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ABSTRACT

Visual identification of objects is an important challenge today. Main target of frequently applied
methods is to identify or classify complex objects. These methods are far less effective when objects are
small and less complex, and thus less descriptor features are on hand. The main reason for this is that
these features can significantly change on object occlusion or appearance of noise.

The presented solution performs identification of simple, small (size is 173 13 pixels) objects with
elliptical shape. High pass filtered normalized cross correlation is used for region of interest detection
and a simple deep neural network is used for classification of selected regions. The proposed method
detected objects on a noisy image with accuracy of 96.2%.
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1. THE CHALLENGE

In a biological effect experiment, experts investigate effect of chemicals with different dose
and dilution. Chemical treatments are executed under fully controlled conditions, and their
effect is measured based on the number of occurrences of small objects of predefined shape
within a predefined area. For scientific evaluation, the number of objects must be calculated
accurately. The calculation of the objects is done by visual observation of offal, collected
under the treated surface. The main aim of this visual observation is to determine the number
of objects as accurately as possible. Because of the specific circumstances of field sampling,
the experiment and the result observation are done separated in time and space. Visual data
acquisition tried to be standard, but field circumstances are restrained. When sampling, a
perpendicular photo was taken by a camera of a mobile phone over a constant area (page
A4), from the same distance, but natural illumination changes were detected. Quality of this
camera system (optics and sensor) is medium category. Compared to photo cameras, it is
rather low end. Thus, the observation was done on normal/high resolution (34563 4608
pixels), but often on under illuminated images.

The primary challenge is that next to the objects that has to be counted, other offal
appears in the observation area, of which amount is orders of magnitude larger, while its size
and shape is similar to the object sought, moreover also occlusion could happen. The
identification of the object to be counted is difficult because of its homogenous dark, almost
black color and relatively small size. An object in the picture has almost a perfect ellipse shape
with approximately 173 13 pixel size. Fig. 1a shows a case, when the dark objects on white
background are fully visible, the identification, therefore counting can be done accurately.
Nevertheless, in case presented in Fig. 1b, when the environment is charged by a noise very
similar to the objects, or in the case when the original object (presented in Fig. 1c) has been
modified like it is illustrated in Fig. 1d, the object identification becomes difficult, and as a
consequence the counting becomes inaccurate.
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2. RELATED WORKS

2.1. Blob detection

In scale space theory [1] interference of differentiate of spatially
close, oriented gradients pairs, highlights those gradient pairs,
if their distance fits scale space parameter. Based on these
highlights, blobs [2] according to the scale space level can be
identified. The advantage of this method is that when Laplace
of Gaussian is replaced by difference of Gaussian, the scale
space level transformation calculation becomes simpler, thus
faster, and the scale space level of observed images can be
predetermined and constant for this experiment.

Disadvantage is that the method reacts poorly to
appearance of noise, especially when the noise properties are
similar to the object properties. Furthermore, when white
content appears on the surface of a dark object, as it is
shown in Fig. 1d, the recognized patch size will be smaller.
Here patches have an elliptical shape, and thus the identi-
fication is orientation dependent.

2.2. Cross-correlation

The cross-correlation [3] is a measure that represents simi-
larity of two series of data. General area of utilization is
identifying a short series (function) in a longer series of data
(function). This in fact almost matches the considered
problem when looking for a small object in a big image, but
unfortunately this method is not rotation independent, i.e.,
the method is only capable of identify objects, when they have
the same orientation as the sample has. The utilization pos-
sibility is further reduced by that the correlation coefficient is
reduced when shape similarity is not perfect. Thus, high pass

filtering of correlation coefficient is required. But high
threshold increases the number of false negatives, while low
threshold increases the number of false positives. Threshold
selection becomes even harder when correlation coefficient
gets lower by insufficient illumination. That is because the
sample background will be lighter than the object back-
ground. That effect can be reduced by smaller sample size,
thus smaller background rate, but thresholding in this way
further increases the number of false positive identifications.

2.3. Convolution

Convolution’s [4] operation and meaning is very similar to
cross-correlation. Both are shift invariant and linear, but
convolution is commutative, associative, and distributive for
addition, therefore more generally applicable and in practice
more often applied. Due to its simplicity and local data re-
quirements, it is well parallelizable. When running on GPU,
its computation performance can be significantly improved.
Unfortunately, it does not provide solution for orientation
dependency and for the threshold selection problems
mentioned above.

