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Feedback, receptor clustering, and receptor restriction to single cells yield large Turing
spaces for ligand-receptor-based Turing models
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Turing mechanisms can yield a large variety of patterns from noisy, homogenous initial conditions and have
been proposed as patterning mechanism for many developmental processes. However, the molecular components
that give rise to Turing patterns have remained elusive, and the small size of the parameter space that permits
Turing patterns to emerge makes it difficult to explain how Turing patterns could evolve. We have recently shown
that Turing patterns can be obtained with a single ligand if the ligand-receptor interaction is taken into account.
Here we show that the general properties of ligand-receptor systems result in very large Turing spaces. Thus, the
restriction of receptors to single cells, negative feedbacks, regulatory interactions among different ligand-receptor
systems, and the clustering of receptors on the cell surface all greatly enlarge the Turing space. We further show
that the feedbacks that occur in the FGF10-SHH network that controls lung branching morphogenesis are sufficient
to result in large Turing spaces. We conclude that the cellular restriction of receptors provides a mechanism to
sufficiently increase the size of the Turing space to make the evolution of Turing patterns likely. Additional
feedbacks may then have further enlarged the Turing space. Given their robustness and flexibility, we propose
that receptor-ligand-based Turing mechanisms present a general mechanism for patterning in biology.
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I. INTRODUCTION22

The development of complex organisms requires the re-23

peated, reliable emergence of pattern in a cell or tissue from24

a homogenous, noisy distribution of components, also in the25

absence of any polarizing queues. It is a long-standing question26

how stereotyped patterns can emerge during development.27

Alan Turing proposed a simple reaction-diffusion-based mech-28

anism [1] that has since been shown to have the potential to29

give rise to a large variety of patterns from noisy, homogenous30

starting conditions [2–4].31

Mathematical analysis reveals the types of interactions32

between the molecular components that can give rise to Turing33

patterns [3,5–7]. While many different Turing mechanisms34

have been proposed to explain pattern formation in biology,35

it has remained difficult to identify the molecular compo-36

nents [2]. The suggested Turing components are typically two37

diffusible, extracellular proteins [8–10]. However, one of the38

requirements for Turing patterns is a large difference in the dif-39

fusion coefficient between the two Turing components. While40

a number of chemical systems have been engineered where the41

diffusion speed of one of the components of the Turing system42

is strongly reduced, e.g., the Belousov-Zhabotinsky reaction43

in water-in-oil aerosol microelmulsion [4] or in a system with44

a low-mobility complexing agent [11], these setups do not45

readily translate to biological systems. For biological systems,46
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it has been suggested that differences in diffusion speed may 47

arise from transient differences in the interactions with the 48

extracellular matrix [12]. A number of theoretical studies 49

seek to overcome the requirement of a large difference in 50

diffusivity of Turing components, and an emergence of Turing 51

pattern has been shown to be possible also in the presence of a 52

single diffusive specie coupled to a quenched oscillator [13]; 53

cell migration rather than diffusion has been proposed to 54

result in Turing instabilities [14,15]. Finally, cross-diffusion 55

and nonlinear diffusion have been shown to support the 56

formation of Turing-type patterns, such that Turing patterns 57

can arise for any ratio of the main diffusivities [16–21]. Cross- 58

diffusion has been shown to arise in crowded environments 59

with finite carrying capacity, i.e., if diffusion is limited 60

when local concentrations or densities reach the carrying 61

capacity [20,22]. 62

Another problem with the applicability of Turing mech- 63

anisms to biological pattern formation concerns the size of 64

the parameter space that gives rise to Turing patterns, the 65

Turing space. This parameter space is small for all known 66

Turing mechanisms in the sense that kinetic parameters can 67

be varied only a few fold as long as physiological constraints 68

on the kinetic constants and relative diffusion constants are 69

respected [24]. It is therefore unclear how evolution could have 70

produced such a mechanism in the first place and how it could 71

have been reused in different settings during the evolution 72

of new species. Moreover, biological systems are noisy, and 73

time delays as may arise from the multistep nature of protein 74

expression as well as domain growth and the resulting changes 75

in source and sink terms may severely affect the existence and 76

type of Turing patterns, though some of these effects as well 77

as further regulatory interactions may somewhat increase the 78

size of the Turing space [25–32]. 79
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We recently noticed that ligand-receptor interactions of80

the form shown in Fig. 1(a) can give rise to Turing patterns81

[33–36] as long as the following constraints are met by the the82

receptor-ligand interaction:83

(i) Ligands must diffuse much faster than receptors84

(d � 1), as is generally the case [37–40].85

(ii) Receptor-dependent ligand removal must dominate86

over receptor-independent ligand decay, as is generally the87

case because unspecific decay is typically much slower than88

active protein turnover.89

(iii) Ligands and receptors must bind cooperatively, as is90

the case for many ligand-receptor pairs [41–49].91

(iv) Ligand-receptor complex formation must be fast com-92

pared to the other processes, such that we have a quasi93

steady state for the ligand-receptor complex concentration.94

This is the case if the on-rate is very high, i.e., binding95

is diffusion limited, as is the case for many ligand-receptor96

pairs [50].97

(v) The receptor-ligand complex must upregulate the re-98

ceptor concentration, as has been observed for several receptor99

systems [51–57]. This positive feedback needs to operate far100

from saturation, i.e., if we describe the positive regulation by a101

Hill function of the form R2L
R2L+K

, we require R2L � K . Thus, 102

this positive feedback must be rather inefficient. 103

If these conditions are met, the interactions between the 104

receptor, R, and the ligand, L, result in Schnakenberg-type 105

kinetics [58] of the form 106

∂R

∂t
= �R + γf (R,L) with f (R,L) = a − R + R2L, (1)

∂L

∂t
= d�L + γg(R,L) with g(R,L) = b − R2L, (2)

which correspond to the so-called activator-depleted substrate 107

Turing kinetics, first described by Gierer and Meinhardt [5], 108

and which are very similar to the chemical Turing system first 109

described by Prigogine and coworkers [7]. The detailed deriva- 110

tion of these equations for receptor-ligand interactions can be 111

found in previous publications [33–36] and in Appendix A. 112

The �R and d�L terms represent the diffusion terms, where 113

d is the relative diffusion constant of ligand and receptor. 114

Ligands typically diffuse faster than their receptors, d � 1 115

[37–40,59], thus naturally meeting the Turing condition of 116
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FIG. 1. (Color online) Ligand-receptor interactions can give rise to Turing patterns. (a) Spatial patterns via a Turing mechanism can result
from cooperative receptor-ligand interactions, where m receptors (R) and n ligand molecules (L) form an active complex that upregulates the
receptor concentration by increasing its expression, limiting its turnover or similar. Importantly, the highest receptor and ligand concentrations
are observed in different places. (b) In case of the standard network [panel (a)], Turing patterns emerge only for a small subset of the parameter
range of the receptor and ligand production rates, a and b. amax denotes the maximal value of the receptor production rate, while bmin and
bmax denote the minimal and maximal ligand production rates. (c) Additional feedbacks (solid, red and dashed, blue arrows) can be mediated
by the ligand-receptor complex, R2L; ↔ indicates receptor-ligand interactions, � inhibitory interactions, and −• up-regulating interactions.
(d) The negative feedbacks in panel (c) (network U5 in Fig. S1 [23]) result in a larger Turing space when the response threshold p is lowered
from p = 1 (blue shaded area) to p = 0.1 (solid, yellow area). (e) The size of the Turing space for the network in panel (c) (network U5 in
Fig. S1 [23]) increases as the response threshold p is lowered. As a measure for the size of the Turing space, we record the maximum of the
receptor production rate, amax, and the ratio of the maximal and minimal ligand production rates bratio = bmax

