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Abstract

Climate model simulations' outputs are prone to biases compared to observations;

furthermore, climate projections can be very different in modelling future temper-

ature characteristics. One possible solution for reducing uncertainty and eliminat-

ing possible systematic errors within climate projections is the bias-adjustment of

the raw climate model data. We used the quantile mapping method for bias-

adjustment of a mini ensemble consisting of 8-member high-resolution (0.11�)
regional climate model simulations provided by the CORDEX community. As the

method requires a reliable observational dataset serving as reference data, we used

the quality controlled and homogenized observational dataset: CARPATCLIM.

Quantile mapping bias-adjustment technique was applied on the following vari-

ables: daily mean, minimum and maximum temperature. We analysed changes

in mean temperature characteristics and of climate indices for future periods of

2021–2050 and 2070–2099 with respect to the reference period 1976–2005 for the

Carpathian Region. The selected climate indices are based on minimum (frost

days, FD) and maximum daily temperature data (summer days, SU). Our bias-

adjusted RCM results suggest a similar degree of mean temperature change as the

raw RCMs' data. Bias-adjusted and raw RCM data project a remarkable annual

temperature increase on average under the RCP8.5 scenario (1.4�C and 3.9�C by

2021–2050 and 2070–2099, respectively). The highest temperature increase is

likely to occur in summer: it is 4.3�C on average by the end of the 21st century.

More pronounced differences were found for the projected changes of the number

of summer and frost days based on the bias-adjusted and the raw RCM data. Our

results draw attention to the fact that bias-adjusted RCM data are crucial for the

provision of regional climate change impact and adaptation studies for the

Carpathian Region.
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1 | INTRODUCTION

One of the greatest challenges that humanity has ever
been faced with is climate change. Although, climate
change is detected globally; observations and projections
show remarkable regional characteristics of climate
change (IPCC, 2014). Reliable information is needed in
support of building proper mitigation and adaptation
strategies at global and regional levels. Climate models
can be useful tools for providing such valuable informa-
tion on human induced climate change (IPCC, 2013).
However, global and regional climate models (GCM and
RCM, respectively) can provide information on climatic
conditions only with uncertainties: climatic parameters
derived from climate model simulations are encumbered
with a certain degree of uncertainty as climate models are
characterized by biases compared to observations (Torma
et al., 2008, 2011; Sillmann et al., 2013; Kotlarski
et al., 2014; Torma, 2019). The main sources of uncer-
tainties of climate projections can be attributed to different
factors: internal variability, the implemented parameteri-
zation and model dynamics (model or response uncer-
tainty), the prescribed greenhouse gas emission scenarios
(scenario uncertainty), or climate model systematic errors
(Giorgi, 2005).

In order to quantify existing uncertainties and provide
credible climate change signals the assessment of RCMs as
members of an ensemble is recommended (Beniston
et al., 2007). During the last two decades, several interna-
tional projects have been accomplished based on RCM pro-
jections targeting the European continent. First of its kind
was PRUDENCE (Predicting of Regional Scenarios and
Uncertainties for Defining European Climate Change Risks
and Effects, 2001–2004; Christensen and Christensen, 2007),
followed by ENSEMBLES (Ensembles-Based Predictions of
Climate Changes and Their Impacts, 2004–2009; Hewitt and
Griggs, 2004) while CECILIA (Central and Eastern Europe
Climate Change Impact and Vulnerability Assessment,
2006–2009; Halenka, 2007) ran in parallel with it.

Upon completion of the aforementioned European
based projects another and still ongoing international ini-
tiative, the Coordinated Regional Downscaling Experi-
ment (CORDEX, Giorgi et al., 2009) was launched.
CORDEX provides enormous amount of RCM data for
several sub-regions of the world, with EURO-CORDEX
(Jacob et al., 2014) and Med-CORDEX (Ruti et al., 2016)
as its European branches. Noting that, these valuable
RCM simulations may exhibit substantial systematic
errors compared with observations. Post processing the
raw climate simulation data in order to eliminate those
systematic errors is called bias correction. During such
process, we ensure the equal means between the refer-
ence dataset (observation) and the bias-corrected climate

simulation data (Déqué et al., 2007). During the last
decades several methods have been developed in favour
of ensuring to fit the whole distribution of a given meteo-
rological variable of climate model simulation to observa-
tions (Berg et al., 2012; Lafon et al., 2013). Considering
several methods available, the non-parametric quantile
mapping method is among the best methods in terms of
reproducing statistical properties such as mean, standard
deviation, quantiles, etc. The fact that the quantile map-
ping method is easy to implement makes it popular
among the climate research community (Gudmundsson
et al., 2012; Fang et al., 2015).

