Morphometrical analysis of the canine choroid in relation to age and sex using spectral domain optical coherence tomography

JOWITA ZWOLSKA1, MATEUSZ SZADKOWSKI1*, AGNIESZKA BALICKA2 and IRENEUSZ BALICKI1

1 Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
2 Small Animal Clinic, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia

Received: 29 January 2021 ● Accepted: 12 September 2021
Published online: 24 September 2021

ABSTRACT
This study determined the choroidal thickness of senior (SN, n = 24) and middle-aged (MA, n = 17) healthy, mixed-breed mesocephalic dogs, both males (M) and females (F), using spectral domain optical coherence tomography (SD-OCT). The dogs were divided into two groups for examination: MA dogs (4–7 years old; 6 M, 11 F) and SN dogs (8–13 years old; 12 M, 12 F). Choroidal thickness of the dogs was investigated using SD-OCT radial and linear scans. The software of the device allowed determination of the exact measurement location on the choroid. Measurements of the choroid were taken manually using the SD-OCT calliper function at distances of 5,000–6,000 μm (dorsal and ventral) and 4,000–7,000 μm (nasal and temporal) from the optic disc. Mean (μm ± SD) (MA, SN) dorsal (188 ± 28, 184 ± 33), ventral (116 ± 23, 111 ± 16), temporal (152 ± 31, 151 ± 26), and nasal (135 ± 27, 132 ± 18) choroidal thicknesses demonstrated significant differences (P < 0.02–0.001) between all areas within each group. The choroid was thickest in the dorsal region and thinnest in the ventral region. There were no significant differences based on age. Mean (μm ± SD) (M, F) dorsal (181 ± 32, 190 ± 30), ventral (117 ± 16, 11 ± 21), temporal (150 ± 26, 153 ± 30), and nasal (128 ± 20, 138 ± 23) choroidal thicknesses demonstrated significant differences (P < 0.05) between dorsal and nasal regions. The choroidal thickness in dogs depends on the area assessed independently of their age and sex.

KEYWORDS
uvea, choroid, morphometry, canine, optical coherence tomography

INTRODUCTION
The structure, functional capacity, and biochemical reactions of the retina are sufficiently complex that a dual vascular supply is present in most species. The choroid is an anatomical structure located between the sclera and the retinal pigment epithelium (RPE) with the primary function of supplying oxygen and nutrients to the retina (Samuelson, 2013; McLellan and Narfstrom, 2014). Its coverage extends to almost the entire posterior half of the bulb of the eye. The choroid is primarily composed of blood vessels, nerves, and pigment cells.

The choroid supplies the adjacent retina layers that lack blood vessels. Oxygen and nutrients for the outer retina are transported through the RPE from the choriocapillaris of the choroid (Dubielzig et al., 2010). In other layers of the retina, blood perfusion is maintained by internal vessels originating from the short posterior ciliary arteries (therefore referred to as cilioretinal arteries). These vessels are usually visible on the surface of the fundus of the eye during an ophthalmoscopic examination (Ofri, 2018). Specifically, retinal blood vessels are found within the nerve fibre, ganglion cell, and inner plexiform layers of the inner retina. Capillaries are also present in the inner nuclear layer (Dubielzig et al., 2010). In addition to its...
nutritive function, the choroid also facilitates thermoregulation for maintaining the high metabolic activity of the retina.

In human medicine, a correlation has been observed between the choroid dimensions and patient characteristics such as age, sex, refractive error, axial length of the eye, corneal refractive power (Kim et al., 2011; Li et al., 2014; Shao et al., 2015; Zhu et al., 2017), and ethnic origin (Zhu et al., 2017). Higher hyperopic refractive error, lower age, being male, and higher corneal refractive power are examples of patient characteristics correlated with a greater choroidal thickness (Zhu et al., 2017). In a comparison of healthy children and adults, the greatest choroidal thickness was observed in the temporal region relative to the retinal macula of children, and the lowest in the nasal region. Adult choroidal thickness was the greatest in the fovea, followed by the temporal and the nasal regions (Ruiz-Moreno et al., 2013). The thickness of the choroid is also affected by the general clinical condition of the patient. Diseases that decrease plasma protein can result in reductions in oncotic pressure that cause increased choroidal thickness as a consequence of increased retina and choroid water retention. For instance, choroidal thickness was greater in paediatric patients with nephrotic syndrome than in controls (Zhang et al., 2019). Oncotic pressure reductions can also result in more serious conditions such as bilateral retinoschisis or macular oedema (De Benedetto et al., 2012).

