

CORRIGENDUM: MELATONIN REDUCES MUSCLE DAMAGE, INFLAMMATION AND OXIDATIVE STRESS INDUCED BY EXHAUSTIVE EXERCISE IN PEOPLE WITH OVERWEIGHT/OBESITY

IMEN BEN DHIA^{1,2†} , RAMI MAALOUL^{1,3†} , HOUSSEM MARZOUGUI^{1,3} , SAMEH GHROUBI², CHOUMOUS KALLEL⁴, TARAK DRISS⁵ , MOHAMED HABIB ELLEUCH², FATMA AYADI³, MOUNA TURKI^{3‡} and OMAR HAMMOUDA^{3,5‡}*

Received: May 27, 2022 • Accepted: June 3, 2022 Published online: September 21, 2022 © 2022 Akadémiai Kiadó, Budapest

Corrigendum's DOI: 10.1556/2060.2022.10126

Article's DOI: 10.1556/2060.2022.00126

¹ Research Laboratory: Education, Motricité, Sport et Santé (EM2S) LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia

² Research Laboratory of Evaluation and Management of Musculoskeletal System Pathologies, LR20ES09, University of Sfax, Sfax, Tunisia

³ Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia

⁴ Hematology Laboratory, CHU Habib Bourguiba, Sfax, Tunisia

⁵ Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), UFR STAPS, UPL, Paris Nanterre, Nanterre, France

^{*}Corresponding author. Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), UFR STAPS, UPL, Paris Nanterre, Nanterre, France. Tel.: +33 7 82931 995. E-mail: omar.hammouda@parisnanterre.fr

[†] These authors contributed equally.

[‡] Joint Senior authors.

In our article, the below sentences were inaccurately composed, therefore the article was modified with the following changes:

1. The last sentence of the results section in the abstract was corrected to: "Concerning the antioxidant status, MLT intake alleviated the decrease of Thiol (P < 0.01, $\eta p^2 = 0.26$) and Catalase (P < 0.01, $\eta p^2 = 0.32$) and the increase of Uric acid (P = 0.02, $\eta p^2 = 0.2$) and Total bilirubin (P < 0.01, $\eta p^2 = 0.33$)."

These changes are in order to avoid any misunderstanding since we deleted the difference Δ (MLT-PLA) in % which was positive for Thiol (-8.86% - (-32.67%) = +23.81%, and Catalase (-14.44% - (-34.61%) = +20.17%), and negative for Uric acid (+3.55% - (+5.96%) = -2.41%) and Total bilirubin (+4.8% - (+11.37%) = -6.57%).

- 2. In the last paragraph of "Materials and Methods" section (i.e., statistical analysis), on page 83, we deleted the following sentence: "The paired *t*-test or Wilcoxon test were performed to compare the percentage changes between both conditions."
- 3. In Table 2, on page 84, as a part of post hoc test findings (i.e., differences between PLA and MLT sessions) we added the dash symbol "#" as follows:

We modified the last note under the same table as follows: "#, ##, ###: significant difference between PLA and MLT sessions (P < 0.05, P < 0.01 and P < 0.001, respectively)."

- 4. In the first paragraph of the "Results" section (i.e., Inflammation and immune responses), on page 85, the following sentence was corrected with deleting "that the rates of": "However, the significant interaction (treatment × exercise) reported lower increase pre-post exercise for WBC, CRP (P < 0.001, $\eta p^2 = 0.45$; for both) and neutrophils (P < 0.01, $\eta p^2 = 0.36$) after MLT condition."
- 5. In the 3rd paragraph of the "Discussion" section, on page 86, a sentence was corrected with deleting "rate of": "Additionally, the lower decrease pre-post exercise of Thiol and CAT during MLT condition may reflect the direct antioxidant and FR scavenging properties of MLT."
- 6. In the 3rd paragraph of the "Discussion" section, on page 86, the information "shifts to a later time" was used only to clarify the phase delay (i.e., not valid for phase advances), therefore the following sentence was corrected to this: "However, exogenous melatonin induces phase delays (shifts to a later time) when administered in the morning, and phase advances (shifts to an earlier time) when given in the afternoon/evening."
- 7. In the 4th paragraph of the "Discussion" section, page 86, "rate of" was deleted from the following sentence: "Our results showed a lower increase in TBIL and UA after exercise in MLT compared to PLA session."