A crucial point for all bias correction methods is the
reliable observational dataset that serves as reference. In
general, a high-resolution, quality controlled and homog-
enized observational dataset is required by any bias cor-
recting method. Following previous works (Torma, 2019;
Torma et al., 2020) the high-resolution and high quality
observational CARPATCLIM (Szalai et al., 2013) dataset
served as reference for the present study. CARPATCLIM
covers the Carpathians and its surrounding territories
including the Carpathian Basin (hereafter the Carpathian
Region). Present work focuses on bias adjustment of
daily temperature data derived from RCM simulations
along with their evaluation and assessment of projected
changes including climate indices.

This work aims to provide supporting information on
RCMs' performance over the Carpathian Region, which
is considered essential for further research such as risk
assessment, mitigation and impact studies. Overarching
aim of the authors is to create a bias-adjusted tempera-
ture database in supplement of an available bias-adjusted
precipitation dataset (Torma et al., 2020) for the
Carpathian Region, based on EURO- and Med-CORDEX
regional climate model simulations for the selected
periods: 1976–2005, 2021–2050 and 2070–2099. Final
steps towards this purpose are reported here.

2 | DATA AND METHODS

2.1 | The region of interest: Carpathian
region

Carpathian Region covers mostly central-eastern European
territories within 44�–50� North and 17�–27� East. The
Carpathian Region can be characterized as a region where
warm dry Balkans meets with temperate Central Europe
and cold continental Eastern Europe (UNEP, 2007), thus
the climate across the Carpathian Region is considered as
the synergy of oceanic, continental, and Mediterranean
effects, as well as the complex orography (Torma and
Giorgi, 2020). The altitude differences within the Carpathian
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Region exceed 2,500 m, as lowlands and mountain peaks
lie between 27 and 2,655 m above sea level (Figure 1).
Our analysis focuses on a region that hosts more than
20 million inhabitants, and is covered by the CARPATCLIM
dataset, which partially encompasses the following coun-
tries: Austria, Czech Republic, Croatia, Hungary, Poland,
Romania, Serbia, Slovakia, and Ukraine. Furthermore, rich
biodiversity characterizes the Carpathian Region, which in
fact embraces a significant part of the drainage basins of the
two main rivers of the region: Danube and Tisza (UNEP,
2007). Several studies have discussed the climate of the
Carpathian Region considering the CARPATCLIM dataset
as reference (e.g., Birsan et al., 2014; Spinoni et al., 2015; Kis
et al., 2017).

2.2 | The reference dataset:
CARPATCLIM

Since observational dataset serving as reference might
have a larger impact on the projected possible changes in
climate indices than the applied bias adjustment method,
the selection of reference dataset for bias adjustment
procedures is crucial (Casanueva et al., 2020). The
CARPATCLIM dataset serving as reference dataset for pre-
sent study provides in total 16 meteorological variables on
a daily basis and related derived indicators encompassing
the Carpathian Region at 0.1� × 0.1� horizontal grid reso-
lution covering the period 1961–2010 (Szalai et al., 2013).
The CARPATCLIM database relies on station observa-
tions, its data is state-of-the-art quality controlled, covers
the Carpathian Region (approximately 500,000 km2) and
is freely available for scientific purposes through the
following link: http://www.carpatclim-eu.org.

In total 415 stations from a network of weather sta-
tions covering the Carpathian Region were used in col-
lecting near surface daily temperature data (Spinoni
et al., 2015). All data available under the framework of
CARPATCLIM has been homogenized (Szentimrey and
Bihari, 2006) and interpolated onto a regular grid
(Szentimrey, 2007). CARPATCLIM is based on higher
station density network than other available observa-
tional datasets covering the region of interest (e.g.,
E-OBS, Haylock et al., 2008). Furthermore, in terms of
data homogenization and data quality control this dataset
can serve as basis for validation studies and for instance
reference data for bias correction purposes over the
Carpathian Region.

2.3 | Additional observational dataset

The E-OBS database (Cornes et al., 2018) is also used
for this study, as it served as an additional reference
climate dataset for the validation of RCM simulations.
E-OBS is an observation-based, gridded dataset, cover-
ing Europe with a horizontal resolution of 0.1� × 0.1�

and 0.25� × 0.25�. The purpose of the E-OBS database
was originally the validation of RCM simulations,
but it is also an appropriate tool to analyse European
climate. Currently seven meteorological variables are
available on a daily basis from 1950 until 2020 (it is
updated every 6 months).

