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A B S T R A C T

We introduce a multidimensional multiblock clustering (MDMBC) algorithm in this paper. MDMBC can
generate overlapping clusters with similar values along clusters of dimensions. The parsimonious binary
vector representation of multidimensional clusters lends itself to the application of efficient meta-heuristic
optimization algorithms. In this paper, a hill-climbing (HC) greedy search algorithm has been presented that
can be extended by several stochastic and population-based meta-heuristic frameworks. The benefits of the
algorithm are demonstrated in a bi-clustering benchmark problem and in the analysis of the Leiden higher
education ranking system, which measures the scientific performance of 903 institutions along four dimensions
of 20 indicators representing publication output and collaboration in different scientific fields and time periods.
1. Introduction

Data-driven scientific, economical and technological research and
development increasingly necessitate the use of efficient high-
dimensional data-mining methods, especially those that can find homo-
geneous subsets of data in more dimensions. Two-(Martínez, Morán, &
Peña, 2006) and multi-step (Amato et al., 2006), bi- (Cheng & Church,
2000) and tri- clustering (Ignatov, Gnatyshak, Kuznetsov, & Mirkin,
2015) algorithms are increasingly popular methods in data mining. The
rough set concept has been also utilized (Michalak & Ślezak, 2018;
Wang, Miao, Li, & Zhang, 2007) which forms a promising group of
bi-clustering algorithms.

The main difference between two- and multistep clustering and
bi-, tri- or coclustering is that in the latter case, dimensional se-
lections run simultaneously (Strauch et al., 2007). Although bi- and
tri-clustering algorithms are mostly helpful for bioinformatics-relevant
applications (Swathypriyadharsini & Premalatha, 2018), thanks to the
effectiveness of these methods in finding complex homogeneous groups
of objects (see, e.g., Kaiser & Leisch, 2008; Pontes, Giráldez, & Aguilar-
Ruiz, 2015), bi- and tri-clustering are becoming utilized more widely,
such as in the fields of business studies (Dolnicar, Kaiser, Lazarevski,
& Leisch, 2012), knowledge management (Kaytoue et al., 2015), and
in more general infocube-based applications (Lamani, Erraha, Elkyal,
& Sair, 2019).
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The mined homogeneous submatrices are also called blocks (Go-
vaert & Nadif, 2008). The infocubes of online analytical processing
(OLAP) (Jain, Taygi, Sharma, & Khatri, 2019) and block-(Hatano,
Fukunaga, Maehara, & Kawarabayashi, 2017; Oktar & Turkan, 2018;
Vinayak, Hassibi, & EDU, 2016) and coclustering (Forero, Baxley, &
Capella, 2019) algorithms aim to find homogeneous disjoint blocks,
while multiclustering algorithms aim to find disjoint clusters in a
multidimensional dataset (Hu & Pei, 2018; Wang et al., 2018). Overlaps
between blocks are permitted in non-exclusive bi- and tri-clustering
(Pontes et al., 2015). As our best knowledge, there is no clustering
algorithm that can find clusters in high dimensional data. Thus, it is
the aim of this paper to fill this gap and to develop a robust and easily
scalable method for clustering high dimensional binary or binarized
data.

Permitting overlaps is important because it allows biclusters to
share their conditions and can provide additional information (Kosz-
tyán, Banász, Csányi, & Telcs, 2019) and ensure better performance,
e.g., better image segmentation (Rahaman et al., 2019). The inter-
pretability of the results deepens on the number and the homogeneity
of the clusters. Allowing cluster overlaps helps in finding a small
number of large clusters, so we are interested in an algorithm that
allows cluster overlaps and can be tuned to handle the trade-off of
cluster size and homogeneity.
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Bi-clustering, and therefore also the tri- and higher-dimensional
clustering problems, is an NP-hard problem (Tanay, Sharan, & Shamir,
2002), and it is much more complex than the classical clustering
tasks (Divina & Aguilar-Ruiz, 2006), so most of the methods for solving
it are based on heuristic (Michalak, 2012; Wang et al., 2007) or
meta-heuristic algorithms (Pontes et al., 2015). The development of
an effective heuristic as well as the use of a suitable cost function
for guiding the search are critical factors for finding significant bi-
clusters (Pontes et al., 2015) and tri-clusters (Henriques & Madeira,
2018). Nevertheless, in higher dimensions, parallel computation may
accelerate the search. Many bi-clustering approaches have been pro-
posed based on evolutionary algorithms, such as genetic algorithms
(GA) (Cheng & Church, 2000; Gusenleitner, Howe, Bentink, Quacken-
bush, & Culhane, 2012), pattern search (PS) (Pandey, Atluri, Steinbach,
Myers, & Kumar, 2009), ant colony optimization (ACO) (Liu, Li, Hu,
& Chen, 2009), and swarm intelligence (SI) (Veroneze, de França, &
Zuben, 2011) and heuristic, such as rough set clustering (Michalak
& Ślezak, 2018; Michalak & Stawarz, 2013). The GA is one of the
oldest nature-inspired meta-heuristics, and this approach has been
broadly applied to solve problems in many fields of engineering and
science. One of the main advantages of this method is that it can
be easily parallelized (Orzechowski, Sipper, Huang, & Moore, 2018).
Even in the case of a serial GA, a larger subset of the whole space
of solutions is explored, and at the same time, the algorithm avoids
becoming trapped in a local optimum. For these reasons, population-
based and meta-heuristic algorithms are well suited to the bi-clustering
problem. In addition, in the case of parallel computation, several sub-
populations will be stimulated to explore distinct regions of the search
space (Orzechowski et al., 2018).