bmin
, for which Turing patterns can

emerge. a = 0 is part of the Turing space and negative values of a have no physiological interpretation.
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different diffusivities. Receptor diffusion is restricted to single117

cells, and we have previously shown that patterns also emerge118

on such cellularized domains [35]. The constants a and b119

are the receptor and ligand production rates. The −R term120

describes the ligand-independent decay of the receptor at a rate121

proportional to the available receptor concentration, so-called122

linear decay. The term R2L represents the quasi-steady-123

state concentration of the receptor-ligand complex. Signaling124

complexes with a different stochiometry also result in Turing125

patterns [35]. The “minus” term in Eq. (2) then reflects the126

receptor-dependent ligand removal rate, while the “plus” term127

in Eq. (1) reflects the combined effects of ligand-induced128

receptor removal and ligand-induced receptor accumulation129

on the cell membrane (by increased transcription, translation,130

recycling, less constitutive removal, or similar). The γ term131

arises in the nondimensionalization of the model [Eq. (A12)]132

and is useful as it is proportional to the domain area, and133

it gives the relative strength of the reaction and diffusion134

terms [3].135

A number of ligand-receptor systems meet the136

above conditions, including Hedgehog and its receptor137

PTCH [34,35,47,55,56], BMPs and their BMP receptors138

[36,48,49,57], GDNF and its receptor RET [33,41,42,51,52],139

as well as FGFs and their FGF receptors [43–46,53,54].140

Thus, all of these proteins are multimers, and, by a range of141

mechanisms, the formation of the multimeric ligand-receptor142

complexes enhances the concentration of receptors on the143

membrane, as recently reviewed [59]. We further showed that144

models based on these proteins could recapitulate the relevant145

wildtype and mutant expression patterns in the respective146

developmental systems [33–36,60].147

Here we show that ligand-receptor-based Turing mecha-148

nisms can have significantly enlarged Turing spaces if we149

include negative feedbacks or couple several Turing modules,150

as generally found in biological systems. Similarly, the151

restriction of receptors to single cells and their clustering152

further increases the size of the Turing space. We conclude that153

a receptor-ligand-based Turing mechanism offers a realistic154

mechanism to implement the Turing mechanism in a biological155

setting. The observation that the restriction of receptors to cells156

is sufficient to massively increase the Turing space offers an157

explanation of how Turing patterns may have first evolved158

in nature; additional feedbacks could then further enlarge the159

Turing space.160

II. RESULTS161

The Turing mechanism has been analyzed extensively, and162

the parameter space that permits Turing patterns to emerge163

can easiest be determined with the help of a linear stability164

analysis [3]; see the Appendix B. To keep the analysis feasible,165

it is advisable to consider as models that are as simple166

as possible and to restrict the number of parameters to a167

minimum. The nondimensional ligand-receptor-based Turing168

model [Eqs. (1) and (2)] has four parameters: the relative169

ligand-receptor diffusion constant d, the receptor production170

rate a, the ligand production rate b, and the scaling factor γ .171

The parameters a, b, and d determine whether Turing patterns172

can emerge, while the scaling factor γ determines whether the173

domain is sufficiently large for Turing patterns to emerge.174

We therefore do not need to analyze γ here. The relative 175

diffusion constant of ligands and receptors, d, affects the size 176

of the Turing space in that a larger d results in a larger Turing 177

space [3]. Since this effect is well documented, but limited by 178

the physiological difference between the diffusion constants of 179

ligands and receptors, we fixed the relative diffusion constant 180

in our analysis. For a simple receptor-ligand-based Turing 181

system, in which receptor and ligand bind cooperatively 182

and upregulate the receptor concentration [Fig. 1(a)], both 183

parameter values a and b produce Turing patterns only within 184

a small range [Fig. 1(b)], i.e., the ligand production rate can 185

at most be halved or doubled without leaving the Turing 186

space. The Turing space is thus very small, even though 187

the relative diffusion constant, d = 50, between ligands and 188

receptors was chosen to be rather large compared to what 189

could be justified for two soluble ligands. We will now 190

analyze the impact of feedbacks, receptor clustering, and the 191

restriction of receptors to single cells on the size of the Turing 192

space. 193

A. The impact of feedbacks on the Turing space of a single 194

receptor-ligand-based Turing module 195

Feedbacks are ubiquitous in biological signaling systems. 196

In the framework of receptor-ligand-based Turing mecha- 197

nisms, feedbacks result from regulatory interactions of the 198

receptor-ligand complex, R2L [Fig. 1(c)]. To encode feed- 199

backs mediated by receptor-ligand signaling, we modified the 200

reaction terms f (R,L) and g(R,L) in the Turing model [Eq. (1) 201

and (2)]. (See the Supplemental Material [23] for the list of 202

all tested models with additional feedbacks.) Thus a positive 203

feedback on receptor or ligand expression would be obtained 204

by adding a term pR2L to the respective equation and/or by 205

multiplying the constitutive receptor and ligand production 206

rates a and b with the factor R2L
R2L+p

. A negative feedback 207

would be obtained by multiplying the constitutive receptor 208

and ligand expression rates a and b with the factor 1
R2L/p+1 . 209

The new parameter p represents the response threshold to the 210

receptor-ligand complex. Figure 1(d) illustrates the impact of 211

feedbacks on the Turing space for the regulatory system with 212

two additional negative feedbacks shown in Fig. 1(c). For a 213

large response threshold (p = 1) the Turing space is similar 214

in size to the nonfeedback case [compare the blue shaded 215

area in Fig. 1(d) to the Turing space in Fig. 1(b)]. As we 216

lower the response threshold to p = 0.1 and thus increase the 217

strength of the negative feedbacks the Turing space increases 218

in size, i.e., both the maximal receptor production rate, amax, 219

as well as the range of ligand expression rates [bmin,bmax] 220

increase [solid, yellow area in Fig. 1(d)]; the minimum of a is 221

negative and amax thus defines the size of the physiological 222

parameter range, [0,amax]. As the response threshold p is 223

lowered further, the size of the Turing space further increases 224

[Fig. 1(e)]. 225

We next systematically analyzed 11 positive, negative, 226

and mixed feedback architectures that were obtained by 227

including feedbacks of the receptor-ligand complex (R2L) on 228

the receptor (a) and/or ligand production rates (b), as well 229

as on the rate of receptor up-regulation upon receptor-ligand 230

binding (for details see Appendix B, Fig. S1). Figures 2(a) 231

and 2(B) shows the three cases with the largest Turing space 232
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FIG. 2. (Color online) Negative feedbacks by receptor-ligand
complexes result in Turing patterns with large Turing spaces. (a)
The simulated network architecture. Two receptors R interact with
one dimeric ligand L to form a receptor-ligand complex R2L (black
arrows, ↔). The receptor-ligand complex upregulates the presence
of receptor (−•). In addition to these core interactions that can
result in a Turing mechanism, we considered negative feedbacks
(�) on the ligand production (red, solid arrow) and/or the receptor
production (blue dashed arrow). (b) A negative feedback on the
receptor production rate [blue dashed arrow in panel (a)] increases
the Turing parameter space for the receptor production rate, a [blue
squares in panel (b)], compared to the standard network [black part
of the network in panel (a) and black star in panel (b)]. A negative
feedback on ligand production [red, solid arrow in panel (a)] enlarges
the Turing parameter space for the ligand production rate, b [red
circles in (b)]. In the presence of both feedbacks the Turing parameter
space is enlarged along both axes [green triangles in panel (b)]. The
feedback effects are stronger the lower the feedback threshold, p