For our aim, to validate the RCM simulations,
temperature fields were downloaded from E-OBS
v22.0e on the finer grid and the seasonal average
values were calculated for the Carpathian Region, for
1976–2005.

FIGURE 1 Location and topography of the Carpathian region. Location of the analysis region within the European domain (area filled

with red colour on the panel to the left; red and yellow boxes depict EURO- and med-CORDEX domains, respectively); topography based on

the GTOPO30 database (panel in the middle); the ensemble mean topography of the assessed high resolution RCMs (0.11�). Thin contour

lines represent topography with intervals of 500 m. units are m. note that the territory of Bosnia and Herzegovina is not covered by the

CARPATCLIM dataset [Colour figure can be viewed at wileyonlinelibrary.com]
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2.4 | RCM simulations

Main motivation of present work was to extend the avail-
able CARPATCLIM based bias-adjusted precipitation
RCM dataset for the Carpathian Region (Torma
et al., 2020) with additional variables as follows: mean
temperature, minimum and maximum temperature. The
selected mini ensemble includes the RCMs presented in
the works of Torma (2019) and Torma et al. (2020) and
consists of the eight RCM simulations, which are
reported in detail in Table 1.

We analysed a mini ensemble, which consists of only
individual RCM simulations (although, for several RCMs
additional GCM-driven simulations are available) in order
not to have a single RCM dominate the mini ensemble.
All RCM simulations were accomplished under the frame-
work of EURO-CORDEX and Med-CORDEX. More details
of these integration domains are depicted in Figure 1 and
reported in detail on the official CORDEX homepage:
http://cordex.org/. In general, most CORDEX RCM

simulations are available at different horizontal grid spac-
ings: 0.11� and 0.44�. For present study, we used only
high-resolution RCM data at horizontal grid spacing of
0.11�, which corresponds to about 12.5 km. The members
of the selected mini ensemble are ALADIN, RegCM (Med-
CORDEX), CCLM, HIRHAM, RCA4, RACMO, REMO,
and WRF (EURO-CORDEX). All selected RCM simula-
tions follow the high-end RCP8.5 scenario (Moss
et al., 2010). RCP8.5 is a pessimistic scenario with a slow
rate of economic development (Riahi et al., 2011). It means
that the radiative forcing surplus compared to the pre-
industrial will be 8.5 W/m2 by 2,100. RCP8.5 assumes high
population, modest energy improvement (high fossil-
intensity of the energy sector) and high greenhouse gas
emission. The main sources of greenhouse gases are CO2

(energy sector), N2O (fertilizers) and CH4 (rice, livestock).
In order to achieve evaluation of RCM simulations

and furthermore do bias adjustment of simulations all
data must share the same horizontal grid. For this pur-
pose, all data were interpolated onto a common grid
spacing of 0.11� by following previous work (Torma
et al., 2015). The interpolation was performed by using
the Climate Data Operators software (CDO, https://code.
mpimet.mpg.de/projects/cdo). The distance-weighted
average remapping method was used as it was found to
be the most spatial pattern consistent between different
resolutions (Torma et al., 2015). Hereafter all data are
evaluated and reported on the common 0.11� grid.

2.5 | Bias adjustment method

In climate research, bias adjustment or bias correction is
widely used in order to calibrate raw or biased climate model
data to point-scale or gridded observational data (Rojas
et al., 2012; Casanueva et al., 2018; Galmarini et al., 2019).
Several methods are available for such purposes including
simple and more complex techniques (Lafon et al., 2013;
Sunyer et al., 2015; Rajczak et al., 2016; Kis et al., 2017). It
should also be highlighted that none of the available tech-
niques, regardless of their complexity, is designed to address
the fundamental shortcomings of the model used
(Maraun, 2016). To minimize model shortcomings, the tran-
sient RCM simulations in CORDEX are preceded by careful
tests to identify the best performing parameterization settings
and physics configurations (Giorgi, 2019).