Spectral domain optical coherence tomography (SD-OCT) is a non-invasive, non-contact method that provides real-time in vivo imagery of the retina (Murthy et al., 2016). This imagery of the posterior eye segment can document the emergence and development of various diseases. This method is also an objective method of measuring and analysing each retinal layer (Gabriele et al., 2011; McLellan and Rasmussen, 2012).

SD-OCT imaging of the canine choroid is a new research area. The choroid, being a multifunctional structure of the eye, can undergo pathological processes that may have a direct effect on visual function. The SD-OCT method is an ideal device for the in vivo, non-invasive imaging of choroidal morphology and morphometry. Recognition of the physiological image of the choroid in the SD-OCT scans will allow for further recognition of pathology. It may become an important diagnostic element.

The aim of this study was to determine choroidal thickness in senior (SN) and middle-aged (MA) mixed-breed mesocephalic dogs, both males (M) and females (F), using SD-OCT.

MATERIALS AND METHODS

Animals and procedures

Forty-one mixed-breed, mesocephalic, clinically healthy dogs were studied. The animals were patients of the Department and Clinic of Animal Surgery at the University of Life Sciences in Lublin. The owners were informed about the details of the clinical trials conducted and they gave their consent. The study was performed in accordance with the Polish law and with Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes, Chapter I, Article 1, point 5 (b). The research was also approved by the Scientific Research Committee of the Department and Clinic of Animal Surgery at the University of Life Sciences in Lublin (#3/2018) concerning non-experimental clinical patients.

The dogs were divided into two groups based on age. The classification was based on a dog age chart with regard to the relationship between age and weight (Fortney, 2012). Dogs in the MA group (n = 17; 6 M and 11 F) were 4–7 years old and weighed 12–34 kg. Dogs in the SN group (n = 24; 12 M and 12 F) were 8–13 years old and weighed 13–32 kg. All of the studied males were neutered. The spay status of 4 females was unknown, while the remaining 19 females were non-spayed.

All dogs were classified as healthy based on physical examinations, complete ophthalmologic examinations, and blood test analyses. The blood tests included complete blood cell counts as well as the determination of urea, complete bilirubin, creatinine, aspartate transaminase, alanine transaminase, alkaline phosphatase, and amylase. The dogs had been dewormed twice a year.

Ocular examinations were performed using a slit lamp biomicroscope (Shin-Nippon, Japan). Fundus examinations were performed using a binocular indirect ophthalmoscope (Keeler, UK), a direct ophthalmoscope (Welch Allyn, USA), and a panoramic ophthalmoscope (Welch Allyn, USA). Photographs of the ocul fundus were taken using Handy NM-200D Fundus Camera (Nidek, Japan) connected to a computer operating IrfanView software (Wiener Neustadt, Austria). In all dogs, the pupillary light reflex, both direct and consensual, the dazzle reflex, the menace response, the palpebral reflex, and the corneal reflex were estimated. Behavioural ophthalmic tests that were conducted included tracking and placing or obstacle tests under scotopic and photopic conditions. Intraocular pressure (IOP) measurements were obtained using a rebound tonometer, TonoVet (iCare, Finland). The IOP in the study animals was 15–20 mmHg. Schirmer’s Tear Test (Eickemeyer, Germany) was performed bilaterally over 60 s in all patients. No vision impairment or ocular abnormalities were identified in any dogs.

Sedation was provided with a use of medetomidine (0.03 mg kg\(^{-1}\); Cepetor 1 mg mL\(^{-1}\), CP Pharma, Germany) administered i.m. Local anaesthesia of the corneal and conjunctival surface was achieved using 0.5% proxymetacaine (Alcaine 5 mg mL\(^{-1}\), Alcon, Poland). Pupils were dilated with tropicamide eye drops (Tropicamidium WZF 1%, Polfa Warszawa S.A., Poland). A timeframe was set for the OCT examination from 9 a.m. to 1 p.m. The examination was performed within 15–30 min after medetomidine administration. A thumb forceps was used to grasp the bulbar conjunctiva and to stabilise the eye.
OCT scan and data analysis