(p = 0.01, 0.1, 1, 10, 100). The gray arrow indicates the direction in
which the feedback threshold, p, decreases.

of the 11 cases analyzed. For better readability, we only233

record the maximal receptor production rate, amax, as well234

as the ratio, bratio = bmax
bmin

, of the maximal and minimal ligand235

production rates that permit Turing patterns to emerge. We236

note that the ratio bratio = bmax
bmin

is biologically more relevant237

than the absolute size of the Turing space, �b = bmax − bmin,238

because in biology relative changes in regulatory control and239

thus in production rates are particularly relevant; the absolute240

values are typically very difficult to measure. The largest241

Turing spaces are obtained with negative feedbacks. When242

the negative feedback is applied to the constitutive receptor243

expression, a (blue squares), the maximal value of a increases244

relative to the standard model (black star) as the response245

threshold, p, is lowered; the minimum of a is negative and246

amax thus defines the size of the physiological parameter range,247

[0,amax]. If a feedback is applied to the ligand expression rate,248

b, then, as the response threshold, p, is lowered, the range of b249

increases (red circles) compared to the standard model (black250

star). The largest Turing spaces, expanded both along the a and251

b axes, are observed when negative feedbacks are applied to252

both the receptor and ligand expression rates (green triangles).253

The impact of the negative feedbacks can be observed for a254

wide range of the new parameters, p, and becomes stronger the255

smaller the value of the response threshold p [Fig. 2(b)]. As the256

response threshold p is increased, the maximal values of a, and257

the range of b, attain the value of the standard receptor-ligand258

model and thus all converge to the black star in Fig. 2(b). In259

summary, substantially enlarged Turing spaces are observed260
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FIG. 3. (Color online) Coupling of several receptor-ligand-based
Turing modules further enlarges the Turing space. (a) The simulated
network architecture. Two receptor-ligand-based Turing modules, as
analyzed in Fig. 2 (black arrows, ↔, −•), are coupled via additional
negative feedbacks (�) on the ligand production rates (red solid
arrows) and/or the receptor production rates (blue dashed arrows).
(b) A negative feedback on the receptor production rate [dashed
blue line in panel (a)] increases the Turing parameter space for the
receptor production rate, a [blue squares in panel (b)] compared to
the standard network [black part of the network in Fig. 2(a) and
black star in panel (b)]. A negative feedback on ligand production
[red solid arrow in panel (a)] enlarges the Turing parameter space
for the ligand production rate, b [red circles in (b)]. In the presence
of both feedbacks the Turing parameter space is enlarged along both
axes [green triangles in panel (b)]. The feedback effects are stronger
the lower the feedback threshold, p (p = 0.01, 0.1, 1, 10, 100). The
gray arrow indicates the direction in which the feedback threshold,
p, decreases.

when signaling by the the receptor-ligand complex lowers the 261

receptor production rate [Fig. 2(b), blue], the ligand production 262

rate [Fig. 2(b), red circles], or both [Fig. 2(b), green triangles]. 263

B. Coupled Turing modules 264

In patterning processes, several receptor-ligand systems 265

often interact, e.g., SHH, FGF10, and BMP together with 266

their receptors regulate branching morphogenesis of the lung 267

and several glands, while GDNF, FGF10, and WNT and 268

their receptors regulate kidney branching morphogenesis, as 269

recently reviewed [59]. We were therefore interested in how 270

the interaction of several such Turing modules would affect 271

the Turing space. 272

To that end, we carried out a systematic analysis of 273

possible feedback interactions between two separate receptor- 274

ligand-based Turing systems (for details see Appendix B, 275

Sec. E). The studied network architectures, systems of 276

equations, and Turing spaces are shown in Fig. S1 [23]. 277

Figure 3(a) summarizes the coupled Turing modules with 278

the largest Turing spaces. Here, as for uncoupled modules 279

(Fig. 2), the largest Turing space is observed when a negative 280

feedback acts on the production rates (Fig. 3). We notice 281

that coupling of the two Turing systems via a negative 282

feedback on the constitutive receptor expression rates, a, 283

results mainly in an increase in the parameter space of a 284

[Fig. 3(b), blue squares], while coupling the two Turing 285

systems via a negative feedback on the constitutive ligand 286
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(a) (b)

FIG. 4. Negative feedbacks enlarge the Turing space by limiting
the effective production rates. The plot of the (a) effective receptor
production rate aeff = a

max(R2L)/p+1
versus the receptor production

rate a, and (b) the plot of the effective ligand production rate
beff = b

max(R2L)/p+1
versus b show that, as a result of the negative

feedbacks, the effective production rates remain in a narrow range,
even as a and b are greatly changed. The calculation was carried
out for the symmetrically coupled Turing system, shown in green in
Fig. 3(b).

production rate b results mainly in an increase in the parameter287

space for b [Fig. 3(b), red circles]. The asymmetrically288

coupled modules with one feedback on a and one on b289

have a very large (possibly infinitely large) parameter space290

[Fig. S1 [23], panels (C6), (C8), and (C10)]. However, the291

parameter range is very narrow and extends towards infinity292

only along the b axis while it is bounded above on the a293

axis. A massive increase in the size of the Turing space is294

observed when the two Turing modules are coupled by four295

negative feedbacks, such that all constitutive receptor and296

ligand expression rates are regulated by negative feedbacks297

[Fig. 3(b), green triangles, and Fig. S1 [23], panel (C11)].298

In this case, the parameter space dramatically increases in299

both directions as p is lowered, such at that already at300

p = 0.1, the parameter ranges of both a and b expand by301

more than four orders of magnitude compared to a single302

receptor-ligand-based Turing model and further increase as303

p is lowered [Fig. 3(b), green triangles, and Fig. S1 [23]304

panel (C11)].305

C. Negative feedbacks enlarge the Turing space by limiting306

the effective production rates307

We wondered why negative feedbacks would enlarge308

the Turing space. To this end, we plotted the effective309

production rates aeff = a
max(R2L)/p+1 and beff = b

max(R2L)/p+1310

for the coupled Turing systems with the largest Turing space311

[Fig. 3(b), green triangles] versus a and b, respectively (Fig. 4).312

We find that the effective production rates are much smaller313

than what the parameter values a and b would suggest and314

almost lie within the standard small Turing space. Thus, the315

negative feedback effectively corrects the receptor and ligand316

production rates and thereby enables the Turing mechanism to317

tolerate a much wider range of production rates.318

D. The restriction of receptors to single cells enlarges319

the Turing space320

So far, we have treated receptors in the same way as the321

ligand, just with a smaller diffusion coefficient. However,322

receptors are confined to single cells and thus cannot diffuse323

R

L

R

L

(a)

(b)

(d)(c) R

L

T

L
R

R
2 L

R2LN increases

1D domain 2D domain 3D domain

FIG. 5. (Color online) The restriction of receptors to single cells
enlarges the Turing space. (a) Cartoon of the computational domain:
diffusion of receptors is restricted to single cells, while ligand
can diffuse over the entire computational domain. (b) Solution of
the receptor-ligand model on a 1D, 2D and 3D (left to right)
cellularized computational domain. The ligand (upper row), receptors
(middle row), and ligand-receptor complexes (bottom row) pattern the
domain. We provide the concentration levels (in arbitrary units) on the
vertical axis for the 1D domain (left column), and intensities as color
code (blue(dark)- low; red(light)- high) on the 2D and 3D domains. To
distinguish cell boundaries on the 1D domain we alternate black and
gray lines. (c) The size of the Turing space increases as the domain
of fixed size is split into more cells, N . Triangles show the results
for N = 10 and N = 100 cells. The black star reports the Turing
space for the standard model, N = 1. (d) Patterns of receptor-ligand
complexes that extend over several cells can be obtained with a
diffusive component, T , that is produced in response to the formation
of receptor-ligand complexes, and that enhances the abundance of
receptors on neighboring cells. The gray arrow indicates the direction,
in which the feedback threshold, p, decreases.