Following step-by-step the bias adjustment method
reported in the work of Mezghani et al. (2017) and in
accordance of our previous work (Torma et al., 2020) the
biases presented in our 8-member mini ensemble were
adjusted by a percentile-based correction method or qua-
ntile mapping (Wang et al., 2016). The applied bias
adjustment technique is considered to be flexible and to

TABLE 1 Overview of regional climate models used in the

present study. Models provided by the med-CORDEX framework

labelled with an asterisk

Model Modelling group Reference

ALADIN 5.2* Centre national de
Recherches
Meteorologiques, France

Colin et al. (2010)

CCLM 4.8.17 Climate limited-area
modelling community,
Germany

Rockel
et al. (2008)

HIRHAM 5 Danish Meteorological
Institute

Christensen
et al. (1998)

RCA4 Swedish Meteorological
and Hydrological
Institute, Rossby Centre,
Sweden

Kupiainen
et al. (2011)

RACMO 2.2 Royal Netherlands
Meteorological Institute,
the Netherlands

Meijgaard
et al. (2012)

RegCM 4.3* International Centre for
Theoretical Physics,
Italy

Giorgi
et al. (2012)

REMO Climate Service Center,
Germany

Jacob et al. (2001)

WRF 3.3.1 IPSL (Institut Pierre
Simon Laplace) and
INERIS (Institut
national de
l'Environnement
industriel et des
RISques), France

Skamarock
et al. (2008)
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be a prominent representative of one of the most fre-
quently used techniques by the climate research commu-
nity for such purposes (Teutschbein and Seibert, 2013;
Rajczak et al., 2016; Kis et al., 2017).

Quantile mapping employs a quantile-based transforma-
tion of distributions in order to adjust the variance of simu-
lated distribution to match the variance obtained from the
observations. As any other bias adjustment method quantile
mapping has also specific limitations as it is considered to be
sensitive to the quality and the length of the reference dataset
(Fowler and Kilsby, 2007), which in fact especially reflects on
the extremes as values that are possible, but not observed dur-
ing the reference period cannot be taken into account
(Themeßl et al., 2010). All data wasmasked out for the region
covered by CARPATCLIM (Figure 1). Following the work of
Mezghani et al. (2017), the adjustment of all simulated daily
temperature data (mean, minimum and maximum) to the
observations was performed for each grid cell on that com-
mon grid. The correction factors were computed for each sea-
son for each grid cell in order to take into account the
seasonal behaviour of biases. The quantiles of the RCM simu-
lations for the control period (1976–2005) were mapped onto
the corresponding quantiles in the observations using
the entire 50-year reference period of CARPATCLIM
(1961–2010). This was done in accordance with the above-
mentioned limitation of the method used, in order to mini-
mize the sensitivity of the choice of calibration period. Finally,
the seasonal data were merged to construct the following
30-year periods: 1976–2005, 2021–2050 and 2070–2099.

2.6 | Temperature climate indices

Compared to the changes of monthly mean temperature,
changes of extreme values may have larger effect for exam-
ple, on human health and agriculture. Therefore, in the pre-
sent analysis not only average temperature changes, but
temperature related climate indices were also calculated. Of
the 27 climate indices defined in total for climate studies by
the Expert Team on Climate Change Detection and Indices
(ETCCDI, for example, Sillmann et al., 2013), we selected
two. One of them is the number of summer days (SU), which
means that the daily maximum temperature is greater than
25�C. The other one is the number of frost days (FD). An FD
occurs, when the daily minimum temperature is below 0�C.

3 | VALIDATION OF RCM
SIMULATIONS AGAINST
CARPATCLIM

We present an evaluation of bias-adjusted daily tempera-
ture data and an assessment of expected changes in

temperature for the Carpathian Region. The results for
the seasonal averages are reported first, followed by the
results for the selected climate indices.

3.1 | Seasonal temperature means

Figure 2 presents the seasonal (winter: DJF; spring:
MAM; summer: JJA and autumn: SON) mean tempera-
ture over the Carpathian Region (Figure 1) based on the
raw and bias-adjusted individual RCM simulations, the
E-OBS and the CARPATCLIM data for the reference
period: 1976–2005. E-OBS is almost identical to CAR-
PATCLIM. The difference in the seasonal mean tempera-
ture between these two data sets is less than 0.5�C.

In general, most RCMs underestimate the seasonal
mean temperature over the region of interest for all sea-
sons, with the exception of the summer months. Biases of
the raw RCM simulations vary between −3.5�C
(RACMO, MAM) and + 2.8�C (RegCM, JJA). ALADIN,
HIRHAM and RACMO underestimate CARPATCLIM
data regardless of the season, while in the case of REMO
an overall overestimation can be found. Taking into
account the discrepancies in all the four seasons,
RACMO shows the greatest bias (−2.3�C) on average,
and CCLM presents the smallest (+ 0.1�C).