2.4. Normalized cross-correlation

Normalized Cross-Correlation (NCC) [5] is a modified
version of generic cross-correlation, which is used more
often in machine vision. The essence of the amendment is
that the result is a value in the [�1, . . ., 1] interval, that helps
input scale independent threshold selection, but in practice,
less generally applicable because of its bigger computational
resource needs. As described in [6], the NCC operation can
be accelerated when based on convolution and executed on
GPU, therefore the execution time may get shorter. The
appropriate incrementation of execution speed makes it
possible to apply a well-designed (rotated) kernel set, to
make convolution and NCC orientation independent. That
widens application opportunities but does not provide a
solution for the threshold selection, thus the expected rate of
false positive identifications in the output will be high.

2.5. Relative position of simple geometric features

Scale Invariant Feature Transform (SIFT) [7] and Speed Up
Robust Features (SURF) [8] methods use different levels of
the previously mentioned scale space theory [1] to determine
scale space related features and their relative positions to
extract then find complex featured objects. These methods
approximate the Laplace of Gaussian operator of scale space
theory differently. The SIFT uses difference of convolutional
steps made by the Gaussian kernel, and SURF applies a box
filter. Another difference is the method of feature extraction.
While SIFT uses interference peaks of local gradient differ-
ences in different orientations, SURF identifies them using
the Hessian matrix.

Drawback of both methods is that, for identification of
objects, a certain number of unique descriptors and their
relative positions are required. When identifying feature-
poor objects, this condition is hardly met. When only a few

Fig. 1. Object identification tasks, a) clear environment, b) noisy
environment, c) homogenous surface and shape, d) inhomoge-

neous surface and shape
(Source: Author)
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features exist, number of false positive identifications will
grow with the similarity of noise and object properties and
with the growth of spatial density. Because of this, these
methods cannot be directly applied in the current task.

2.6. Deep neural nets

Analog processor units (artificial neurons) can be organized
into layers then layers can be organized into multilayer
networks, based on universal approximation theorem [9].
Deep neural networks [10, 11] usually consist of a multilayer
feature extractor and a multilayer classifier. Feature extractor
contains convolutional layers for feature extraction, max
pooling layers for subsampling and other layer types to
support model optimization. Classifier is a multilayer, fully
forward connected mainly homogeneous network. These
types of models are good for complex classification tasks, but
when input images contain objects of unknown number,
single classification operation is meaningless.

When scale space parameter is well-known and constant,
classification can be done in an object size window moved
on the image, by a convolution like operation. This can be
executed parallel, but still would be computational resource
demanding operation.

2.7. YOLO

You Only Look Once (YOLO) method, as a new generation
of object identification system, instead of classifying con-
tents of images, puts emphasis on approximation of spatially
separated object bounding boxes. Novelty of this process is
that a deep neural network estimates the bounding box
properties beside the probability of bounded object class
with a single scan of the input image. As the first step, the
neural net creates many bounding boxes for an object
candidate. From these, with a special method, the final
bounding box and class probability can be calculated. First
YOLO implementation contained 24 convolutional and 2
dense layers. In newer implementations, extension of Dar-
kNet [12] contained 53 convolutional layers and ResNet [13]
worked with more than 100 layers. YOLO type algorithms
perform well on identification of small number of objects in
observed areas, even if objects are partially occluded, but the
number of objects in an area have to be predefined and can
only be a few. Since this last condition in the current
experiment cannot be guaranteed, only should the obser-
vation area size be reduced to too small which significantly
extends execution time. Another problem, as detailed pre-
viously, that the feature-poor object identification in a noisy
area results unclear identifications.

3. THE PROPOSED METHOD

As explained above, the main task is to count relatively small
(173 13 pixels), feature-poor objects on a relatively big
(34563 4608 pixels) image without limitation of occur-
rences. The object identification must be as exact, as
possible. Experts determined a 5% accuracy as definitely

acceptable for biological experiments. This criterion led us to
draw up two minor criteria. Identification must minimize
the number of false positive and false negative identifications
in the final output.

3.1. Structure

Based on the reviewed experiences of related works, the
proposed system consists of the following two main parts.
The first component determines square regions, which
potentially could contain objects (Region of Interest (RoI)).
This method is expected to minimize the false negative se-
lections. The second component is a classifier performing
detailed examination of the selected region proposals and
determining the object representation probability of each
RoI. The classifier is expected to maximize F1-score. During
the design of the main components, next to the expected
accuracy, execution time is also an important aspect.