from one cell to the next. Moreover, they often cluster on 324

the cell surface. We therefore next studied Turing patterns on 325

cellular domains where receptors are confined to single cells, 326

while ligands can diffuse within the tissue [Fig. 5(a)]. The 327
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(a)

nL

(R2L)n

2nR
p d

ecre
ase

s
n=1

n=3

n=5
(b)

FIG. 6. (Color online) Receptor clustering enlarges the Turing
space. (a) The simulated network architecture. Clusters of 2n

receptors R interact with n dimeric ligands L to form a receptor-
ligand complex (R2L)n (black arrows, ↔). The receptor-ligand
complex upregulates the presence of receptor (black interaction,
−•). In addition to these core interactions that can result in a
Turing mechanism, we considered negative feedbacks on the ligand
production (red solid arrow, �) and/or the receptor production (blue
dashed arrow, �). (b) Higher cooperativity, n > 1, as may result from
larger receptor-ligand clusters further increases the size of the Turing
space. The n-dependent increase was calculated for p = 0.01, 0.1,
1, 10, 100 for case U5 in Fig. S1 [23]. The gray arrow indicates the
direction, in which the feedback threshold, p, decreases.

computational details of the implementation have previously328

been described [61], and details of the implementation are329

given in Appendix C. In brief, to restrict diffusion of receptors330

to a single cell in one-dimensional (1D) and 2D models331

[Fig. 5(b), left and middle panels, respectively], we set no-flux332

boundary conditions for receptor at the pseudo-cell boundary,333

while ligand was free to diffuse in the entire domain. In the334

3D model the cell surfaces were approximated as spheres335

[Fig. 5(b), right panel], and both ligands and receptors were336

produced on the spheres’ surfaces. Diffusion of receptors was337

restricted to the surface of each sphere, while ligand was free338

to diffuse also in the intercellular space; the details of the339

implementation have been previously described [62].340

We observe the emergence of patterns on 1D, 2D, and 3D341

cellularized domains [Fig. 5(b)], and as a tissue domain of342

a given size is divided into more (and thus smaller) cells, to343

which the receptors are restricted, the Turing space increases344

[Fig. 5(c)]. Interestingly, however, cells with a high level345

of receptor-ligand complexes occur only as isolated spots346

[Fig. 5(b), red(light) spots], while clusters of such active347

cells are not observed. To obtain clusters of active cells we348

have to include a second diffusively component, T , that is349

secreted by the active cells and that activates neighboring350

cells [Fig. 5(d)].351

E. Receptor clustering enlarges the Turing space352

Receptors often cluster on cell membranes, either as353

preclusters or induced by multimeric ligand. Clustered354

receptor-ligand complexes may cooperate [63], such that355

regulation is not mediated by a single ligand-receptor complex356

but by the cluster. We then have (R2L/p)n with n > 1 in357

Eq. (1) and (2) instead of R2L/p. As we increase n, we observe358

a further increase in the size of the Turing space [Figs. 6(a) 359

and 6(b)]. In summary, both receptor clustering and the cellular 360

restriction of receptors greatly increase the Turing space. 361

F. Physiological Turing models 362

Physiological networks harbor many feedbacks and we 363

wondered by how much the size of the Turing space would 364

be increased in physiological settings. Here we considered 365

the network that controls branching morphogenesis in the 366

lung [Fig. 7(a)]; similar networks also operate in the prostate, 367

salivary gland, and the pancreas [59]. Core to the control 368

of lung branching morphogenesis are FGF10 and SHH as 369

no branching is observed in the null mutants [64–67], and 370

expression of dominant negative Fgfr2 blocks lung branching 371

but not outgrowth [68]. 372

FGF10 upregulates Shh expression [64] and the expression 373

of its own receptor, FGFR2b [53,54], while SHH signaling 374

downregulates Fgf10 expression [69] and upregulates the 375

expression of its own receptor Ptch1 [70] [Fig. 7(a)]. We 376

have previously shown that the SHH-PTCH kinetics can be 377

described by Eqs. (1) and (2) [34,35]; similar equations can 378

also be derived for the FGF10-FGFR2b kinetics; see Ap- 379

pendix I for a general derivation of the ligand-receptor kinetics. 380

The particular stoichiometry in Eq. (1) and (2) assumes the 381

binding of one ligand dimer to two receptor monomers. In 382

the case of FGF10, monomeric binding of one FGF10 dimer 383

to its trivalent FGFR2b receptor triggers dimerization of the 384

FGF10-receptor complex [46]; SHH is a multimer that may 385

form higher-order complexes with its receptor PTCH1 [71]. 386

We have previously shown that similar Turing patterns can be 387

observed also with such very different stochiometries [35]. For 388

ease of comparison, we stick to the standard model (Eq. 1-2) 389

for the FGF10 and SHH modules, though we note that larger 390

SHH-PTCH1 clusters would further increase the Turing space 391

[Figs. 5(e) and 5(F)]. The two signaling factors interact in that 392

FGF10 upregulates Shh expression [64], while SHH signaling 393

downregulates Fgf10 expression [69]. The equations for the 394

coupled network [Fig. 7(b)] are thus given by 395

PTCH1: Ṙ1 = �R1 + f (R1,L1,R2,L2)

SHH: L̇1 = d�L1 + g(R1,L1,R2,L2)

FGFR2b: Ṙ2 = �R2 + f̃ (R1,L1,R2,L2)

FGF10: L̇2 = d�L2 + g̃(R1,L1,R2,L2) (3)

with 396

f (R1,L1,R2,L2) = a1 − R1 + qR2
1L1

g(R1,L1,R2,L2) = b1 − R2
1L1 + p1R

2
2L2

f̃ (R1,L1,R2,L2) = a2

1 + R2
2L2

p2

− R2 + qR2
2L2

g̃(R1,L1,R2,L2) = b2

1 + R2
1L1

p2

− R2
2L2. (4)

Here R1 represents the receptor PTCH1, L1 the ligand 397

SHH, R2 the receptor FGFR2b, and L2 the ligand FGF10. 398
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FIG. 7. (Color online) Substantially enlarged Turing spaces for physiological networks. (a) The SHH-FGF10 network in the control of lung
branching morphogenesis. For details see the text. (b) Schematic representation of the regulatory network for lung branching morphogenesis
in panel (a). (c) The Turing space of such a physiological model is huge and further increases as the feedback threshold, p, is lowered. The
red triangles represent the Turing spaces for p1 = q = 0.1 (positive feedback on ligand and receptor, respectively) and p2 = 0.01, 0.1, 1, 10,
100 (negative feedback); the black star represents the size of the Turing space of the standard network in Fig. 2(a) (black part). The gray arrow
indicates the direction in which the feedback threshold, p, decreases. ↔ indicates binding interactions, � indicates inhibitory interactions, and
−• indicates up-regulating interactions.