The best performing simulation of minimum temper-
ature values (Figure S1) is HIRHAM, while the greatest
difference relative to CARPATCLIM (+2.7�C) based on
the average of the four seasons' biases occurs in the case
of RACMO again. Analysing maximum temperature
(Figure S2), the error is the largest for HIRHAM and the
smallest for ALADIN (the annual discrepancies from the
reference database are −2.1�C and +0.8�C, respectively).
The greatest negative ensemble average bias (Tmin: 1.9�C;
Tmean: 1.7�C; Tmax: 2.1�C) occurs in spring, the smallest
(Tmin: 1.1�C; Tmean: 0.7�C; Tmax: 0.5�C) in winter. Bias
correction leads to negligible differences between the
RCM simulations (<0.2�C) and the reference database in
the case of minimum, mean and maximum temperature
as well (Figures S1 and S2).

We turn our attention to the spatial distribution of
seasonal mean temperature fields during the period of
1976–2005 over the Carpathian Region. Figure 3 shows
the spatial distribution of mean seasonal temperature for
the ensemble mean of the eight RCMs along with the
corresponding field in CARPATCLIM. Overall, the sea-
sonal characteristics are well represented by the RCMs.
In general, RCMs' performance in representing seasonal
mean temperature over the Carpathian Region has sub-
stantially improved by the applied bias adjustment,
which reflects in the spatial plots presented in Figure 3.
The bias adjustment increases spatial variability in the
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temperature fields, especially in regions with distinct
topography, which is in line with the observations.

In order to further explore the ability of RCMs' in rep-
roducing present climatic conditions over the Carpathian
Region, additional metrics were computed for the refer-
ence period 1976–2005 and are reported in Figure 4. The
degree of statistical similarity between the climatic fields
of RCMs and the reference dataset can be concisely quan-
tified in the form of the normalized Taylor diagram
(Taylor, 2001). The Taylor diagrams in Figure 4 show the
centered (or bias removed) root mean square error
(RMSE), spatial correlation and spatial standard devia-
tion (STDV). The geometric relationship between these
three metrics allows that the performance of each RCM

relative to the reference dataset (CARPATCLIM) can be
directly compared on the same diagram (e.g., for each
season separately). The azimuthal position of a symbol in
Figure 4 gives information on the spatial correlation coef-
ficient between the RCM simulation and the CAR-
PATCLIM dataset. The radial distance from the pole of
the sector to the symbol representing an RCM is propor-
tional to the pattern STDV normalized by the reference
standard deviation. Whilst, reference positioned along
value 1 on axis x. In addition, the distance of any symbol
from this point indicates the centered RMSE (noting that
the centered RMSE values were also standardized with
the STDV of the reference data). Consequently, perfect
match with reference data would lead to a symbol located

FIGURE 2 Seasonal mean

temperature over the Carpathian

region with (bottom) and without

(top) bias correction for all RCMs

(see Table 1) and the E-OBS

database, for the period 1976–2005
compared to the CARPATCLIM

dataset. Open boxes depict the

reference database: CARPATCLIM

[Colour figure can be viewed at

wileyonlinelibrary.com]
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directly on the reference point, thus the symbol posi-
tioned closest to this reference point represents the best
performing RCM.

The Taylor diagrams reported in Figure 4 are based
on 30-year (1976–2005) seasonal means over grid points
covering the Carpathian Region. The bias adjustment
has an unequivocal effect on data as all bias-adjusted
RCM data uniformly fit with CARPATCLIM (open cir-
cles in Figure 4). It is interesting to see, that our addi-
tional observational dataset (E-OBS) holds results
similar to the best performing raw RCMs. Differences
between E-OBS and CARPATCLIM can be attributed to
the lower number of stations and different data
processing techniques used for the E-OBS dataset com-
pared to CARPATCLIM. It is also interesting to see the
behaviour of each RCM over the four seasons: the spa-
tial correlation coefficients are relatively high and found
to be around 0.9 in all seasons, while highest differences
among the RCMs are found for the summer period.
Accordingly, RCA4 shows the lowest degree of similar-
ity regarding the spatial distribution of mean tempera-
ture compared to CARPATCLIM during winter,
meanwhile RCA4 is among the best performing RCMs

during summer. WRF exhibits qualitatively modest per-
formances in winter and autumn. More specifically, dur-
ing autumn and winter WRF exhibits the largest spatial
variability (STDV ratio exceeds 1.5 in DJF) along with
the largest centered RMSE. The STDV ratio is the lowest
in case of RegCM regardless of the season. Considering
all measures depicted on diagrams represented in
Figure 4, CCLM and ALADIN are found to be among
the best performing RCMs in all seasons. Similar find-
ings are valid for the other bias-adjusted variables: mini-
mum and maximum temperature (Figures S3 and S4).