The examination was performed using SD-OCT (wavelength: 840 nm; scan pattern: enhanced depth imaging; Topcon 3D OCT-2000, Topcon, Japan) linear and 6-line radial scans. The device’s software allowed determination of the precise location of choroidal measurements on the resulting scans. A calliper function integrated into the OCT software was used to collect manual measurements of the choroid. Choroidal thickness was defined as the vertical distance from the hyper-reflective line of the RPE–Bruch’s membrane complex to the hyper-reflective line of the inner surface of the sclera. Measurements on linear scans were performed at distances of 5,000–6,000 µm (dorsal and ventral) and 4,000–7,000 µm (nasal and temporal) from the optic disc and were parallel to the horizontal diameter of the optic disc. Temporal and nasal scans were performed at the middle 1/3 height of the vertical diameter of the optic disc. Three measurements were conducted for each analysed segment: the first one in the centre of the scan and the other two on the right and left at a distance of 1,500 µm from the centre. The central measurement on the scans of dorsal and ventral regions was taken on the width of the optic disc. The average of three measurements for each segment was calculated. The measurements were performed on 82 eyes of 41 dogs. During the SD-OCT examination, the cornea was moistened every 30 s with saline.

Statistical methods

Data normality was tested using the Shapiro–Wilk test. The results reported for the MA group followed a non-normal distribution, while results reported for the SN group followed a normal distribution. Data obtained from the ventral and nasal regions in females, and data from the nasal region in males followed a non-normal distribution. Significantly different comparisons were identified using the Mann–Whitney U test. Analyses were performed using Statistica 12 (TIBCO Software Inc., USA). A P value of <0.05 was considered statistically significant.

Fig. 1. A. Measurements of choroidal thickness in the dorsal region on a spectral domain optical coherence tomography (SD-OCT) scan. Three measurements were conducted for each analysed segment: the first one in the centre of the scan and the other two on the right and left at a distance of 1,500 µm from the centre. The red lines represent the borders of the retinal pigment epithelium (RPE)–Bruch’s membrane–choriocapillaris and tapetum lucidum complex. The blue line represents the inner surface of the sclera. B. The location of the scan shown in Fig. 1A. C. Determination of the measurement site between 5,000 and 6,000 µm (distance from the optic disc). The scan was performed on a 1,000-µm segment visible as a short segment in the upper part of the determination

Fig. 2. Choroidal thickness measurements on an SD-OCT scan of the temporal region of the choroid. Three measurements were conducted for each analysed segment: the first one in the centre of the scan and the other two on the right and left at a distance of 1,500 µm from the centre. Measurements on linear scans were performed at distances of 4,000–7,000 µm (temporal and nasal). Temporal and nasal scans were performed at the middle 1/3 height of the vertical diameter of the optic disc
RESULTS

Thicknesses of the dorsal, ventral, temporal, and nasal regions of the choroid in the senior and middle-aged mixed-breed dogs are presented in Table 1. The dorsal choroid region was the thickest in both senior and middle-aged mixed breed mesocephalic dogs, the next thickest in the temporal region, and the thinnest in the ventral region. There was no statistically significant difference in the choroidal thickness of any of the four regions between the groups ($P > 0.05$) (Figs 3 and 4).

No significant, age-related discrepancies were observed in the thickness of the respective choroidal regions. However, statistically significant differences were observed between the respective choroidal regions within both the MA and the SN groups (Figs 3 and 4).

In the MA and SN group, choroidal thickness was significantly higher in the dorsal region than in the temporal ($P < 0.001$), nasal ($P < 0.001$) and ventral ($P < 0.001$) regions. The choroid in the temporal region was significantly thicker than in the nasal (MA, $P = 0.02$; SN, $P < 0.001$) and ventral (MA, $P < 0.005$; SN, $P < 0.001$) regions. The choroid in the ventral region was significantly thinner than in the nasal region ($P < 0.001$) in both MA and SN groups.

Thicknesses of the dorsal, ventral, temporal, and nasal regions of the choroid in males and females are presented in Fig. 5 and Table 2. The dorsal choroid region was the thickest in both males and females, the next thickest in the temporal region, and the thinnest in the ventral region. Although no statistically significant difference was observed between dogs of different age groups, statistical differences were noted between males and females. The choroidal thickness was significantly greater in males than in females in the ventral region ($P < 0.005$). It was significantly thinner in males than in females in the nasal region ($P < 0.005$).

