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Abstract

In a statistical process it is important to make estimation on the standard error of our 
calculated parameters. There are many different algorithms to do it. In our article, we 
discuss closed formulas on some parameters. We describe the bootstrap and the jack-
knife general simulation algorithms. We describe the Fay’s BRR jackknife method too. 
Finally, we describe a mixed bootstrap-jackknife algorithm which applied in the Na-
tional Assessment of Basic Competencies (NABC).
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Prologue

In statistical calculations there are many types of errors: error of the sample, 
error between subject or error of the applied statistical method (e.g. in 
approximation). The standard error is one of the typical statistical errors: this 
is the average error of the parameters evaluation.

In the first chapter we show some parameter’s standard error’s formula (mean, 
standard deviation, skewness, kurtosis). In the second chapter we describe the 
jackknife algorithm and its generalization. After this, we describe Fay’s BRR 
jackknife method (Fay, 1984), (Dippo, Fay, & Morganstein, 1984).

In the last two chapters we describe the bootstrap algorithm and the 
combination of the jackknife and bootstrap methods which we applied in the 
National Assessment of Basic Competencies (NABC).
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The formulas of the standard error

When we have independent and identically distributed (i.i.d.) sample we can use 
some close formulas on the standard error of some parameters, like the sample’s 
mean, standard deviation or the skewness and the kurtosis. In this chapter, we 
present the schemes of the standard errors of the following parameters mean, 
standard deviation, skewness and kurtosis (Lehmann & Casella, 1998), (Takács, 
2010), (Takács, 2012).

If we have an i.i.d. sample: The parameters can be calculated by the following 
formulas – mean (X ̅ ), standard deviation (s), skewness (SK) and kurtosis (K):
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𝑆𝑆𝑆𝑆 = ∑ (𝑋𝑋𝑖𝑖−𝑋̅𝑋)3𝑛𝑛
𝑖𝑖=1

𝑠𝑠3 , 

𝐾𝐾 =
∑ (𝑋𝑋𝑖𝑖 − 𝑋̅𝑋)4𝑛𝑛
𝑖𝑖=1

𝑠𝑠4 − 3. 

If we used an i.i.d. sample the standard errors of the parameters 

are these (Lehmann & Casella, 1998): 

𝑆𝑆𝑋̅𝑋 =
𝑠𝑠
√𝑛𝑛

, 

𝑆𝑆𝑠𝑠2 = 𝑠𝑠2√ 2
𝑛𝑛 − 1, 

With larger sample size (more than 100-200 cases) for the stand-

ard error of the standard deviation when we can use approximated 

calculation: 

𝑆𝑆𝑠𝑠 = 𝑠𝑠 1
√2(𝑛𝑛 − 1)

. 

The standard error of the skewness and kurtosis are calculated it-

eratively from this scheme: 

𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = √ 6𝑛𝑛(𝑛𝑛 − 1)
(𝑛𝑛 − 2)(𝑛𝑛 + 1)(𝑛𝑛 + 3) , 

𝑆𝑆𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 2𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒√
𝑛𝑛2 − 1

(𝑛𝑛 − 3)(𝑛𝑛 + 5). 

Unfortunately, in the most cases we  can not use i.i.d. sample (for 

example in the National Assessment of Basic Competencies (NABC) 

the children in each class are connected – so we  can not  say that this 

is an independent sample). When we haven’t got i.i.d. sample we 

,
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The standard error of the skewness and kurtosis are calculated iteratively from 
this scheme:
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Unfortunately, in the most cases we  can not use i.i.d. sample (for example in 
the National Assessment of Basic Competencies (NABC) the children in each 
class are connected – so we  can not  say that this is an independent sample). 
When we haven’t got i.i.d. sample we should use other way to calculate the 
standard error. In these cases we can choose a simulation method. But we use 
these formulas for the following calculation: for each parameters we would like 
to calculate a confidence interval (for example with 95% reliability or in other 
words, 95% significance level). 

On the following chapters we show how we can calculate a confidence interval 
with specific simulation methods.