The SHH-PTCH1 complex R2
1L1 upregulates the receptor399

PTCH1 [70], i.e., +qR2
1L1 in the term f (R1,L1,R2,L2),400

and inhibits the production of FGF10 [70], i.e., b2

1+ R2
1L1
p2

in401

the term g̃(R1,L1,R2,L2). The FGF-receptor complex, R2
2L2,402

upregulates the production of SHH [64], i.e., p1R
2
2L2 in the403

term g(R1,L1,R2,L2) and both upregulates, i.e., qR2
2L2 in404

term f̃ (R1,L1,R2,L2), and downregulates, i.e., a

1+ R2
2L2
p2

in term405

f̃ (R1,L1,R2,L2), the FGF receptor FGFR2b [53,54]. The406

−R2
1L1 and −R2

2L2 terms represent ligand removal by receptor407

binding; receptor removal by ligand binding is absorbed408

in the +qR2
1L1 and +qR2

2L2 terms as signaling-dependent409

receptor upregulation dominates ligand-induced receptor410

removal.411

We find that the combination of these two modules412

[Fig. 7(b)] increases the range of the receptor production rate,413

a, by about 109-fold as the threshold p is lowered to 0.01, while414

the relative range of the ligand production rate, b2, increases415

about 100-fold compared to the single receptor-ligand-based416

Turing model [Fig. 7(c)].417

III. DISCUSSION418

Turing mechanisms can reproduce a wide range of biolog-419

ical patterning phenomena. However, it has remained unclear420

how they may be implemented on the molecular scale and how421

they could evolve in spite of the small sizes of their Turing422

spaces. We propose that ligand-receptor interactions give rise423

to Turing patterns, and we show that negative feedbacks, the424

coupling of Turing modules, and the restriction of receptors to425

single cells can greatly increase the size of the Turing space426

(Figs. 2, 3, and 5) and thus increase the range of parameter427

values for which Turing patterns will emerge in biological428

systems.429

The conditions for ligand-receptor-based Turing mecha-430

nisms, as summarized in the Introduction, are met by many431

different ligand-receptor pairs, and we have previously shown432

that receptor-ligand-based Turing mechanisms can indeed 433

well describe the patterning processes for a range of devel- 434

opmental systems [33–36,59]. Equally, negative feedbacks 435

are prevalent in biological regulation and have previously 436

been shown to enable robustness to noise [72] and transient 437

responsiveness [73]. We now propose that negative feedbacks 438

enable robust patterning also for receptor-ligand-based Turing 439

mechanisms. Interestingly, also the restriction of receptors to 440

single cells can further increase the size of the Turing space 441

(Fig. 5). This suggests a way that Turing mechanisms may have 442

first evolved. Cooperative interactions in receptor clusters and 443

the introduction of feedbacks as well as the coupling of several 444

Turing modules may then have further increased the size of 445

the Turing space. 446

It will be important to test our theoretical insights by 447

synthetically constructing such a ligand-receptor-based Turing 448

mechanism and by establishing the key parameter values 449

(rates of production, decay, diffusion coefficients, endogenous 450

concentrations, etc.) in the living systems. The Turing space 451

of ligand-receptor systems with additional negative feedbacks 452

should be sufficiently large that synthetic biology approaches 453

can now obtain Turing patterns in spite of the difficulties 454

to accurately control kinetic rates in synthetic biology ap- 455

proaches. Given their robustness and flexibility, we propose 456

that receptor-ligand-based Turing mechanisms are the likely 457

standard way that Turing mechanisms are implemented in 458

nature. 459
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APPENDIX A: DERIVATION OF THE EQUATIONS FOR 463

THE RECEPTOR-LIGAND SIGNALING MODEL 464

As previously derived [33–36], the dynamics of receptors, 465

R, ligands, L, and the ligand-receptor complex, C [Fig. 1(c)], 466
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can be described by the following set of equations:467

˙[L] = DL�[L]︸ ︷︷ ︸
diffusion

+ ρS︸︷︷︸
production

−δL[L]︸ ︷︷ ︸
degradation

−n kon[R]m[L]n + nkoff[C]︸ ︷︷ ︸
complex formation

, (A1)

˙[R] = DR�[R]︸ ︷︷ ︸
diffusion

+ ρR + μ([C])︸ ︷︷ ︸
production

−δP [P]︸ ︷︷ ︸
degradation

−m kon[R]m[L]n + mkoff[C]︸ ︷︷ ︸
complex formation

, (A2)

˙[C] = DC�[C]︸ ︷︷ ︸
diffusion

+ kon[R]m[L]n − koff[C]︸ ︷︷ ︸
complex formation

−δC[C]︸ ︷︷ ︸
degradation

. (A3)

Here [X] denotes the concentration of component X, DX468

denotes the diffusion coefficient, ρX the production rate469

constant, and δX the first-order degradation rate constant of470

component X. μ([C]) specifies a function that describes the471

ligand-receptor dependent up regulation of receptor produc-472

tion. kon denotes the rate constant for the formation, and koff473

the rate constant for the dissociation of the ligand-receptor474

complex. m and n specify the number of receptors and ligands475

that bind in the ligand-receptor complex.476

Assuming that the dynamics of the complex are fast477

compared to those of the other components, we can introduce478

a quasi-steady-state approximation,479

0 = kon[R]m[L]n − koff[C]︸ ︷︷ ︸
complex formation

−δC[C]︸ ︷︷ ︸
degradation

, (A4)

and thus arrive at the quasi-steady-state concentration of480

complex [C]SS481

[C]SS = kon

koff + δC

[R]m[L]n = �[R]m[L]n, (A5)

where � = kon

koff+δC
. The concentration of bound receptor, [C], is482

thus proportional to [R]m[S]n. Furthermore, assuming that the483

rate of receptor upregulation in response to receptor-ligand484

signaling μ([C]) = v[C] = v�[R]m[L]n depends linearly on485

the ligand-receptor complex concentration, [C], we obtain the486

following set of PDEs:487

˙[L] = DL�[L] + ρL − nδC�[R]m[L]n − δL[L], (A6)

˙[R] = DR�[P] + ρR + (v − mδC)�[R]m[L]n − δR[R]. (A7)

We note that the linear response of the receptor production rate488

to receptor-ligand signaling helps to increase the size of the489

Turing space. Based on the results in Fig. S1 [23], case U6,490

we expect that a saturation of the response for higher ligand-491

receptor concentrations, as could be described by a Hill func-492

tion of the form μ([C]) = H (μ([C],K) = H (�[R]n[L]m,K),493

would cause a shrinking of the Turing space.494

Equations (A6) and (A7) converge to the classical495

Schnakenberg equations for the following conditions:496

(a) Receptor-independent degradation of ligand is much497

less efficient than receptor-dependent ligand degradation, as is498

generally the case, i.e., δL[L] � nδC�R]m[L]n.499

(b) The stochiometry of the ligand-receptor interaction500

yields m = 2, n = 1; we note that other stochiometries also501

yield Turing patters [35].502

(c) v = (m + n)δC.503

1. Derivation of the nondimensional set of equations 504

for the receptor-ligand-based Turing mechanism 505

In the following, we will adopt the standard notation that 506

is used to describe Turing models, and we write U for the 507

receptor concentration and V for the ligand concentration; 508

UmV n represents the quasi-steady-state concentration of the 509

receptor-ligand complex. We have previously shown that a 510

wide range of stochiometries can yield Turing patterns [35]. 511

Using m = 2, n = 1, i.e., one ligand dimer V binds to two 512

monomeric receptors U , Eqs. (A6) and (A7) can be written as 513

∂U

∂τ
= DU�U + k1 − k2U + (k5 − 2k3)U 2V, (A8)