When applying a generic pixel statistics-based shadow
removing method [14, 15] or color correction [16] as an
image preprocessing step, the system efficiency was not
improved. The reasons were that the objects and also the
noise have almost 2-dimensional shape, thus do not drop
significant shadow. Furthermore, the main contents of the
images are black (objects and noise) and white (background)
and the low color information were further weakened by
insufficient illumination and under exposition.

3.1.1. RoI extraction. For RoI detection, normalized cross-
correlation is applied as described in chapter 2.4, because the
method does not require large amount of teaching samples
to be collected or created and the execution time can be
improved by applying convolution and parallelization by
applying GPU. As described before, NCC is orientation
dependent, so the correlation coefficient depends on the
relative orientation of the sample and image. To get rid of
the orientation dependency, NCC kernel collection is
augmented by variants of the original kernel. Central and
axial symmetry of the objects allowed making this kernel
augmentation by 8 rotation steps. Increasing the number of
rotation steps increases accuracy but in parallel degrades
execution speed. To get RoI centers, a non-max suppression
on each kernel layer and a max selection overall kernel layers
is performed. The result then is filtered with a high-pass
filter. A low threshold is selected upon validation tests to
eliminate the false negative identifications and to minimize
the false positive identifications.

In the applied NCC implementations, the base kernel of
size 313 31, shown in Fig. 2a, was rotated with 8 rotation
steps between �90 and þ90 degrees, then 193 19 pixels
were copied from its center. That resulted 9 (1 original plus
8 augmented) kernels. Bigger original kernel size and center
clipping was designed to eliminate the effect of image
rotation on background corners, as shown in Fig. 2b.

The execution time of NCC can be reduced, when
instead of the 3 channels (Red, Green, Blue) of the true color
input image, the method works on its grayscale represen-
tation. Loosing additional color information represented by
RGB channels could further increase the number of false

Pollack Periodica 17 (2022) 1, 1–6 3

Brought to you by Library and Information Centre of the Hungarian Academy of Sciences MTA | Unauthenticated | Downloaded 07/15/22 03:06 PM UTC



positive identifications, but the second main component
uses RGB input, therefore using grayscale input in the first
phase does not affect the final accuracy. Because of the small
size of sought objects, down sampling cannot be applied to
improve execution speed.

After NCC pixel-wise maximums of calculated corre-
lation coefficients are selected, then the suppression of
high values spatially close to maximums (non-max sup-
pression) is performed. RoI proposal centers are calculated
by high pass filtering of previously combined and sup-
pressed result.

During the implementation, the proper selection of a
high-pass filter threshold is an important question. This
selection was based on utilization of labeled data that was
generated previously by experts. Therefore, a very threshold
could be set, which selected all RoI-s of the expert generated
label database. Based on the details presented earlier, the
assumption was that the rate of false positive identifications
will be high. And indeed, the method identified 25,136 re-
gions, from which 5,297 was excluded because of low
average intensity and variance; these regions were almost
fully black. The RoI extraction false positive rate exceeded
(25,136–5,297)/7245 2,740% of the true positive identifi-
cations, thus its accuracy was around 3.5%.

3.1.2. RoI classification. The output of the RoI selection
phase is obviously unsuitable for direct application as
output, because of its low precision, caused by the high rate
of false positive identifications. But if data requirements of
machine learning methods are considered, that output can
be considered as very useful.

The next step must be to create and teach a machine
learning based classifier system to classify contents of the
previously selected 193 19 pixel sized RoI proposals. Because
the color information is not intended to be lost, classification
is done on a 193 193 3 sized matrix, clipped from 3 color
channels of the input RGB image. For the classification, a
simple deep neural network classifier was designed and
thought. Color correction described in [17] would only
change the rate of the color channels, thus human perception
of pixels, however it did generate new information for the
classification, therefore its application was dropped.

3.1.3. Deep neural network. The proposed deep neural
network, as detailed in chapter 2.6, consists of a convolution
based automatic feature extractor module, and a fully for-
ward connected, dense classifier module.

The proposed feature extractor module is much simpler
than YOLO structures. Because of fix scale of the input
images and small size of the sought objects, it contains 3
convolutional layers each of which applies 33 3 pixel sized
kernels and creates 128 features for all 3 color channels.
These features are processed by a dense net with 1 hidden
layer, containing 1,000 neurons with rectified Linear Unit
(ReLU) activation and a dense output layer with sigmoid
activation. The classifier network output is the probability of
the RoI representing an object. The final object representa-
tion results of a RoI to be true when the probability is above
0.5, and false otherwise.