3.2 | Climate indices

In addition to the seasonal means, it is essential to assess
the bias-adjusted variables at much finer temporal scale
(e.g., daily) in order to investigate climate extremes or cli-
mate indices especially over region with complex topog-
raphy (Nemec et al., 2013; Dumitrescu et al., 2015; Torma
et al., 2015). We present results for the following indices
based on different variables: FD (daily minimum temper-
ature) and SU (daily maximum temperature).

FIGURE 3 Ensemble seasonal

average of RCM simulations of near

surface temperature based on raw

(first column) and bias-corrected

(second column) data. The reference

dataset, CARPATCLIM is depicted

on subpanels: C, f, i and l. the

reference period is 1976–2005. Units
are �C. thin contour lines represent

the mean topography of RCMs with

intervals of 500 m [Colour figure can

be viewed at wileyonlinelibrary.com]
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FIGURE 4 Taylor diagrams for summarizing the statistical characteristics of raw (filled circles) and bias-corrected RCM data (open

circles) with respect to CARPATCLIM, for the period 1976–2005. The four panels refer to the four seasons (DJF, MAM, JJA, and SON).

Noting that grey open circles refer to an additional observational dataset: E-OBS [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Number of Forst days (FD) versus annual mean daily minimum temperature during the reference period of 1976–2005.
(each point represents 1 year.) the units are �C (x-axis) and days for FD [Colour figure can be viewed at wileyonlinelibrary.com]
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The number of FD shows a strong correlation with
annual mean minimum temperature for the period 1976–
2005 (Figure 5). In the case of the adjusted simulations,
the variability becomes smaller. While according to the
raw values, FD varies between 40–200 days/year, after
the bias correction it is between 70–160 days/year in the
reference period. While the 30-year mean FD varies
between the 8 RCMs as follows: 84–164 days/year and
110–113 days/year before and after the bias correction,
respectively. In other words, the bias adjustment of the
daily minimum temperatures led to lower variability of
the simulated FD. Two simulations can be separated
from the others and the CARPATCLIM, as they present
colder conditions. Namely, ALADIN and RACMO show
lower annual mean minimum temperature and more FD
as well (see also Vautard et al., 2021). After the bias cor-
rection, all the RCM-simulated values are in a smaller
range and none of the RCMs can be separated easily from
the others.

In the case of SU, similar conclusions can be drawn
(Figure 6). The higher the annual mean maximum tem-
perature, the more SU occurs in general. Variation of raw
simulations is greater than variaton of the adjusted values,
but overall it is smaller compared to FD. Moreover, none
of the RCM simulations can be separated by showing con-
siderably warmer or colder climatic conditions. However,
HIRHAM and RACMO simulate somewhat lower annual
mean maximum temperatures in the reference period,
but after the bias correction it has been eliminated.
According to the adjusted RCM outputs, the annual
number of SU is found to be between 20 and 100 days/
year in 1976–2005. Specifically, the 30-year mean
SU based on bias corrected RCM data varies between
57–58 days per year, while without the correction it is
between 26 and 69 days per year.

4 | ESTIMATED TEMPERATURE
CHANGES

4.1 | Projected mean temperature
changes by 2021–2050 and 2070–2099 with
respect to 1976–2005

In this section we turn our attention to the simulated
changes for future periods (2021–2050 and 2070–2099),
with respect to the historical 30-year period (1976–2005).
The ensemble mean of bias-corrected RCM simulations
shows a clear increasing trend in annual mean tempera-
ture; to smooth out year-to-year variability we also con-
sider the 5-year moving average (Figure 7).

Naturally, in 1976–2005 there are cooler and warmer
years compared to the 30-year average over the respective
period considering the individual ensemble members.
This is also true for 2021–2050, but in 2070–2099 the tem-
perature anomaly is positive in every year according to
every RCM simulation. Similar findings are valid for min-
imum and maximum temperature changes (Figures S5
and S6). In the reference period the average temperature
was 9.1�C, while in 2021–2050 and in 2070–2099 it is
10.5�C (7.6–13.1�C) and 13.0�C (10.8–15.7�C), respec-
tively. The minimum and maximum annual mean tem-
perature changes simulated by the individual ensemble
members range between −1.5�C and + 4�C for the period
2021–2050 (with respect to 1976–2005). If we take into
account all the RCM simulations and all the 30 years
(2021–2050), only 2% shows negative anomaly. For 2070–
2099 an increase by at least 2.8�C is projected, and in
some years it can reach 4.7�C as well according to the
ensemble mean of the RCM simulations. If we take into
account the individual RCM simulations and years, the
greatest change is of 6.7�C, while the smallest is of 1.7�C;