∂V

∂τ
= DV �V + k4 − k6V − k3U

2V, (A9)

where U = U (τ,X) and V = V (τ,X) are the unknown func- 514

tions depending on the time variable τ and space variable 515

X. The coefficient k1 then represents the constitutive re- 516

ceptor production rate, while k4 represents the constitutive 517

ligand production rate. The term −k2U reflects the ligand- 518

independent receptor turnover rate while −k6V reflects the 519

receptor-independent ligand turnover rate. −k3U
2V reflects 520

the turnover of the receptor-ligand complex, which leads to the 521

removal of one ligand dimer, V , and two receptor monomers, 522

U . Most ligand is typically removed by this receptor- 523

dependent process, and we can therefore make the simplifying 524

approximation k6 = 0. Finally, +k5U
2V reflects the signaling- 525

dependent increase in receptor emergence (which can happen 526

by a wide range of mechanisms); we will set k5 = 3k3 in the 527

following to recover the classical Schnakenberg equations. 528

Equations (A8) and (A9) then read 529

∂U

∂τ
= DU�U + k1 − k2U + k3U

2V, (A10)

∂V

∂τ
= DV �V + k4 − k3U

2V. (A11)

These equations can be rewritten in dimensionless form as 530

∂u

∂t
= �u + γ (a − u + u2v),

∂v

∂t
= d�v + γ (b − u2v), (A12)

where 531

u = U

(
k3

k2

)1/2

, v = V

(
k3

k2

)1/2

, t = DU τ

L2
, x = X

L
,

d = DV

DU

, a = k1

k2

(
k3

k2

)1/2

, b = k4

k2

(
k3

k2

)1/2

, γ = L2k2

DU

.
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The function u then represents the receptor, v represents the532

ligand, and u2v represents the quasi-steady-state concentration533

of the receptor-ligand complex. As before, one ligand dimer534

v binds to two monomeric receptors u. We have previously535

shown that also other combinations umvn result in Turing536

patterns [35]. The constant γ a then represents the constitutive537

receptor production rate, while γ b represents the constitutive538

ligand production rate. The term −γ u reflects the ligand-539

independent receptor turnover rate, while −γ u2v reflects540

the receptor-dependent ligand removal rate. Finally, +γ u2v541

represents the net result of ligand-dependent receptor turnover542

and the signaling-dependent increase in receptor emergence,543

where the latter dominates, thus the positive term.544

APPENDIX B: DETERMINATION OF TURING SPACES545

1. The Turing mechanism546

In this section we summarize briefly the criteria for the547

emergence of Turing pattern for reaction-diffusion systems548

with two species. We consider systems of the form549

∂U

∂τ
= F (U,V ) + DU�U,

∂V

∂τ
= G(U,V ) + DV �V, (B1)

defined on (0,∞)×	 (with a given spatial domain 	 ⊂ Rn)550

subject to boundary and initial conditions, where the space- and551

time-dependent functions U and V represent concentrations552

and the reaction kinetic terms F and G are generally553

nonlinear functions. After suitable changes of variables and554

nondimensionalization, Eq. (B1) can be transformed into the555

dimensionless system556

ut = γf (u,v) + �u,

vt = γg(u,v) + d�v, (B2)

where t is the rescaled time variable, d denotes (or is557

proportional to) the quotient of the diffusion coefficients DU558

and DV , and γ = constL2, where L is a typical length scale559

of the domain. To ensure the uniqueness of the solution we560

endow system (B2) with initial and boundary conditions. We561

will use homogeneous Neumann boundary condition of the562

form563

(n · ∇)

(
u

v

)
= 0 on [0,∞)×∂	

u(0,x) = u0(x), v(0,x) = v0(x),

because they are easy to handle and have a biological564

interpretation (impermeable boundary). We note, however,565

that other boundary conditions would not greatly alter the566

following analysis. A Turing instability appears when a567

reaction-diffusion system has a stable steady state in the568

absence of diffusion, which loses its stability in the presence569

of diffusion such that spatial patterns emerge.570

2. Linear stability in the absence of diffusion 571

Let u0 and v0 denote the steady state of the diffusion-free 572

system of ordinary differential equations (ODEs) 573

ut = γf (u,v), vt = γg(u,v), (B3)

and linearize the system about (u0,v0) by introducing the 574

translated function w = (w1,w2)T with w1 = u − u0, w2 = 575

v − v0. Then the linearized system becomes 576

wt = γ Jw,

where 577

J =
(

fu fv

gu gv

)∣∣∣∣
(u0,v0)

=
[
fu(u0,v0) fv(u0,v0)

gu(u0,v0) gv(u0,v0)

]

is the Jacobian evaluated at the point (u0,v0). From now on, 578

we write the partial derivatives evaluated at the steady state 579

without their arguments for brevity. The steady state of the 580

linearized system is stable, i.e., the steady state of system (B3) 581

is linearly stable if Reλ(J ) < 0 for all eigenvalues of J (see 582

any textbook on ODEs), which for a two-component system 583

is ensured by the conditions 584

trJ = fu + gv < 0, det(J ) = fugv − fvgu > 0. (B4)

3. Diffusion-driven instability 585

Now let us add diffusion to our system of ODEs and 586

consider the reaction-diffusion system linearized about the 587

steady state w = (0,0)T , which has the form 588

wt = γ Jw + D�w, (B5)

where D = diag(1,d) is a diagonal matrix containing the 589

diffusion coefficients of the nondimensionalized system (B2). 590

We look for a solution of the form 591

w(t,x) =
∑

k

Cke
λktWk(x), (B6)

where the exponents λk determine the temporal growth of 592

the solution and the time-independent functions Wk are the 593

solutions of the elliptic eigenvalue problem 594

�Wk + k2Wk = 0, (n · ∇)Wk = 0.

For instance, in one dimension on the interval [0,L] the 595

eigenvalues are k = nπ/L (n = 0,1,2, . . .), also called wave 596

numbers, and the eigenfunctions are W (x) = cos(nπx/L) = 597

cos(kx). The constants Ck = (C(1)
k ,C

(2)
k )T are the Fourier 598

coefficients of the initial conditions. 599

Inserting Eq. (B6) into Eq. (B7) and using the fact that the 600

set of eigenfunctions of the Laplace operator {Wk} forms a 601

complete orthonormal system, we obtain a linearized system, 602

wt = γ Jw + Dk2w, (B7)

for each wave number k. Writing 603

det(λI − γ J + k2D) = 0,

where I = I2 is the 2×2 identity matrix, we obtain the 604

eigenvalues λ = λk of the matrix M = γ J − k2D. Expanding 605

the above determinant, we obtain that λk is the root of the 606
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second-order polynomial equation607

λ2 + λ[k2(1 + d) − γ (fu + gv)] + dk4 − γ (dfu + gv)k2

+ γ 2(fugv − fvgu) = 0.