Although classical genetic algorithms and simulated annealing are
powerful in the exploration of the search space and exploitation of
the extracted information during the search, the performance of these
algorithms can be significantly improved by utilizing problem-relevant
representations and search operations. The main contribution of our
work is that the multidimensional clusters are represented by a parsi-
monious binary vector that lends itself to the application of efficient
meta-heuristic optimization algorithms.

This work aims to develop an elementary building block of a family
of multidimensional clustering algorithms. Greedy hill-climbing (HC)
algorithm is a very standard procedure in meta-heuristic-based cluster-
ing techniques, e.g. such strategy is used in the widely applied DBSCAN
algorithm (Chandana, Srinivas, & Kumar, 2014; Matioli, Santos, Kleina,
& Leite, 2018) and the approach has also been proven applicable in
bi-clustering (Ayadi, Elloumi, & Hao, 2010; Hu et al., 2014).

According to these, the main contributions of this work are the
following:

• We introduce a multidimensional multi-block clustering
(MDMBC) algorithm that can generate overlapping clusters with
similar values along clusters of dimensions. The cost function
of the proposed algorithm can be easily modified according to
how the homogeneity of the clusters are measured and how the
resulted clusters will be utilized and interpreted (see Section 2.1).

• We propose generalized parsimonious binary vector-based rep-
resentation of bi- and tri-clustering problems that can be gen-
eralized to a higher-dimensions that creates the opportunity to
integrate with most of the heuristic optimization methods, such
as genetic algorithms or simulated annealing (see Section 2.2).

• We present a greedy strategy for growing the clusters. The pro-
posed greedy search algorithm can be considered a hill-climbing
optimization algorithm. The algorithm has similar performance
to the widely applied iBBiG; however, it has some benefits, as it
finds clusters (blocks) that are maximal in every possible direction
of the selected features, and by controlling the required block
purity and the minimal size of the blocks, users can fully control
2

what kinds of blocks are identified from the data. The presented s
core algorithm can be incorporated into any meta-heuristic or
population-based search framework, so the paper proposes a fam-
ily of multidimensional multi-block clustering algorithms (see
Section 2.3).

• As the algorithm can generate significantly overlapping clusters
and the selection of the informative features is a complex opti-
mization problem, we remove the redundant clusters that do not
provide any additional information and select features based on
their statistical validation (see Section 2.4).

• The benefits of the algorithm are demonstrated in a bi-clustering
benchmark problem (Section 3.1), which serve as a proof of
concept study/analysis of the described method. As the possible
extensions of the algorithm are almost infinite, in this paper, we
present the performance of the core algorithm with some im-
portant extensions that support maximal coverage of the dataset,
controlling the minimum size, achieving homogeneity and statis-
tical significance and addressing overlaps of the identified blocks.
A high dimensional clustering problem generator has also been
proposed to generate reproducible tests to demonstrate the sensi-
tivity of the performance and runtime to the hyper-parameters of
the proposed MDMBC algorithm.

• A detailed application study is presented through the analysis
of the four-dimensional CWTS Leiden Ranking database, which
measures the scientific performance of 903 institutions along
four dimensions of 20 indicators representing publication output
and collaboration in different scientific fields and time periods.
Kosztyán et al. (2019) proposed a bi-clustering method to specify
leagues and partial rankings of the higher education systems of
countries based on this dataset; however, their method considered
only two dimensions (indicators and countries) simultaneously,
while most of the ranking indicators are available in several
scientific fields and in several time periods; therefore, in this
field, a higher-dimension block clustering method is required.
The presented results illustrate how the variables of these ad-
ditional dimensions influence the results of the clustering (see
Section 3.2).

• Section 4 discusses the main properties of the algorithm and we
summarize the results of the proposed algorithm and conveys our
hope that this paper and the related code can motivate further
research on finding clusters in multidimensional datacubes.

2. Multidimensional multiblock clustering algorithm

2.1. Problem formulation

In the studied 𝑛-dimensional data, sets of objects 𝐼1 = {𝑖1,1 … , 𝑖1,𝑛1}
re characterized by sets of categorical variables 𝐼𝑗 = {𝑖𝑗,1 … , 𝑖𝑗,𝑛𝑗 }, 𝑗 =
,… , 𝑛. To illustrate such a dataset, let us consider the studied four-
imensional datacube of the Leiden database, where the set of univer-
ities listed in the set 𝐼1 are represented by the set 𝐼2 of scientometric

measures, such as 𝐼2,1=number of publications and 𝐼2,2=number of
citations, in different scientific fields that define the third dimension,
such as 𝐼3 = {mathematical and computer science, social sciences and
humanities.} in different time periods, such as 𝐼4 = {2009–13,2014–17,
…}.

When the data are stored in an 𝑛-dimensional matrix 𝐙, the aim
of clustering is to find homogeneous multidimensional blocks 𝐙𝑐 =
(𝐙, 𝐶𝑐 ) 𝑐 = 1,… , 𝐾 defined as 𝑛-ary Cartesian products of the subsets

𝐶𝑐
𝑗 ⊆ 𝐼𝑗 of these features:

𝑐 = 𝐶𝑐
1×,… ,×𝐶𝑐

𝑛 , (1)

where the function 𝑔 (𝐙, 𝐶𝑐 ) represents how the submatrix 𝐙𝑐 of 𝐙 is
xtracted based on the subsets of the features. When 𝐶𝑘

𝑗 ∩𝐶
𝑙
𝑗 = ∅ ,∀𝑘, 𝑗 ∈

,… , 𝑛𝑐 , every item is assigned to at most one cluster, which represents
special case of 𝑛-dimensional clustering that can be interpreted as
eriation of 𝐙. When the features are not assigned exclusively, the
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Fig. 1. Binary vector-based representation of 𝑛-dimensional blocks.
clusters can overlap, which allows flexibility in finding informative
subsets of data.