FIGURE 6 The same as Figure 5, but for the summer days (SU) and versus annual mean maximum temperature during the reference

period of 1976–2005 [Colour figure can be viewed at wileyonlinelibrary.com]

TORMA AND KIS 9

http://wileyonlinelibrary.com


the standard deviation is about 1.0�C. The variability tak-
ing into account the individual RCM simulations aver-
aged over the respective 30 years is somewhat higher in
2070–2099, when the standard deviation of temperature
anomalies is 0.62�C (in 2021–2050 it is 0.40�C). We
note that years in climate model simulations can not
be regarded as real, calendar years (i.e., it is can not
be expected, that in 2071 the average temperature will be
higher exactly by 3.4�C compared to the reference
period), instead we can use them as averages for longer
time slices (e.g., 30 years).

The applied bias correction method did not alter the
sign of the change: higher mean temperature values are
simulated for the future in every season (Figure 8). The
projected mean temperature change is clearly greater by
the end of the 21st century compared to 2021–2050. With
the greatest mean temperature increase occurring in
summer: 1.7�C and 4.3�C on average, for 2021–2050 and
2070–2099, respectively. The smallest increase (<1.2�C) is
simulated for winter for the near future, while by the end
of the 21st century it is projected for spring (3.5�C). The
ensemble spread exceeds 2�C in winter and in summer

FIGURE 7 Mean temperature change based on the ensemble mean of bias-corrected RCM simulations compared to the 30-year average

over the period 1976–2005. The red line represents the 5-year moving averages. The blue line shows the difference between the raw and bias-

adjusted temperature anomalies with respect to their reference means, while grey lines depict minimum and maximum of the ensemble

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Mean temperature change for the periods 2021–2050 and 2070–2099 based on the ensemble mean of raw and bias-corrected

RCM simulations with respect to 1976–2005 [Colour figure can be viewed at wileyonlinelibrary.com]
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(in 2070–2099), while in the transitional seasons it
remains under 1.8�C.

The projected spatial patterns of seasonal warming are
very similar in the raw and bias adjusted RCM ensembles
with the greatest increase in summer mean temperature
occurring in the South-Eastern parts of the Carpathian
Region (Figure 9). Specifically, in the high end RCP8.5 sce-
nario RCM simulations projected a possible future where
during JJA some of the highest peaks of southern flanks of
the Southern Carpathians and the South-Eastern regions
of the Carpathian Region might be exposed to warming of
more than 5�C. In short, the JJA warming has its maximum
signal over the Southern and its minimum over the North-
ern parts of the Carpathian Region, thus our findings con-
firm previous studies accomplished over European regions
including our region of interest (Giorgi and Lionello, 2008;
Giorgi and Coppola, 2010; Jacob et al., 2014).

This JJA temperature change gradient might be attrib-
uted to MAM and JJA precipitation decrease leading to
soil drying and less cloud cover (Coppola et al., 2021). The
well-known European winter temperature gradient can
also be detected in the mean winter temperature change

present over the Carpathian Region (2070–2099), when
the largest warming is projected in the northeast and the
weakest warming in the southwest territories. This
warming pattern to some extent is linked to the Arctic
warming amplification, for which an important contribu-
tion (among others) is the snow albedo feedback that is
largely governed by the continental snow cover loss
(Walsh, 2014; Dai et al., 2019; Coppola et al., 2021).

In the transitional seasons, no similar temperature
change gradients are present. In addition, spatial patterns
in seasonal temperature changes (MAM and SON) show
orographic origin. Accordingly, we identified tempera-
ture changes as robust in regions in which most of the
models (6 out of 8 RCM in our case) agree on the sign of
the signal. Furthermore, seasonal temperature changes
presented in Figure 9 are robust and significant at the
90% confidence level (Student's t test) in all grid points
regardless of season. Overall, we can conclude the bias
adjustment did not significantly change either the extent
of the seasonal temperature changes or their spatial dis-
tributions, but it rather had an impact on the absolute
temperature values (Figure S7).