Since we look for unstable solutions, we require that Reλk > 0608

for some k �= 0. This means that either the coefficient of λ609

and/or the constant term must be negative. Since the steady610

state is required to be linearly stable in the absence of611

diffusion (which corresponds to the case k = 0), we must have612

k2(1 + d) − γ (fu + gv) > 0. Hence, to obtain a λ with a613

positive real part in the presence of diffusion we require614

h(k2) := dk4 − γ (dfu + gv)k2 + γ 2(fugv − fvgu) < 0

for some nonzero wave number k. Since we require fugv −615

fvgu > 0 for linear stability in the absence of diffusion616

(k = 0) (B4), it follows that dfu + gv > 0 must hold. This617

condition is not sufficient to ensure the negativity of the618

function h; an elementary calculation shows that the minimum619

of h is attained at the point620

k2
m = γ

dfu + gv

2d
,

and the minimum value of h is621

hmin = h
(
k2

m

) = γ 2

[
(fugv − fvgu) − (dfu + gv)2

4d

]
,

which is negative if the expression in the bracket is negative.622

In summary, the well-known conditions (see Ref. [78],623

Sec. 2.3) for which a reaction-diffusion system with two624

species exhibits a Turing instability are as follows:625

fu + gv < 0, fugv − fvgu > 0,

dfu + gv > 0, (dfu + gv)2 − 4d(fu + gv − fvgu) > 0,

(B8)

where all partial derivatives are evaluated at the steady state626

(u0,v0). We note that it is possible that these conditions are627

satisfied but that no pattern emerges. This is the case when h is628

not negative for any k within the discrete set of wave numbers629

and only takes a negative value between two of these discrete630

wave numbers. The distance between wave numbers shrinks as631

γ is increased, and in the limit of infinite γ the spectrum of k is632

continuous. Since γ is related to the size of the spatial domain,633

it follows that on small domains pattern formation may not634

happen, while on a sufficiently increased domain patterns may635

be observed.636

4. Turing instability in interacting systems637

We now consider two identical reaction-diffusion systems,638

which we couple with each other in several ways. When639

the couplings are of the same type (i.e., when the first640

two-component Turing system based on u and v is coupled641

with the second Turing system that is based on ũ and ṽ via the642

same functions f and g), then we can derive exact conditions643

for the Turing instability, as an extension of the classical644

results that were presented in Sec. IV B (see Ref. [3], Sec. 2.3,645

for more details). For this let us consider systems of the646

form 647

ut = γf (u,v,̃u,̃v) + �u

vt = γg(u,v,̃u,̃v) + d�v

ũt = γf (̃u,̃v,u,v) + �ũ

ṽt = γg(̃u,̃v,u,v) + d�ṽ, (B9)

where the functions f and g describe the chemical reactions, 648

γ > 0 is a constant depending on the size of the domain, and 649

d > 0 is a diffusion parameter. Let (u0,v0 ,̃u0 ,̃v0) denote the 650

steady state (assuming that there is only one or at least they are 651

isolated) of this system in the absence of diffusion (note that 652

due to the symmetry u0 = ũ0 and v0 = ṽ0) and—just as in the 653

uncoupled case (B3)—linearize the system about the steady 654

state. The linearized system has the form 655

wt = γ Jw,

where 656

J =

⎛
⎜⎝

fu fv fũ fṽ

gu gv gũ gṽ

fũ fṽ fu fv

gũ gṽ gu gv

⎞
⎟⎠

is the Jacobian matrix. Note the symmetry in J that arises for 657

this particular coupling. In this linearized system the steady 658

state is stable if Reλ(J ) < 0 for all eigenvalues of J . The 659

eigenvalues are the roots of the characteristic polynomial kJ (λ) 660

of J , which is now a fourth-order polynomial for the coupled 661

system. Due to the very special form of the coupling and the 662

resulting symmetries in J , the polynomial kJ can be factorized 663

as 664

kJ (λ) = [λ2 + λ(−fu − gv − fũ − gṽ) + fugv − fvgu

+ fugṽ − fṽgu + fũgv − fvgũ + fũgṽ − fṽgũ]

× [λ2 + λ(−fu − gv + fũ + gṽ) + fugv − fvgu

− fugṽ + fṽgu − fũgv + fvgũ + fũgṽ − fṽgũ].

(B10)

Hence Reλ(J ) < 0 holds for all four eigenvalues of J , that is, 665

the steady state of (B9) is linearly stable if both of the factors 666

in (B10) have only roots with negative real part, i.e., 667

fu + gv < ±(fũ + gṽ),

fugv − fvgu + fũgṽ − fṽgũ > ±(fugṽ − fṽgu

+ fũgv − fvgũ). (B11)

Following the course of the uncoupled case, by adding 668

diffusion, we again arrive at Eq. (B7), now with the diffusion 669

matrix D = diag(1,d,1,d). As before, we look for a solution of 670

the form of Eq. (B6). To this end, we determine the eigenvalues 671

λ = λk for M = γ J − k2D. The characteristic polynomial of 672

this matrix—given the special forms of J and D—can be 673

factorized as the product of two second-order polynomials as 674
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follows:675

kM (λ) = [λ2 + λ(k2(1 + d) − γ (fu + gv + fũ + gṽ)) + dk4 − γ k2(dfu + gv + dfũ + gṽ)

+ γ 2(fugv − fvgu + fugṽ − fṽgu + fũgv − fvgũ + fũgṽ − fṽgũ)]

×[λ2 + λ(k2(1 + d) − γ (fu + gv − fũ − gṽ)) + dk4 − γ k2(dfu + gv − dfũ − gṽ)

+ γ 2(fugv − fvgu − fugṽ + fṽgu − fũgv + fvgũ + fũgṽ − fṽgũ)]. (B12)

To obtain a Turing instability, at least one of the roots of kM has to have a positive real part for some k �= 0, i.e., one of the676

factors of kM must have a root with Reλ(M) > 0. The first factor of (B12) has a root with positive real part if the coefficient677

of λ is negative or the constant term is negative. But since the steady state is stable in the absence of diffusion [linear stability678

conditions (B11)] the coefficient of λ is always positive, i.e., k2(1 + d) − γ (fu + gv + fũ + gṽ) > 0. Hence we require that679

h(1)(k2) := dk4 − γ k2(dfu + gv + dfũ + gṽ) + γ 2(fugv − fvgu + fugṽ − fṽgu + fũgv − fvgũ + fũgṽ − fṽgũ) < 0

holds for some wave number k �= 0. Since we know from the linear stability conditions (B11) that the constant term is positive,680

i.e., fugv − fvgu + fugṽ − fṽgu + fũgv − fvgũ + fũgṽ − fṽgũ > 0, it follows that dfu + gv + dfũ + gṽ > 0 must hold. We681

further need to ensure that the function h(1) attains a negative value for some of the wave numbers. The minimum of h(1) is682

attained at683

k2
1,m = γ

dfu + gv + dfũ + gṽ

2d
,

and the minimum value of h(1) is684

h(1)
min = h(1)(k2

1,m) = γ 2

[
(fugv − fvgu + fugṽ − fṽgu + fũgv − fvgũ + fũgṽ − fṽgũ) − (dfu + gv + dfũ + gṽ)2

4d

]
.

The minimum value of h(1) is thus negative if the expression in the bracket is negative. If the first factor of (B12) does not have roots685

with positive real part, the second factor has to have at least one root with positive real part to obtain a Turing instability. By similar686

reasoning as before we know from (B11) that the coefficient of λ is again always positive: k2(1 + d) − γ (fu + gv − fũ − gṽ) > 0.687

Hence, it is required that688

h(2)(k2) := dk4 − γ k2(dfu + gv − dfũ − gṽ) + γ 2(fugv − fvgu − fugṽ + fṽgu − fũgv + fvgũ + fũgṽ − fṽgũ) < 0

holds for some k �= 0. A necessary condition for this is dfu + gv − dfũ − gṽ > 0, since the constant term in h(2) is positive again689

by (B11). To obtain a sufficient condition we have to calculate the minimum of h(2) as before, i.e.,690

k2
2,m = γ

dfu + gv − dfũ − gṽ

2d
.