Finding homogeneous groups in data is valuable because it can be
used for segmentation of the objects by determining the subsets of
features that characterize the clusters, e.g., finding an elite group of
universities with high academic performance in the last three years
in engineering and economics. The homogeneity of the clusters is
measured by a cost function 𝐻𝑐 = 𝑓 (𝐙𝑐 ), such as standard deviation
or entropy, that measures how homogeneous the subset 𝐙𝑐 of the 𝑛-
dimensional data 𝐙 is. The clustering problem is formalized as the
minimization of the sum of these 𝐻𝑐 values:

min
𝐶1 ,…,𝐶𝐾

𝐻 =
𝐾
∑

𝑐=1
𝐻𝑐 =

𝐾
∑

𝑐=1
𝑓 (𝑔 (𝐙, 𝐶𝑐 )) . (2)

In classical clustering, a scalar centroid 𝑚𝑐 represents the cluster
prototype. This centroid can be defined by the mean or the median of
the block 𝐙𝑐 = 𝑔 (𝐙, 𝐶𝑐 ), so in this case, the cost function 𝑓 () measures
the homogeneity of the cluster as 𝐻𝑐 = ‖𝑚𝑐 − 𝑔 (𝐙, 𝐶𝑐 )‖.

The cost function can be modified to minimize the overlaps between
the clusters if the user would like to find such clusters. As the clusters
act as a mixture of 𝐾 block models used to approximate the 𝐙 multidi-
mensional array, the cost function can be modified also to try to cover
the multidimensional matrix as much as possible:

min
𝐶1 ,…,𝐶𝐾

𝐻 + 𝜆𝐸 =
𝐾
∑

𝑐=1
‖𝑚𝑐 − 𝑔 (𝐙, 𝐶𝑐 )‖ + 𝜆

‖

‖

‖

‖

‖

‖

𝐙 −
𝐾
∑

𝑐=1
𝑔 (𝐙, 𝐶𝑐 )

‖

‖

‖

‖

‖

‖

. (3)

2.2. Binary representation of the search space

To design an optimization algorithm that is efficient in finding the
clusters 𝐙𝑐 = 𝑔 (𝐙, 𝐶𝑐 ) 𝑐 = 1,… , 𝐾 as 𝑛-ary Cartesian products of
the subsets 𝐶𝑐

𝑗 ⊆ 𝐼𝑗 of the features, there is a need for an efficient
representation of the variables of the optimization problem. In the
proposed algorithm, the subsets 𝐶𝑐

𝑗 are represented by binary vectors

𝐱𝑐𝑗 =
[

𝑥𝑐𝑗,1,… , 𝑥𝑐𝑗,𝑛𝑗

]𝑇
, where the nonzero elements 𝑥𝑐𝑗,𝑘 = 1 represent

𝐼𝑗,𝑘 ∈ 𝐶𝑐
𝑗 , where 𝐼𝑗,𝑘 is the 𝑘th element of the set 𝐼𝑗 .

With this representation, the elements and blocks of the array 𝐙 are
assigned (see Fig. 1); e.g., the 𝑧5,3,2,1-th element of a four-dimensional
array 𝐙 is associated with 𝑥1,5 = 1, 𝑥2,3 = 1, 𝑥3,2 = 1 and 𝑥4,1 = 1.
With this representation, every cluster is represented by a set of vectors
𝐱𝑐 =

{

𝐱𝑐1,… , 𝐱𝑐𝑛
}

. With this formalization, the clustering problem
is formulated as a binary optimization problem defined by the cost
function:

min
𝐱1 ,…,𝐱𝐾

𝐻 =
𝐾
∑

𝑐=1
𝐻𝑐 =

𝐾
∑

𝑐=1
‖𝑚𝑐 − 𝑔 (𝐙, 𝐱𝑐 )‖ (4)

and the following related constraints:

• In every dimension, a minimum number category 𝑛𝑚𝑖𝑛𝑗 ≥ 1 should
be involved in a cluster

𝑛𝑐𝑗 =
𝑛𝑗
∑

𝑥𝑐𝑗,𝑘 > 𝑛𝑚𝑖𝑛𝑗 ,∀𝑗, 𝑐 (5)
3

𝑘=1
• The size of the cluster 𝑁𝑐 =
∏

𝑛𝑐𝑗 should be larger than a
threshold,

𝑁𝑐 =
𝑛
∏

𝑗=1

𝑛𝑗
∑

𝑘=1
𝑥𝑐𝑗,𝑘 > 𝑁𝑚𝑖𝑛 ,∀𝑐 (6)

• and the homogeneity (‘‘purity’’) of the clusters should be higher
than a threshold value,

𝐻𝑐 ≥ 𝑡𝑟 . (7)

2.3. Details of the clustering algorithm

The previously presented optimization problem can be solved by
any meta-heuristic binary-valued optimization algorithm that can ef-
ficiently handle the complexity of the problem. Although classical
algorithms, such as genetic algorithms and simulated annealing, are
powerful in the exploration of the search space and exploitation of
information extracted during the search, the performance of these
algorithms can be significantly improved by utilizing problem-relevant
representations and search operations. In the previous section, we pre-
sented an efficient representation of multidimensional block clusters.
This section presents a greedy strategy to grow these clusters as key
building blocks that can be incorporated into any meta-heuristic or
population-based search algorithm.

