem 1. Given a ∈ (0,1). For r ∈ (0,1), we construct a function
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1

r′2

(
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)
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r′
.
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4
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)
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by Lemma 3. Hence, the function H is strictly decreasing on (0,1). For the limiting
values, it is clear that
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The desired inequalities follow from the monotonicity of the function H(r) and its
limiting values. □
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Setting a = 1/2 in Theorem 1, we have the following inequality for the complete
elliptic integral of the second kind.

Corollary 1. For r ∈ (0,1), then

1+ r′2(
1
2

log
4
r′
− γ)< E(r)< 1+ r′2(

1
2

log
4
r′
−δ),

where the constants γ =
1
4

and δ = 1+ log2− π

2
are best possible.

Remark 1. Computational and numerical experiments show that, on the whole
interval (0,1), neither the upper bound nor lower bound in Corollary 1 is comparable
with the bounds in (1.1) and (1.2).

3. APPLICATION TO THE GENERALIZED HERSCH-PFLUGER FUNCTION

Three related functions µa,ma, and ϕa
K are defined as follows [2]: for a ∈ (0,1/2),,

r ∈ (0,1), and K ∈ (0,∞),

µa(r) =
π

2sinπa
K ′

a(r)
Ka(r)

,

ma(r) =
2

πsinπa
r′2Ka(r)K ′

a(r),

ϕ
a
K(r) = µ−1

a (µa(r)/K).

The function ϕa
K is called the generalized Hersch-Pfluger function. When a = 1/2,

the function reduces to the Hersch-Pfluger distortion function. These functions have
many important applications in the distortion theory of quasiconformal mappings and
Ramanujan’s modular equations [2–6, 12, 14].

We have the following sharp functional inequalities (see [13] and [10], respect-
ively): for all r ∈ (0,1),

2(E(r)−1)< ma(r)+ logr <
R(a)
π−2

(E(r)−1), (3.1)

and

ϕ
a
k(r)< r1/K exp

{
(1− 1

K
)(ma(r)+ logr)

}
(3.2)

for K ∈ [1,∞).
Combining the above inequalities (3.1), (3.2) and Corollary 1, we obtain a sharp

functional inequalities for the generalized Hersch-Pfluger function.

Corollary 2. For a ∈ (0,1/2] and K ∈ [1,+∞), the inequality

ϕ
a
k(r)< r1/K exp

{
(1− 1

K
)

R(a)
π−2

r′2(
1
2

log
2
r′
+

π

2
−1)

}
holds for all r ∈ (0,1).
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