Variable	PLA		MLT		Anova		
	Pre	Post	Pre	Post	Exercise effect $F_{(1,22)}(P; \eta p^2)$	Melatonin effect $F_{(1,22)}$ (P ; ηp^2)	Interaction $F_{(1,22)}(P; \eta p^2)$
Biomarkers of inflammat	ion						
WBC $(10^3 \ \mu L^{-1})$	7.8 ± 2.3	$9 \pm 2.4^{***}$	7.6 ± 2.2	$8 \pm 2^{***}$ ##	55.16 (<i>P</i> < 0.001; 0.71)	4.32 (P = 0.049; 0.16)	18.55 (<i>P</i> < 0.001; 0.45)
Neutrophils $(10^3 \mu L^{-1})$	4.6 ± 1.7	$5.4 \pm 1.8^{***}$	4.3 ± 1.4	$4.6 \pm 1^{**}$ ##	40.57 (<i>P</i> < 0.001; 0.64)	5.24 (P = 0.032; 0.19)	$12.6 \ (P < 0.01; 0.36)$
Lymphocytes $(10^3 \mu L^{-1})$	2.4 ± 0.6	2.6 ± 0.74	2.4 ± 0.7	2.6 ± 0.7	4.02 P = 0.057	0.006 P = 0.93	0.86 P = 0.36
Monocytes $(10^3 \mu L^{-1})$	0.5 ± 0.1	0.6 ± 0.1	0.5 ± 0.2	$0.6 \pm 0.2^*$	2.77 P = 0.11	0.29 P = 0.59	1.64 P = 0.21
CRP (mg L^{-1})	4.2 ± 2.4	$4.7 \pm 2.5^{***}$	4 ± 2.7	$4.3 \pm 2.9^{**}$ ###	87.59 (<i>P</i> < 0.001; 0.79)	0.33 P = 0.56	18.09 (<i>P</i> < 0.001; 0.45)
Biomarkers of Muscle and	d liver damage						
ASAT (IU L^{-1})	17 ± 3.2	$19 \pm 3^{***}$	17.3 ± 3	18 ± 3.3*** ###	53.47 (<i>P</i> < 0.001; 0.7)	0.0004 P = 0.98	$7.37 \ (P < 0.01; 0.25)$
ALAT (IU L^{-1})	20.7 ± 7	22.1 ± 7.3 ***	21.3 ± 3.9	22 ± 4.2 * ###	16.78 (<i>P</i> < 0.001; 0.43)	0.06 P = 0.81	$8.21 \ (P < 0.01; 0.27)$
CPK (IU L^{-1})	126 ± 44	139 ± 52.6 ***	122 ± 38.6	127 ± 36.7 *** #	50.59 (<i>P</i> < 0.001; 0.69)	1.17 P = 1.17	$6.63 \ (P = 0.02; 0.23)$
LDH (IU L^{-1})	185.6 ± 33	200 ± 33 ***	183 ± 34.8	193 ± 39.7 **	23.65 (<i>P</i> < 0.001; 0.51)	1.59 P = 0.22	1.27 P = 0.27
Biomarkers of radical dan	nage						
MDA (μ mol L ⁻¹)	5.9 ± 3	7.3 ± 3.8 ***	5.4 ± 2.6	$5.9 \pm 2.5^*$ #	30.22 (<i>P</i> < 0.001; 0.57)	1.46 P = 0.23	5.39 (P = 0.03; 0.19)
AOPP (μ mol L ⁻¹)	49.4 ± 10.8	66 ± 15.3 ***	52 ± 10.7	55.7 ± 11.5 ** ###	$51.5 \ (P < 0.001; \ 0.7)$	2.53 P = 0.12	27.47 (P < 0.001; 0.55)
Biomarkers of antioxidan	t system						
$CAT (U mL^{-1})$	271.6 ± 82.8	$167.3 \pm 48.4^{***}$	248.8 ± 65.8	207.3 ± 63.9 * ##	$50.8 \ (P < 0.001; \ 0.69)$	0.34 P = 0.56	$7.73 \ (P < 0.01; 0.26)$
Thiol (μ mol L ⁻¹)	360.4 ± 55.2	284.5 ± 75 ***	371 ± 92.8	$343 \pm 83^* \#$	31.39 (<i>P</i> < 0.001; 0.58)	2.52 P = 0.12	$10.72 \ (P < 0.01; \ 0.32)$
UA (μ mol L ⁻¹)	311.6 ± 71.5	$327.8 \pm 73.6^{***}$	313.7 ± 74	325.3 ± 77.4 *** #	55.67 (<i>P</i> < 0.001; 0.71)	0.097 P = 0.75	5.8 (P = 0.02; 0.2)
TBIL (μ mol L ⁻¹)	6.7 ± 2.4	7.7 ± 2.9 ***	6.8 ± 3	$7.1 \pm 3^*$ #	39.36 (<i>P</i> < 0.001; 0.64)	0.41 P = 0.52	$11.19 \ (P < 0.01; \ 0.33)$