The greedy stochastic search algorithm (see Algorithm 1) can be
considered a hill-climbing approach to finding a local maximum cost
function by alternating the identification of the categories 𝐱𝑐𝑗 of the 𝑗th
dimension based on the remaining sets 𝐱𝑐𝑗∗ = 𝐱𝑐 ⧵ 𝐱𝑐𝑗 of dimensions,
which can be interpreted as an expectation maximization algorithm
that maximizes the conditional probability 𝑝

(

𝐱𝑐𝑗 |𝐱
𝑐
𝑗∗

)

in every iteration.
The solution is accepted when the resulting cluster is more homo-

geneous than a threshold value 𝐻𝑐 > 𝑡𝑟. This greedy neighborhood
search meta-heuristic method is similar to the DBSCAN (Density-based
spatial clustering of applications with noise) algorithm that looks for
points with many nearby neighbors (Schubert, Sander, Ester, Kriegel,
& Xu, 2017). As the these algorithms proceed by arbitrarily picking up
a point in the dataset (until all points have been visited) or the starting
point is selected at random, most of these methods are stochastic.

Such hill-climbing-based stochastic algorithms can converge to local
maxima. The problem of local minima can be handled by using diversi-
fication heuristics such as (1) the use of multiple initialization and (2)
the application of population-based search heuristics, such as randomly
sampling and mixing the solutions. The number of these extensions is
almost infinite. Due to the limits of this paper, we do not cover all of
these extensions, so in the following, the efficiency of the core greedy
search with the following important extensions will be presented:

• Merging overlapping clusters.
• Removing small clusters representing noise.
• Randomly initializing new clusters.
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Algorithm 1: The core steps of the proposed multidimensional
ultiblock clustering (MDMBC) algorithm family
Result: Cluster blocks of high-dimensional data
Initialization based on randomly selected samples as cluster cores;
while while the clusters do not change do

for each cluster do
for each dimension (in random order) do

estimate 𝐱𝑐𝑗 based on the other dimensions 𝐱𝑐𝑗∗ = 𝐱𝑐 ⧵ 𝐱𝑐𝑗 ;
form the potential new cluster and calculate its

homogeneity 𝐻 𝑐 ;
if 𝐻 𝑐 > 𝑡𝑟 then

keep the new cluster by updating 𝐱𝑐𝑗 ;
end

end
end
Merge redundant/overlapping clusters where 𝑠𝑖𝑚(𝐱𝑐 , 𝐱𝑝) > 𝑡𝑟𝑠 ;
Delete small stable clusters (representing noise in the data) where
𝑁 𝑐 < 𝑁𝑚𝑖𝑛 for stable (not growing) clusters;

Randomly generate new cluster seeds if needed
end
Check the statistical significance of the identified clusters

The algorithm has the following hyper-parameters. The most im-
ortant parameter is 𝑡𝑟 that defines minimal homogeneity (‘‘purity’’)
f the clusters (see Eq. (7)). As a detailed case study in Section 3.1
resents, the increase of the required purity provides cleaner clusters.
his requirement usually constrains the increase of the clusters, so the
umber of the clusters will be increased, and the resulted clusters will
e smaller. In extreme cases, noisy clusters can even disappear, as
lusters that are too small or have purity lower than the requirement
re left out of the cluster set. As the clusters are expanded recursively,
he number of the initial clusters does not significantly influence the
esult when similar clusters are merged. When there is no need to
arallelize the algorithm, the procedure can start with one cluster,
nd a new cluster is formed only when the cluster cannot be further
xtended.

.4. Statistical tests for cluster validation

In the biclustering process, the submatrix and the remaining rows
nd columns can be compared by two-sample tests, such as the t-test
nd F-test. These tests can be performed for all dimensions (both for
ows and columns). We extended these tests to the 𝑛th-dimensional

environment. Fig. 2 shows how we can specify the comparable subsets.
Comparison tests (such as the t-test and F-test) are performed between
the elements of the block and the block 𝑐 of the 𝑖th-dimensional nega-
ions represented by the vector 𝐱𝑐𝑖 in Fig. 2). The proposed dimensional
tatistical tests are used to qualify the blocks found. A two sample
-(F-test) is used to test the expectation that the mean (variance) of
he original values within the selected blocks is greater than the mean
variance) values within the blocks specified by dimensional negations.

efinition 1. 𝐙𝑐 denotes the found block 𝑐 represented by the binary
vector 𝐱𝑐 . 𝐙𝑐

𝑖 denotes its 𝑖th block, represented by 𝐱𝑐𝑖 . The t-test statistics
for dimension 𝑖 are calculated as follows:

𝑡𝑖 =
𝑚𝑐 − 𝑚𝑐

𝑖
√

𝑆2
𝑖

𝑁𝑐 +
𝑆2
𝑖

𝑁𝑐
𝑖

, (8)

here 𝑚𝑐 is the mean value of block 𝑐 and 𝑚𝑐
𝑖 is the mean value of the

th dimensional negation of block 𝑐. 𝑁𝑐 is the number of cells in block
and 𝑁𝑐

𝑖 is the number of 𝑖th dimensional negations of block 𝑐. 𝑆2 is
an estimator of the common variance of the two samples:

𝑆2
𝑖 =

∑

(𝑧 − 𝑚𝑐 )2
∑

(𝑧 − 𝑚𝑐
𝑖 )
2

𝑐 𝑐
, (9)
4

𝑁 +𝑁𝑖 − 2
here 𝑧 is a cell of 𝐙.
The number of degrees of freedom for the 𝑖th dimensional t-test is

specified as follows:

𝑑𝑓𝑖 = 𝑁𝑐 +𝑁𝑐
𝑖 − 2 (10)

Considering the 𝑖th dimensional negations and following Eq. (8),
any kind of two-sample test can be specified. Similar to the biclustering
methods, in this study, two sample t- and F-tests are used for the dimen-
sional significance test of the found block. Similar to the biclustering
method, a block is considered a significant block if all dimensional tests are
significant.