JACKKNIFE METHOD

The jackknife method (Efron & Gong, 1983) is the easiest method to fix the 
dependency in the sample in an estimation. We can use it in every parameter 
estimation.

We have a sample: 
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We have a sample: 𝑋𝑋1, 𝑋𝑋2, … , 𝑋𝑋𝑛𝑛. We can calculate many parame-

ters from the sample: 

𝑃𝑃(𝑛𝑛) = 𝑃𝑃(𝑋𝑋1,… , 𝑋𝑋𝑛𝑛). 
We define some more parameters like this: 

𝑃𝑃𝑖𝑖 = 𝑃𝑃(𝑋𝑋1,… , 𝑋𝑋𝑖𝑖−1, 𝑋𝑋𝑖𝑖+1, … , 𝑋𝑋𝑛𝑛). 
So, we can calculate with the same calculation method „n” number 

of parameters with the same sample without the „ith” case. Generally, 

we calculate a weighted parameter with weight 1 on „n-1” case and 

weight 0 on the „ith” case. But if we use a weighted parameter calcu-

lating method we can define many other weights. For example we can 

say the following: we use weight (=1) on „n-2” cases and use (=0) on 

two cases. Or weight 1 on „n-2” cases and weight ’’1/2” on two cases, 

etc. 

. We can calculate many parameters from the 
sample:
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So, we can calculate with the same calculation method „n” number of parameters 
with the same sample without the „ith” case. Generally, we calculate a weighted 
parameter with weight 1 on „n-1” case and weight 0 on the „ith” case. But if we 
use a weighted parameter calculating method we can define many other weights. 
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For example we can say the following: we use weight (1) on „n-2” cases and use 
(0) on two cases. Or weight (1) on „n-2” cases and weight (1/2) on two cases, etc.

With these methods there will be many possibilities to calculate the 
deterministic way many Pi  parameters. So, we can order them in ascending 
order. We trim (for example in 95% level) the upper and lower 2,5% Pi  parameters 
– and we have got the confidence interval with a deterministic (so reproducible) 
way.

The problem with this method is the following: the jackknife sample is not 
an i.i.d. sample. But with a  simple mathematical trick this problem can be solved. 
(Miller, 1974). We can define pseudo-parameters with this form:
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These  pseudo-parameters are almost i.i.d (minimal dependency between them) 
so we can use them as a new, i.i.d. sample on our parameter.

FAY’S BRR METHOD

The method (BRR – balanced repeated replication) of Fay (Fay, 1984), (Dippo 
et al., 1984), (Takács, 2010) is analogue with jackknife method. Fay’s original 
method is when we use weight cases with weight (1) on “n-2” cases and (1/2) and 
(3/2) on two other cases. We use all of the possible pairs and calculate a pseudo-
parameter with this weighted method.

Imagine this: in this method every case can be the „pair” of any other case 
(cases who are similar to them, with whom it has got dependency). But if we 
imagine for example a school with classes we find that a student in a class can 
be connected only with one of his or her classmates.

So we will define stratum variables: these stratum variables can be the 
„gender” – boys only can be connected and replaced with other boys. So the 
weight depends on the rule of the replacement. Balance is the weight (like on 
jackkinfe), replace is the stratum variable in the method and repeat means that 
we will calculate enough pseudo-parameters for the easiest estimation on the 
confidence interval.

In this case, we define BRR weights for any cases (random, convex combination 
in each stratum, so the sample size with the weight will be „n”) – and in this 
way this method will be reproducible.
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BOOTSTRAP METHOD

The bootstrap method (Efron & Gong, 1983) is based on the jackknife method 
too. 

So, in the jackknife method we use weighted cases with (1,0) weights. When 
we use the BRR jackknife method we should use stratum variables which variables 
define groups (with smaller sample size) and we define random weights within 
the groups – so these are convex combinations of the smaller groups.

In the bootstrap method we  do not define weights apriori. We define the 
repeated measure size (by Efron and Gong the minimal repeated measure is 
300-500 repeated samples). So we applied 300-500 resamples with a return 
packing sample method (imagine that our sample is in a box and we choose one, 
put it back, choose another one, put it back, etc, etc ect, ect). We do this „n” times 
in each 300-500 resample. 