The minimum value of h(2) is691

h(2)
min = h(2)

(
k2

2,m

) = γ 2

[
(fugv − fvgu − fugṽ + fṽgu − fũgv + fvgũ + fũgṽ − fṽgũ) − (dfu + gv − dfũ − gṽ)2

4d

]
.

In summary, the steady state has to be linearly stable if no diffusion is present, which means that all roots of (B10) have692

negative real part, but instability appears when diffusion is added, which means that the polynomial in (B12) has to have at least693

one root with a positive real part. Hence for Turing instability in the coupled system (B9) one of the following sets of conditions694

has to be satisfied [(B13a) or (B13b)]:695

fu + gv < ±(fũ + gṽ), fugv − fvgu + fũgṽ − fṽgũ > ±(fugṽ − fṽgu + fũgv − fvgũ), dfu + gv + dfũ + gṽ > 0,

(dfu + gv + dfũ + gṽ)2 − 4d(fugv − fvgu + fugṽ − fṽgu + fũgv − fvgũ + fũgṽ − fṽgũ) > 0; (B13a)

fu + gv < ±(fũ + gṽ), fugv − fvgu + fũgṽ − fṽgũ > ±(fugṽ − fṽgu + fũgv − fvgũ), dfu + gv − dfũ − gṽ > 0,

(dfu + gv − dfũ − gṽ)2 − 4d(fugv − fvgu − fugṽ + fṽgu − fũgv + fvgũ + fũgṽ − fṽgũ) > 0, (B13b)

where the first line comes from the linear stability condition (hence they are the same in both cases) and the other two lines are696

derived from the diffusion-driven instability conditions.697

APPENDIX C: CELLULAR MODELS698

Here we present the details of the implementation of the699

cellular models presented in Fig. 5. We consider 1D, 2D, and700

3D cellular models. In all cases we solved Eqs. (1) and (2) but 701

with some terms restricted to certain subdomains as specified 702

below. All equations were solved on the same mesh. 703
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TAMÁS KURICS, DENIS MENSHYKAU, AND DAGMAR IBER PHYSICAL REVIEW E 00, 002700 (2014)

1. 1D cellular models704

We use a 1D domain, comprising N subdomains of705

equal length [Fig. 5(b)]. On every subdomain the set of706

Eqs. (1) and (2) is solved. Ligand L can diffuse freely in707

the entire domain, while receptor R is restricted to each708

subdomain by no-flux boundary conditions. Ligand exchange709

between subdomains is obtained by enforcing continuous710

ligand profiles across the borders of the subdomains, i.e.,711

by requiring that the ligand value L on the right-hand side712

boundary of subdomain i is the same as the ligand value L on713

the left-hand side boundary of subdomain i + 1.714

2. 2D cellular models715

We use a 2D square domain, containing N×N equal-sized716

subdomains of square shape. The subdomains neither intersect717

nor overlap [Fig. 5(b)]. The following set of PDEs is defined718

on this 2D domain as follows:719

∂R

∂t
= �R + γ (a − R + R2L) on C, (C1)

∂L

∂t
= d�L + γ

{
(b − R2L) on C

0 on EC
, (C2)

where C represents the N×N array of rectangular cellular720

subdomains and EC refers to the rest of the 2D domain,721

representing the extracellular space.722

3. 3D cellular models723

We use a 3D domain [Fig. 5(b)], containing N×N×1724

nonoverlapping spheres that are embedded into a cuboid.725

The following set of PDEs describes the ligand and re-726

ceptor dynamics on the surface of the spheres, referred to727

as C, 728

∂R

∂t
= �R + γ (a − R + R2L) on C, (C3)

∂L

∂t
= d�L + γ (b − R2L) on C. (C4)

Additionally, the ligand is free to diffuse in the bulk of the 729

cuboid, referred to as EC, 730

∂L

∂t
= d�L on EC. (C5)

The concentration of the ligand on the surface of the spheres 731

and in the bulk of the cuboid is linked via 732

d 	n · ∇L = γ (b − R2L), (C6)

where 	n is the outward normal vector. The volume inside the 733

spheres (i.e., the cell interior) is not included in the simulations 734

because we do not consider ligand or receptor internalization. 735

APPENDIX D: NUMERICAL SOLUTION 736

OF PDES WITH COMSOL 737

The partial differential equations were solved in COMSOL 738

MULTIPHYSICS 4.X as described previously [61,62,74]. COMSOL 739

MULTIPHYSICS has previously been used to accurately solve a 740

variety of reaction-diffusion equations which originate from 741

chemical, biological, and engineering applications [33–36,75– 742

80]. In the following we present two tests for the numerical 743

accuracy of the solution of Turing type models obtained with 744

COMSOL MULTIPHYSICS. 745

1. Accuracy of the Turing space 746

We first test whether we obtain the same Turing space 747

numerically and analytically. To this end, we use Eq. (B8) 748

as analytical condition for a Turing instability for the Turing 749

FIG. 8. (Color online) Comparison of the Turing spaces calculated numerically and those derived analytically. [(a) and (b)] The shaded
regions of the parameter space indicates the area where the linear stability analysis identifies a Turing instability (yellow, light shading) or other
instabilities (navy, dark shading) for Eqs. (1) and (2) with zero-flux boundary conditions. The symbols indicate the points in the parameter
space where the numerical solution of Eqs. (1) and (2) with zero-flux boundary conditions yielded either pattern formation (+) or not (0). γ

was chosen sufficiently large that Turing patterns could emerge on the 1D domain. Panels (a) and (b) differ in the relative diffusion coefficient
d , with (a) d = 100 and (b) d = 10.
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model given by Eqs (1) and (2). To estimate the size of the750

Turing space numerically, we solve Eqs. (1) and (2) with751

COMSOL. Figure 8 shows that the numerical solution of Eqs. (1)752

and (2) in COMSOL yields pattern (+ symbols) in the part of753

the parameter space where the analytical criterion specifies754

either the classical Turing space (yellow region) or an unstable755

steady state both in the presence and absence of diffusion (blue756

region).757

2. Convergence of numerical solution758

Here we show that the numerical solution of a ligand-759

receptor-based Turing model on a domain comprising two760

layers converges with respect to the mesh size. We consider761

the model762

∂R

∂t
= �R + γ (a − R + R2L) on T1, (D1)

∂L

∂t
= d�L + γ

{
(−R2L) on T1

b on T2
, (D2)

where T1 and T2 indicate two different tissue layers.763

Figure 9(a) shows the calculated distribution of the receptor-764

ligand complex (R2L); similar patterns were obtained for a765

range of finite-element meshes with the maximum size of766

the mesh size in the range from 0.01 to 0.1. Figure 9(b)767

10
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−110

−2
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−1

10
0

max element size

m
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FIG. 9. (Color online) Convergence of the numerical solution. (a)
Typical pattern of receptor-ligand complexes (R2L) on a domain
comprising two subdomains. Ligand is produced in the upper domain
but free to diffuse on the entire domains. Receptor is produced in
the lower domain and its diffusion is restricted to the lower domain.
(b) The maximum deviation of the receptor-ligand complex (R2L) as
computed with an FEM mesh with element size equal to 0.01 from
that computed at other mesh sizes.

shows that the maximum deviation in the solution decreases 768

quadratically with respect to the maximum mesh size or, 769

equivalently, decreases linearly with respect to the maximum 770

mesh edge, as expected for finite element method (FEM) with 771

first-order Lagrange elements. These tests support the previous 772

observations by others that COMSOL MULTYPHYSICS can solve 773

Turing-type equations accurately. 774
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