3. Validation and application examples

Since only bi- and tri-clustering algorithms exist, we compared the
proposed algorithm with the most similar method, iBBiG (Gusenleit-
ner et al., 2012). To compare our method to the iBBiG algorithm,
the 2-dimensional validation example chosen was the simulation data
published by Gusenleitner et al. (2012) on their paper and the iBBiG
R package (Gusenleitner & Culhane, 2019). A more detailed exam-
ple that demonstrates the applicability of the method is based on
the four-dimensional data of Leiden 2017’s higher education ranking
system.

3.1. Validation and demonstration of the main characteristics of the pro-
posed algorithm

The studied benchmark dataset simulates 400 pairwise tests by
400 gene sets, in which there are seven modules (see Fig. 4(a)). Four
modules overlap, and three of them are separated. In Fig. 3(a), the
pure blocks (without noise) are shown. The proposed method in a two-
dimensional dataset was compared by the most similar bi-clustering
algorithm (Gusenleitner et al., 2012). Similar to the proposed algo-
rithm, iBBiG also binarizes the dataset with reference to a specified
threshold. The cost functions are also similar; iBBiG minimizes the
entropy within a block while maximizing the size of the blocks (Gusen-
leitner et al., 2012). However, iBBiG cannot control the purity of
a block, and the iBBiG algorithm can find only one block at each
iteration, while the proposed algorithm seeks blocks simultaneously.

The benchmark problem was taken from Ref. Gusenleitner et al.
(2012) (see Fig. 4(a)), where seven blocks are specified. We also
ran both algorithms on cleaned and noisy data (see Fig. 3). As the
purity of the biclusters significantly influences the interpretation and
applicability of the results, the purity of the biclusters was investigated
in addition to the size.

First, we compared the proposed algorithm with the iBBiG biclus-
tering algorithm on two-dimensional data. As Fig. 3 shows, in the case
of no noise, iBBiG and MDMBC provide similar results.

The main difference in the results is that the MDMBC selects parallel
biclusters; therefore, the biclusters found are larger (see Table 1) and
overlap more (see Fig. 3(c-d)). The maximal blocks in 3(d)) show biclus-
ters, where the size of the clusters are maximal. The iBBiG algorithm
is a subtractive algorithm, therefore, on one hand it allows overlaps,
but on the other hand its subtractive nature avoids the real overlaps
between clusters (see Fig. 3(b). While the proposed algorithm explores
how clusters can be extended in every dimension, so that the resulting
clusters are deleted may be larger than the iBBiG’s clusters. These larger
clusters are better if our goal is to characterize the clusters individually,
as they cover all the objects that are similar in terms of the features
represented by the clusters.

The greedy search can be based on any quantitative indicator, such
as entropy. Most of these measures are correlated and rank the possible
cluster extensions identically, so the resulted clusters will be identical.
The clusters can also be compared by calculating the Jaccard distance
between the binary cluster representations of different clustering re-

sults. Table 1 shows the purity and entropy of the clusters and the
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Fig. 2. Original block (see gray cells) and dimensional negations (see ‘‘X’’ cells).
Fig. 3. Results of bi-clustering without noise.
Jaccard distance from the maximal blocks. The results shows, that the
MDMBC finds larger blocks than iBBiG has, which are closer to maximal
blocks and the covered blocks of MDMBC are larger, cleaner and more
overlapped.

The user of the proposed algorithm can specify the minimal purity
of the clusters (see Eq. (7)). The increase of the required purity provides
biclusters that are cleaner but smaller. The Table 2 shows, that MDMBC
with 𝜏 > 0.75 constraints finds cleaner and bigger blocks, while the
distances from the maximal blocks are lower.

As this example demonstrates, the proposed algorithm has similar
performance to the widely applied iBBiG; however, it has some benefits,
as it finds clusters (blocks) that are larger in every possible direction
5

of the selected features, and by controlling the required block purity
and the minimal size of the blocks, users can fully control what kinds
of blocks are identified from the data.

While both iBBiG and the MDMBC finds 7 blocks, blocks 5 and 7
of iBBiG differ from the original blocks (see Table 2. As Fig. 4(c) show
the algorithm can identify overlapping clusters (see the rectangles with
overlapping corners). This beneficial property of the algorithm results
illustrate larger clusters can be covered by a set of overlapping blocks.

A multidimensional test problem generator has been developed to
test how the dimensionality of the data and the selection of the initial
cluster cores influence the results.
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Fig. 4. Results of bi-clustering with noise.
Fig. 5. Box plots representing the performance of 10 independent runs on the presented 2-dimensional clustering problem. One illustrative clustering result is depicted on the
middle of (a). The right subplot at (a) shows the similarity of the identified clusters.
Firstly the stochastic nature of the search algorithm is evaluated
based on the result of 10 independent runs with different initial points.
Fig. 5 shows a noise-free 2-dimensional example to 8 highly overlapped
blocks. In most cases 9 blocks are identified (see Fig. 5(a)). It is
important to note that block 2 and block 8 overlaps (see MDS in the
right side of Fig. 5(a); therefore, MDMBC correctly identifies the 8
blocks. In addition, the algorithm matched all individual cells into an
6

adequate block. The runtimes are also depicted in Fig. 5(b), which
shows that the algorithm finds the clusters in less than 0.1 s.