In each resample we calculate a pseudo-parameter – so from these pseudo-
parameters we can create the confidence interval.

CONFIDENCE INTERVAL CALCULATING METHOD IN NABC

In the National Assessment of Basic Competencies (NABC) we combined the 
BRR jackknife method with the bootstrap method.

The NABC is a whole population survey so there are only a few students who 
do not write the competencies’ tests. In this case, the stratum variable in this 
survey is the „classroom” so we can connect every student with one of his or her 
classmates. This will be the rule of the resample replace.

In the second step we define random weights in the classroom with these 
two rules:

•	 We replace every student only with his or her classmate;
•	 We replace every missing student with his or her classmate;

So each student has a random weight and if we have a class with C students, 
than the final sum of the weights of the students who write the tests will be C. 
It means that we define the convex combination of the student’s weights who 
wrote the tests – and multiply it „up” with the student number of the class.

Finally, we define 101 different replicant weights with this method (we use 
these random weights as BRR replicant weights for 101 repeated sample). We 
calculate with this 101 weights 101 pseudo-parameters and we trim the lowest 
3 and highest 3 ones – so we will get the „middle” 95 ones. This will define us 
the confidence interval.

In this paper, we showed, that a constructive bootstrap method, which takes 
the population specializations in count, can be a better approach.
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The next table contains three different standard error calculation results on 
the 6th grade NABC mathematics and reading achievement for the whole 
population, girls and boys. The average achievement point is the same for all 
three methods, but standard errors are quite different. All the calculations were 
made in IBM SPSS®. In the first case, we used the first discussed closed formula. 
The second column contains the results of the IBM SPSS® built-in bootstrap 
method. The last ones were calculated by our modified bootstrap method, 
developed for the NABC, which uses class-based weights and it takes the 
characteristic of each school into account. 

Table 1: Standard error on average achievement, 6th grade

Achievement point Closed formula Bootstrap NABC method

Mathematics, mean 0,637 0,629 0,429

Reading, mean 0,682 0,683 0,545

Mathematics, girls 0,865 0,941 0,683

Reading, girls 0,952 1,021 0,732

Mathematics, boys 0,934 0,966 0,720

Reading, boys 0,960 0,949 0,823

The level of the closed formula results and the IBM SPSS® bootstrap results 
are similar, usually, but not always, the bootstrap is higher. But we accept the 
NABC method results, because the stratums represent the dependency between 
the students. 

It is important that the IBM SPSS® built-in bootstrap method does not work 
with weights other than integers, so technically we can not make the calculation 
analog to the NABC method.

SAMPLES IN PLANNED ISSUE

These are the applications of the method above in this issue. Nyitrai and 
colleagues researched the parental involvement in two papers (Nyitrai et al., 
2019a), and (Nyitrai et al., 2019b) used it to calculate confidence intervals on 
case numbers and average achievement. Different modes of involvement show 
different achievement levels and different group sizes. Koltói and colleagues 
discussed the parental involvement into school life (instead of involvement into 
studying) in (Koltói et al., 2019a) and (Koltói et al., 2019b). Similarly, they 
calculated confidence intervals on average achievement levels and group sizes 
on both mathematics and reading.

Beside parental involvement, we researched the impact of family background 
on achievement. Harsányi and colleagues’ papers (Harsányi et al., 2019a), and 
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(Harsányi et al., 2019b) used the confidence intervals of case numbers and 
average achievements (calculated as above) of different family  indicators to 
survey the family background impact  on mathematical an reading achievement.

Two more papers discuss achievements of different student groups by 
comparing them along estimated group sizes and ratios. One of the groups is 
the regular athlete students, surveyed by Smohai and colleagues (Smohai et al, 
2019a) (and Smohai et al., 2019b). The other group is the students with special 
needs (SNI) and  BTM students, discussed by Kovács and colleagues in (Kovács 
et al., 2019) and Kövesdi and colleagues in (Kövesdi et al., 2019) by comparing 
group ratios and achievements by confidence intervals.
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