DISCUSSION

The aim of the study was to determine in vivo choroidal thickness in mixed-breed mesocephalic dogs by the use of SD-OCT. The location of the RPE–Bruch’s membrane

Table 1. Mean choroidal thickness [μm] ± standard deviation (SD) reported for dorsal (D), ventral (V), temporal (T) and nasal (N) regions in the middle-aged (MA) and senior (SN) groups

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>V</th>
<th>T</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>188 ± 28</td>
<td>116 ± 23</td>
<td>152 ± 30</td>
<td>135 ± 27</td>
</tr>
<tr>
<td>SN</td>
<td>184 ± 33</td>
<td>111 ± 16</td>
<td>151 ± 26</td>
<td>132 ± 18</td>
</tr>
</tbody>
</table>

Fig. 3. Comparison of the mean thickness and SE for each choroidal region in the middle-aged (MA) group.
complex and the inner scleral surface was determined by the human choroidal thickness measurement method (Jin et al., 2016; Abadia et al., 2018; Sahinoglu-Keskek and Canan, 2018; Steiner et al., 2019; Uyar et al., 2019; Pinheiro-Costa et al., 2020; Zhao et al., 2020), as well as on the basis of previous research on canine choroidal histology (Kotb et al.,...
Table 2. Mean choroidal thickness [μm] ± standard deviation (SD) reported for dorsal (D), ventral (V), temporal (T) and nasal (N) regions in males (M) and females (F)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>V</th>
<th>T</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>181 ± 32</td>
<td>117 ± 16 *</td>
<td>150 ± 26</td>
<td>128 ± 20</td>
</tr>
<tr>
<td>F</td>
<td>190 ± 30</td>
<td>111 ± 21</td>
<td>153 ± 30</td>
<td>138 ± 23</td>
</tr>
</tbody>
</table>

*Statistically significant difference between males and females (P < 0.005).
and choroidal thickness (Saeedi et al., 2014; Wang et al., 2016). To minimise the potential for IOP to affect our measurements of choroidal thickness, we only report data from dogs with IOPs of 15–20 mmHg. Previous research indicated that there were no significant changes of IOP in dogs at 5, 10, 20 and 40 min after medetomidine administration (Verbruggen et al., 2000; Kanda et al., 2015). We used sedation as this was the only means to perform high-quality scans positioned at the exact pre-determined distance from the optic nerve disc in all animals used in this study. In clinical practice, the authors normally perform OCT examinations of placid dogs under local anaesthesia or rarely after sedation.

In research on the sedative and cardiorespiratory effects of intramuscularly administered sedatives, medetomidine administration led to increased mean arterial blood pressure in dogs, compared with baseline values, up to 40 min from the time of administration. The highest increase occurred right after administration up to 10 min. Afterwards, arterial blood pressure remained increased following atipamezole administration (Ko et al., 2000). Therefore, we employed the same sedation protocol in all dogs to eliminate the possibility of anaesthesia-induced variation that could confound the choroidal thickness comparisons. The examination was conducted in the period between 15 and 30 min after medetomidine administration.

The aim of this research was to determine choroidal thickness in senior and middle-aged mixed-breed mesocephalic dogs, both males and females. The authors did not narrow the research to a particular dog breed. There are many ocular diseases that are diagnosed in mixed-breed dogs, e.g. Sudden Required Retinal Degeneration Syndrome (SARDS) is a disease often diagnosed in mixed-breed dogs (Heller et al., 2017). The authors chose this group of dogs due to the fact that many of the corresponding cases of mixed-breed dogs are being observed with various retinal and choroidal diseases. This group of patients might be a reference point for further studies regarding purebred dogs.

ACKNOWLEDGEMENTS

The study was supported by the Doctoral School of the University of Life Sciences in Lublin and the project VEGA No. 1/0479/18. Preliminary results were presented as an Abstract at The European Society of Veterinary Ophthalmology Meeting, Dublin, 3–6 October 2019.

REFERENCES

Kim, S.-W., Oh, J., Kwon, S.-S., Yoo, J. and Huh, K. (2011): Comparison of choroidal thickness among patients with healthy eyes, early age-related maculopathy, neovascular age-related...