The effect of the increase of the dimensionality of the dataset was
examined by extending the dimensionality of the problem described
above (see Fig. 5). In this case, 8 𝑛-dimensional block are generated in
a 50 variable/dimension space. The generated data were also analyzed
in 10 independent runs. Fig. 6 shows the mean values of the indicators
calculated during these runs.
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Table 1
Comparison of the results of iBBiG and MDMBC on two-dimensional benchmark data.

CL Score (Size) Purity (𝜏) Entropy Jaccard distance

iBBiG MDMBC𝜏=1.0 iBBiG MDMBC𝜏=1.0 iBBiG MDMBC𝜏=1.0 iBBiG MDMBC𝜏=1.0

1 5 976 5 976 1.00 1.00 0.00 0.00 0.00 0.00
2 2 352 6 112 1.00 1.00 0.00 0.00 0.48 0.16
3 530 4 403 1.00 1.00 0.00 0.00 0.67 0.19
4 1 640 3 120 1.00 1.00 0.00 0.00 0.49 0.18
5 4 720 4 720 1.00 1.00 0.00 0.00 0.00 0.00
6 13 834 13 952 0.96 1.00 0.04 0.00 0.00 0.00
7 717 3 648 1.00 1.00 0.00 0.00 0.48 0.19
Table 2
Comparison of the results of iBBiG and MDMBC on two-dimensional benchmark data.

CL Score (Size) Purity (𝜏) Entropy Jaccard distance

iBBiG MDMBC𝜏>0.75 iBBiG MDMBC𝜏>0.75 iBBiG MDMBC𝜏>0.75 iBBiG MDMBC𝜏>0.75

1 2857 3615 0.64 0.78 0.25 0.21 0.52 0.38
2 1824 5575 0.72 0.82 0.26 0.15 0.71 0.34
3 235 1440 0.61 0.82 0.27 0.17 0.88 0.30
4 589 792 0.71 0.80 0.26 0.20 0.61 0.21
5 11 282 0.67 0.75 0.33 0.21 0.92 0.31
6 8563 9718 0.62 0.75 0.29 0.18 0.35 0.22
7 25 2697 0.66 0.83 0.26 0.11 0.95 0.28
Table 3
Results of the dimensional significance tests. (The dimensions are: time period × scientific fields × HEIs × indicators).
𝑡𝑟 CL Sizes Dimensional significance tests

p-values (t-test) p-values (F-test)

1 2 3 4 1 2 3 4

0.50

1 7 × 3 × 44 × 4 – <2e−64 <2e−64 <2e−64 – <2e−64 <2e−64 <2e−64
2 7 × 5 × 660 × 1 – – <2e−64 <2e−64 – – <2e−64 <2e−64
3 6 × 2 × 236 × 3 <2e−64 <2e−64 <2e−64 <2e−64 <2e−64 <2e−64 <2e−64 <2e−64
4 7 × 4 × 409 × 2 – <2e−64 <2e−64 <2e−64 – <2e−64 <2e−64 <2e−64

0.75

1 6 × 5 × 22 × 1 <2e−64 – <2e−64 <2e−64 <2e−64 – <2e−64 <2e−64
2 4 × 2 × 82 × 1 <2e−64 <2e−64 <2e−64 5.21e−10 <2e−64 <2e−64 <2e−64 <2e−64
3 4 × 3 × 56 × 1 <2e−64 <2e−64 <2e−64 <2e−64 <2e−64 <2e−64 <2e−64 <2e−64
4 6 × 2 × 77 × 1 <2e−64 <2e−64 <2e−64 <2e−64 <2e−64 <2e−64 <2e−64 <2e−64
Fig. 6. The effect of the dimensionality of the dataset on the number of data, the computational time and the number of identified clusters.
7
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Fig. 7. The effect of the 𝑡𝑟 cluster purity threshold parameter on the number of the identified clusters and the computational time.
As the dimension increased, the number of data points increased
exponentially (see the top of Fig. 6). The computational demand in-
creases almost in proportion to the data points, which reflects that the
strategy of the method is similar to the DBSCAN algorithm, which has
average runtime complexity of 𝑂(𝑁 log𝑁). In the 5-dimensional case,
in 318,730 samples, the computational time did not exceed 10 s

It is important to note that the algorithm has clustered each data
point for each dimension. The number of blocks only slightly exceeded
8. As Fig. 6 shows, while the number of dimensions increases, the
probability of the block overlapping decreases, so the identification of
blocks becomes easier.

The most important parameter of the algorithm is the cluster purity
threshold value (𝑡𝑟). Allowing 𝑡𝑟 lower than one aims to find relevant
clusters even in the case of noisy data.

For demonstration purpose, the effect of the parameter is demon-
strated in a 2D example. The task is shown in Fig. 7(a) where a noise
level was 1%.

The result of clustering is shown in Fig. 7(a). 10 independent tests
were performed at each parameter setting, and their average is shown
in Fig. 7(b).
8

The proposed MDMBC method, similar to the DBSCAN, identifies as
noise data points that cannot be identified, which are indicated as ‘‘X’’
in Fig. 7(a).

The effect of the 𝑡𝑟 parameter is shown in Fig. 7(b). Fig. 7(b) shows
that group formation is more permissible at lower tr values, so fewer
clusters are obtained at lower 𝑡𝑟 values than at higher 𝑡𝑟 values. As the
method identifies unclassified data as noise, the number of identified
blocks does not increase significantly (see Fig. 7(b)). Although the
difficulty of the clustering increases with increasing 𝑡𝑟 value, this does
not significantly influence the computational time.