FIGURE 9 Ensemble seasonal average of RCM simulations of near surface temperature changes based on raw (first column) and bias-

corrected (second column) data. The reference period is 1976–2005. Units are �C. thin contour lines represent the mean topography of RCMs

with intervals of 500 m [Colour figure can be viewed at wileyonlinelibrary.com]
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4.2 | Projected changes of SUand FDby
2021–2050 and 2070–2099 with respect to
1976–2005

As both climate indices (SU and FD) might have signifi-
cant impacts on agriculture, especially by the end of the
century, it is important to assess their future characteris-
tics. Climate change signals are compared for the
selected climate indices for 2021–2050 and 2070–2099
with respect to 1976–2005 (Figure 10). Our results high-
light an increasing frequency for SU along with a
decreasing frequency for FD. The bias adjustment
slightly affected the changes in climate indices, which
effect is more evident for the far future. Bias adjustment
was manifested in a stronger increase in SU and in a
more modest decrease in FD for both time slices. Over-
all, RCMs projected greater decrease in FD (~50 days)
than increase in SU (~44 days) by the end of the 21st
century. Noting that, the number of frost days is also rel-
evant for the energy sector and our results are in line
with previous works (e.g., Coppola et al., 2021; Vautard
et al., 2021).

5 | CONCLUSIONS

Temperature and temperature-related climate indices
were analysed in this study for the Carpathian Region
using CORDEX simulations. In the historical time period
(1976–2005) mean temperature was underestimated by
the RCM simulations in every season, except for summer.
The bias adjustment was carried out on a seasonal basis
and the reference was the CARPATCLIM dataset. After
the correction, the variability between the individual
RCM simulations decreased and the spatial distribution
became more in line with observations (Figures 3 and 4),
while the sign of the projected changes remained the
same (Figure 9).

For 2021–2050 and 2070–2099 a remarkable annual
temperature increase (on average 1.4�C and 3.9�C, respec-
tively) is projected compared to 1976–2005 under the
RCP8.5 scenario. The highest temperature rise is likely to
occur in summer: it is 4.3�C on average by the end of the
21st century (however, the ensemble spread encompasses
~2�C). JJA warming has its maximum signal over the
southern and its minimum over the northern parts of the
Carpathian Region. In the mean winter temperature
change, a gradient can also be detected, when the weakest
warming is projected in the northeast and the strongest
warming in the southwest territories. Seasonal tempera-
ture changes are robust and significant at the 90% confi-
dence level in the entire domain regardless the season.

The number of SU and FD was also calculated for the
region of interest, for the three 30-year long time slices as
they might have important impacts on agriculture and
health. In some countries in the Central European region
a change of these indices is already detected. For example
in most stations in Austria an increase of SU is experi-
enced in the 1961–2000 time period (Nemec et al., 2013).
In Romania a significant increase of SU is detected
(almost in the entire domain), and mainly in the central
parts of the country and the southeastern regions the
number of FD showed a significant decrease in 1961–
2013 (Dumitrescu et al., 2015). SU significantly increased
(5.3 days per deacade) in Bosnia and Herzegovina as well
between 1961 and 2015, while FD decreased by 3.3 days
per decade (Popov et al., 2018).

According to the present analyses, in the future time
periods the number of SU will increase, while FD is likely
to occur less frequently (Figures S8 and S9). Our results
are in line with similar studies focusing on the European
region. FD is projected to decrease by 26% in Europe,
with the greatest absolute changes in the north western
parts of the domain (Fallmann et al., 2017). In Austria a
general increase of SU is simulated by RCMs, it can
exceed 40 days in the southeastern areas in the far future,
in the case of RCP8.5 scenario (Olefs et al., 2021). SU is

FIGURE 10 Changes in number of Forst days (FD) with

respect to the change in the number of summer days (SU). Dots

and squares are for near future (2021–2050), whilst crosses and

triangles mark far future changes (2070–2099). Closed triangles

and squares depict the ensemble mean of the analysed 8 raw

RCMs, whilst the open triangles and squares represent the

ensemble mean of the bias-corrected RCM data. The reference

period is 1976–2005. The units are days [Colour figure can be

viewed at wileyonlinelibrary.com]
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likely to increase in the near future in Croatia as well,
especially in the coastal locations (by ~10 days; Brankovic
et al., 2012). RCM simulations show an increase in the
number of SU and a decrease in the case of FD in
Ukraine (Krakovska et al., 2021), in Kolasin, Montenegro
(Buric and Doderovic, 2020) and in Cluj Napoca,
Romania (Ciupertea et al., 2017).

As part of future studies, comparative investigations
will be carried out over sub-regions within the
Carpathian Region characterized by fundamentally dif-
ferent orography (lowland and mountainous). The bias-
adjusted daily RCM data used for present study is pub-
licly available at https://doi.org/10.5281/zenodo.6393784.
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