3.2. Training

For training an Adam optimizer [17] and a binary cross-
entropy error function were used to fit the binary classifi-
cation task.

3.2.1. Data acquisition. To teach the system for detecting
objects, training samples had to be defined from field im-
ages. Experts involved in the experiment labeled 22
randomly selected RGB input images, on which 728 positive
samples were marked. NCC RoI extraction executed on that,
22 labeled images resulted 724 positive, previously labeled
samples and 25,136 negative samples (false RoI positive
identification). By an intensity high-pass filter, 5,297 nega-
tive samples were excluded, thus 19,839 negative samples
were acquired. Available samples are divided into training
and testing datasets by a 60–40% split in a stratified manner,
which means positive and negative samples are split sepa-
rately. After splitting, each positive training sample was
planned to be augmented by 4 random rotations, so the
augmented positive sample space would be extended to
2,170 elements. The main target of augmentation is to
decrease rotation dependency of the classifier. But it also
increases the repetition of main features of samples in
training data therefore that would turn the classifier into a
memory of positive samples.

Exact and detailed structure of sample space is presented
in Table 1.

3.2.2. Batch creation. Because the rate of the positive
samples was only 3.5% before the test augmentation and just
11% after it, it is clearly visible, that the sample space is
asymmetric. Teaching batch generation in an asymmetric
sample space has to be done carefully, because if only one
class is represented in a batch, the classifier instead of
classification will become a single memory, which stores the
represented class as output. Therefore, based on the criteria
above, batches containing 200 items of which 30% positive
samples are generated. That means, each training batch will
contain 60 positive and 140 negative samples. Within the
current experiment, 12,337/2005 62 batches could be
created from training samples. On stratified batch

Fig. 2. RoI extraction kernels augmentation and clipping, a) default
kernel, b) rotation effect on background

(Source: Author)
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generation, number of negative batches is 11,903/1405 86.
When sharing 343 positive samples between these 86
batches, each would contain only 4.9 positive samples. To
match 60 required items, the missing items are taken from
other batches, which results repetition of positive samples in
the full training process. No further geometrical augmenta-
tion was applied, not to increase positive item repetition
rate. And classification was rotation independent, as it was
proven by final accuracy.

4. RESULTS

From the total 730 objects identified by experts, RoI selec-
tion identified 724, while the number of total false positive
identifications was 19,839 after intensity filter. Although the
total accuracy of RoI selection is just 3.5%, and rate of false
positives and true positives is 6,849%, the recall [18] of
positive samples as given in Eq. (1) is 724/7305 99.1%,
therefore RoI selection method satisfies the requirements
imposed on it, namely its false negative rate is 0.9%

Recall ¼ true positive
true positiveþ false negative

; (1)

Precision ¼ true positive
true positiveþ false positive

; (2)

Object detection error ¼
�
�
�
�

RoIþ � DNNFN þ DNNFP

positive samples
� 100

�
�
�
�
:

(3)

The deep neural network classifier on a device equipped
with Core I7, 16 GB RAM, and Nvidia GeForce 1660Ti
video card with 6GB RAM, 4,000 epochs long training
process runs 6 h on average. From 10 executions, total
number of false negative identifications was 11, total
number of false positive identifications was 287. So average
false negative identification of these 10 runs is 1.1 and
average false positive identification is 28.7 as it is shown in
Table 2.

Instead of accuracy, quality of method is measured by
precision of positive class, as described in Eq. (2). Thus, the
performance of system 724=ð724þ 28:7Þ ¼ 96:2% and its
error is 3.8%. Final object detection error of the complete
system, as Eq. (3) specifies jð724 − 1:1þ 28:7Þ=730 − 100j
¼ 3%.

5. CONCLUSION

The proposed system has the structure of an NCC based RoI
selector connected to a deep neural network-based classifier.
This system after a parameter optimization based on expert
labelling, RoI extraction and augmentation, performed the
object identification task with better than 5% average ac-
curacy. This means that the error of original object counting
task solution will not exceed 5%. This expected error level is
considered to be good by experts of the biological problem
domain; therefore the method is applied as part of biological
experiments.

The fine-tuning of positive teaching sample augmen-
tation process could decrease the number of false negative
and false positive identifications, thus the general accu-
racy of the object counting task was considered to be
good.
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