3.2. Multiobjective analysis of higher education excellence

3.2.1. Motivation: finding multidimensional blocks of excellent universities
The proposed method is ideal for selecting institutes, scientific

fields, time periods, and adequate indicators simultaneously for further
exploration. An important field of application is finding institutions,
indicators, and scientific fields where HEIs stand out from other HEIs.

The authors of the Leiden ranking prefer to select adequate (contin-
uous) indicators rather than to follow one-dimensional ranking. At the
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Fig. 8. Results of the Jaccard distance-based multidimensional scaling (MDS) of the blocks found.
Table 4
Top 10 universities in blocks (𝑡𝑟 = 0.5).

Block 1 Block 2 Block 3 Block 4

Massachusetts
Institute of
Technology

Lille 2
University of
Health and Law

London School
of Hygiene &
Tropical
Medicine

London School of
Hygiene &
Tropical Medicine

Rockefeller
University

China Medical
University
Taiwan

Rockefeller
University

Harvard University

Harvard University Taipei Medical
University

University of
Paris VII - Paris
Diderot

University of Paris
VII - Paris Diderot

University of
California San
Francisco

London School
of Hygiene &
Tropical
Medicine

University of
Geneva

Rockefeller
University

Stanford
University

National Yang
Ming University

University of
Amsterdam

Massachusetts
Institute of
Technology

California Institute
of Technology

University of
Paris V - Paris
Descartes

King Abdullah
University of
Science and
Technology

Weill Cornell
Medical College

University of
California Berkeley

University of
Paris VI - Pierre
and Marie Curie

Radboud
University
Nijmegen

Baylor College of
Medicine

Princeton
University

Islamic Azad
University
Science &
Research Tehran

Leiden
University

University of
California San
Francisco

Yale University King Abdullah
University of
Science and
Technology

VU University
Amsterdam

Pompeu Fabra
University

London School of
Hygiene &
Tropical Medicine

University Paul
Sabatier

University of
Antwerp

University of Paris
VI - Pierre and
Marie Curie

same time, the economic and social environments of these HEIs differ
significantly from each other, and therefore, the indicator values may
be very different for each HEI. Thanks to this significant difference, the
binarization of the variables allows the separation of excellence and
9

the remaining blocks. After the binarization, 1 in a cell means that a
university is excellent in a given field, in a given indicator, in a given
time period. Thus, the block of cells with a value of 1 identifies the
group of universities that excel similarly.

The aim of the application of the proposed MDMBC algorithm
is twofold. First, parallel sets of HEIs, indicators, time periods, and
scientific fields have to be found that are better than the remainder.
These four-dimensional blocks specify the elite ‘‘leagues of HEIs’’. These
blocks may be small but numerous. For specifying regional rankings,
similarity is important, but if there are very few HEIs in a block, the
rankings may be meaningless; therefore, the other goal is to find the
smallest set of the largest leagues, where the purity, and in this way,
the homogeneity, is higher than a certain threshold.

3.2.2. Details of data preprocessing and running the algorithm
The applied higher education ranking system of Leiden 2017 mea-

sures the scientific performance of 903 major higher education in-
stitutions (HEIs) using 20 indicators (see in Table 5) based on two
main factors, such as the publication output and the collaboration
activity in 5 scientific fields over 7 time periods. The scientific impact
are calculated in two ways. In this study, only the results of the full
counting method are considered, where the full counting method gives
a full weight of one to each publication of a university. (see http:
//www.leidenranking.com/downloads).

For implementation, first, every column in Leiden’s dataset is nor-
malized with [0,1] min–max normalization to compare the different
ranges of variables.

In the second step, the normalized dataset is binarized by applying
two thresholds. The first threshold is set to be the median (𝑡𝑟0.5, or in
other words, the first two quartiles (Q1-Q2)), and the second threshold
is the first quartile (𝑡𝑟0.75 (Q1)). The minimal purity (𝜏) is 0.85, and the
expected number of blocks (𝑛𝑐) is 4.

3.2.3. Discussion of the results
In this run, the aim is to find the smallest number of leagues

with as many HEIs as possible, where the purity and homogeneity are
controlled. These blocks provide the largest blocks, showing us which
HEIs can be compared with which indicators, in which profession areas,
and during which times.

The Jaccard distance-based multidimensional scale (MDS) method
is used to present the 4D blocks, where the diameter of the marker

http://www.leidenranking.com/downloads
http://www.leidenranking.com/downloads
http://www.leidenranking.com/downloads
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Fig. 9. Results of the 4-dimensional multiblock clustering of the Leiden dataset.
is proportional to the size of the block (i.e. league) (see Fig. 8). The
results show that the highest league contains very few HEIs. Comparing
Fig. 8(a) and (b), it is seen that if the threshold is increased, the size
of the blocks decreases, which means fewer leagues and fewer HEIs in
leagues can be identified. The proposed algorithm identifies four blocks
(see Fig. 8). Similar blocks are found if the HEIs in the first quartile
are clustered (𝑡𝑟0.75, see Fig. 8(b)), but these blocks contain fewer HEIs
and fewer indicators (see Table 3). All dimensional tests show that the
blocks found are firmly separated from the remainder. Since, in the case
of (𝑡𝑟 = 0.5), most of the time periods are selected, the leagues of HEIs
(Q1-Q2) are stable over time.
10
If blocks are selected above the median (𝑡𝑟0.5 (Q1–Q2)), the largest
block contains most HEIs (660) in all time periods and all scien-
tific fields; however, they are good only according to 1 indicator
(pp_colab=Proportion of output resulting from scientific cooperation).
In block 1, there are 44 HEIs, three scientific fields—Biomedical and
health science, Life and Earth Science and Physical Sciences and
Engineering—and four indicators: the proportion of a university’s pub-
lications that, compared with other publications in the same field and
in the same year, are in the top 10% (PP(top 10%)) and top 50%
(PP(top 50%)) of the most frequently cited works; the proportion of a
university’s publications that were co-authored with one or more other
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Table 5
Indicators of CWTS-Leiden Ranking 2017 dataset.

Scientific impact

TCS The total Number of citations of the
publications of a university.

TNCS - Normalized for field and publication year.

MCS The average
MNCS - Normalized for field and publication year.

P_top1
The number Of a university’s publications

that, compared with other
publications in the same field
and in the same year, belong
to the top

1

% most frequently cited.

P_top10 10
P_top50 50

PP_top1
The proportion

1
PP_top10 10
PP_top50 50

Collaboration

P_collab The number

Of a university’s publications

That have been co-authored
with

With one or more other organizations.PP_collab The proportion

P_int_collab The number By two or more countries.PP_int_collab The proportion

P_industry_collab The number With one or more industrial organizations.PP_industry_collab The proportion

P_short_dist_collab The number
With a geographical
collaboration distance of

Less than 100 km.PP_short_dist_collab The proportion

P_long_dist_collab The number More than 5000 km.PP_long_dist_collab The proportion
s

organizations (PP_collab); and the average number of citations of the
publications of a university, normalized for field and publication year
(MNCS).

The block numbers are ordered by the mean value of the normalized
data within the blocks. Therefore, the best universities belong to block
1. They are good according to 4 indicators in 3 scientific fields over
all time intervals. Table 4 shows the first 10 institutions by the mean
of Leiden’s indicators. The top 10 universities of the 44 in block 1 are
mainly elite US universities, such as MIT, CalTech, Harvard, Stanford,
and Berkeley. While block 1 contains only 44 HEIs, one of the largest
blocks (block 2) contains 660 HEIs. Although all scientific fields are
included in block 2 (see Table 3, medical schools are in the top four
positions. This block is more heterogeneous: in block 2, the top 10
universities are from China and European countries, such as France and
England, as well as African countries.

Block 3 (236 HEIs) does not contain the first time period (2006–
2009) because these are mainly emerging universities. Only two scien-
tific fields are included, such as Life and Earth Science and Physical
Sciences and Engineering. Despite this fact, the first university is the
London School of Hygiene & Tropical Medicine. Three indicators belong
to block 3: PP(top 10%), PP(top 50%), and PP_collab. Seven universities
in block 3 come from Europe. Block 4 (409 HEIs) contains only two
indicators, PP(top 50%) and PP_collab, but most scientific fields except
Social Sciences and Humanities. It is interesting that the London School
of Hygiene & Tropical Medicine is also the first in block 4. The top
10 HEIs in block 4 are heterogeneous; they contain mainly emerging
institutions as well as several elite European, Australian, New Zealand
and US universities, as shown in Fig. 9(a). The reason that many
emerging universities entered this league may be that block 4 contains
two fewer indicators than block 1— PP(top 10%) and MNCS—but one
more scientific field: Mathematical and Computer Science. Since elite
universities, such as Harvard and MIT, are involved in more than one
block, they are good according to more indicators and in more scientific
fields. For the time being, it is difficult for emerging universities to
publish in top journals (PP(top 10%)), and they currently have fewer
citations (MNCS). One emerging scientific field is Mathematical and
Computer Science, because both block 2 and block 4, containing most
universities, contain this scientific field.

The most important indicator is the PP_collab indicator, which is
selected in all four blocks when the threshold is increased to 0.75
(𝑡𝑟 = 0.75 (Q1)). Nevertheless, the four-dimensional blocks represent
different fields and different time intervals in the case of Q1 leagues.
11

Fig. 9 shows that multi-block memberships are geographically defined. m
Several Western European, Australian and US HEIs are separated into
more than one block, while most HEIs of the BRICS (Brazilian, Rus-
sian, Indian, Chinese, and South African) countries are involved only
in block 2 (𝑡𝑟 = 0.5). They are rated as good (upper median) at
pp_colab=Proportion of output resulting from scientific cooperation.
Nevertheless, most of the HEIs of BRICS countries are excluded from
the Q1 (𝑡𝑟 = 0.75) leagues.

4. Conclusions

Multiblock clustering exhibits high potential not only in bioinfor-
matics but also in business and social sciences fields. The proposed
representation allows the identification of homogeneous and statisti-
cally significant blocks in a multidimensional dataset. The main benefit
of the proposed algorithm is that it utilizes a greedy search algorithm to
explore how clusters can be extended in every dimension, which makes
the resulting clusters larger than those obtained by iBBiG. These larger
clusters are better if we would like to characterize clusters individually,
as they cover all the objects that are similar in terms of the features
represented by the clusters. The proposed multidimensional multiblock
clustering (MDMBC) algorithm was applied to the qualification of
institutions according to the examined indicators. The proposed method
identifies elite leagues of HEIs and specifies a set of indicators, set of
scientific fields and set of time periods.

Although the results prove the applicability and efficiency of the
method, it is known that the utilized hill-climbing-based algorithm
converges to a local maximum. The problem of local minima can
be handled by using diversification heuristics such as (1) the use of
multiple initializations and (2) the application of population-based
search heuristics, such as sampling randomly and mixing the solutions.
The number of these extensions is almost infinite. Due to the limits
of this paper, we did not cover these extensions, and we wanted to
present how the core of the proposed algorithm family performs. The
MATLAB code of the algorithm is available at the website of the authors
at www.abonyilab.com, so we hope that this paper and code can serve
as a starting point that motivates further research on finding clusters
in multidimensional datacubes.
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