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ABSTRACT

In watershed modeling research, it is practical to subdivide a watershed into smaller units or sub-
watersheds for modeling purposes. The ability of a model to simulate the watershed system depends on
how well watershed processes are represented by the model and how well the watershed system is
described by model input. This study is conducted to evaluate the impact of watershed subdivision and
different weather input datasets on streamflow simulations using the soil and water assessment tool
model. For this purpose, Cuhai-Bakony�er watershed was chosen as a study area. Two climate databases
and four subdivision variations levels were evaluated. The model streamflow predictions slightly effected
by subdivision impact. The climate datasets showed significant differences in streamflow predictions.
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1. INTRODUCTION

It is common practice to partition the watershed into smaller units for modeling purposes.
Each sub-watershed is assumed to be homogeneous with the entire watershed. However,
watershed subdivisions influence the principle of homogeneity, since larger sub-watersheds
are more likely to have variable conditions. Smaller sub-watersheds increase the effort to
prepare input data. The effect of the watershed subdivision on model simulation is directly
related to sources of uncertainty [1] including stream channel, sub-watershed topography,
soils, land use and climate inputs [2].

Reference [3] found that better accuracy of flow predictions resulted with the Soil and
Water Assessment Tool (SWAT) model resulted from the decrease in the size of sub-wa-
tersheds. Another research [4] found that SWAT streamflow predictions were relatively
insensitive to different combinations of sub-watershed. Reference [5] found that the effect of
watershed subdivision on streamflow simulation had a little change after a specific threshold
value. Reference [6] studied the appropriate size of watershed subdivision and he found that
the simulated flow of various sub-watershed sizes is dependent on corresponding changes in
topography characteristics within the sub-watersheds. However, none of the above consid-
ered the effect of weather input data. Weather data is always an important driver of rainfall-
runoff processes [7] and many equations used in SWAT are affected by weather data, which
in turn are dependent on its resolution. On another hand, the investigation of the accuracy of
the Climate Forecast System Reanalysis (CFSR) dataset, which is the most widely used
weather data in the SWAT model [8–9] on Hungarian watershed is still unknown [10–11].
This dataset has a resolution of 38 km with a near-global coverage [12]. In the Hungarian
context, an alternative regional daily weather dataset Climate for Carpathian Region
(CARPATCLIM) is available in gridded format this data is entirely derived from the network
of regional weather stations and interpolated at a cell size of 10 km. The sensitivity of SWAT
to CFSR vs. CARPATCLIM weather inputs in predicting streamflow has never been
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evaluated, especially in Hungarian watershed. Considering
these factors, weather data is selected as a candidate to study
the effect of input data accuracy on streamflow simulation
besides the subdivision effect. In this study, the SWAT
model was used to investigate the impact of watershed
subdivision on streamflow simulation, for a watershed in
Hungary. The objective is to develop a guideline for a
threshold level of subdivision for accurate prediction of flow
with SWAT and investigate the accuracy of weather datasets
on streamflow simulation.

2. MATERIALS AND METHODS

2.1. SWAT model description

SWAT is a watershed-scale model and it was developed to
predict the impact of land management practices on water,
sediment, and agricultural chemical yields in large complex
watersheds with varying soils, land use, and management
conditions over long period [1]. It is a semi-distributed
physically-based model, computationally efficient, and
capable of continuous simulation over long periods. In
SWAT, the watershed is divided into sub-watersheds, and the
sub-watersheds are connected by streams and rivers. The sub-
watersheds are subdivided into Hydrological Response Units

(HRUs) where each unit has homogeneous land-use, land-
cover, slope, and soil properties. There are two major hy-
drological processes in the watersheds, the land component
that transports water to the channel, and the channel
component, that transports water to the outlet point. The
land component of the hydrological model determines pre-
cipitation, and then divides the precipitation into canopy
storage, surface runoff, and infiltration. Surface runoff is
relatively fast and arrives at the channels first. With infiltra-
tion, the water enters the soil profile, and movement to the
stream occurs through interflow and baseflow. Options exist
in SWAT for estimating surface runoff from HRUs: the
Natural Resources Conservation Service Curve Number (CN)
method [13] or the Green and Ampt method [14]. Three
methods for estimating potential evapotranspiration are also
provided: Priestly-Taylor [15], Penman-Monteith [16] and
Hargreaves [17]. The option is also provided for the user to
estimate EvaTransipration (ET) values outside of SWAT and
then read them into the model for the simulation run.

2.2. Watershed description

The study area, the Cuhai-Bakony�er watershed, is located in
the North-Western part of Hungary, in the Kisalf€old region
as it is shown in Fig. 1. The total area of the watershed is
475 km2. The upstream area of the watershed is hillier, and
mostly covered by forests (30%), the downstream area is
more flat and mostly cultivated land (55%) with 10% of the
watershed area cover with cropland and a low percentage of
urban settlements (5%). The elevations range is from
120m.a.s.l to 690m.a.s.l.

2.3. Input data

Data used in this study include (Table 1):

1. 25m resolution Digital Elevation Model (DEM) from
North Transdanubian Environmental Protection and
Water Management Directorate (�EDUVIZIG) [18];

2. 100m resolution Corine Land Cover (CLC 2018) datasets
[19];

3. 25m resolution stream network layer from �EDUVIZIG
[18];

4. 1:5,000,000 scale Harmonized World Soil Database [20];
5. Two weather datasets

a) The CARPATCLIM climate dataset [21];
b) CFSR dataset [22].

Fig. 1. Study area

Table 1. The sources of input data used in SWAT model

Data Type Scale/Resolution Source

DEM 25m �EDUVIZIG [18]
Soil data 1:5 000 000 map Food and Agriculture Organization (FAO) [20]

30 arc-second raster database Harmonized World Soil Database [20]
Stream network 25m �EDUVIZIG [18]
Land use map 100m CLC2018 [19]
Weather data 12 stations, 103 10 km2, Daily 1960–2010 CARPATCLIM climate dataset [21]

1 station, 383 38 km2, Daily 1979–2016 CFSR [22]
Flow stream data Daily 1961–2012 (m3 s�1) �EDUVIZIG [18]
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The methods used for these simulations included:

1. CN method for estimating surface runoff from precipi-
tation [13];

2. The Penman-Monteith method for calculating the Po-
tential EvapoTranspiration (PET) [16];

3. The variable storage method to simulate channel water
routing [23]; and

4. Setting the channel dimensions to an inactive status [23].

2.4. Watershed subdivision

Watershed subdivision in the SWAT model occurs at two
levels. First, a watershed is divided into several sub-water-
sheds based on threshold drainage area and is specified as a
percentage of total watershed area [5]. Different minimum
threshold drainage areas were used to generate different
numbers of sub-watersheds (Table 2). The drainage network
varied within each subdivided scenario, as it is shown in
Fig. 2. Higher threshold drainage areas results in a less dense
stream network, and consequently fewer numbers of sub-
watersheds. Second, the sub-watersheds were further sub-
divided into HRUs by fixing a threshold area for land use
and soil types in each sub-watersheds [24]. To study the
effect of watershed subdivision on streamflow simulation
four configurations are created corresponding to 0.1, 0.25,
0.5, and 0.75% of the total watershed area. In this study, the
threshold levels were set at 0 percent, which allowed all soil
categories and land uses within each sub-watershed to be
presented in the model simulation.

2.5. Weather dataset description

After defining the appropriate level of subdivision, streamflow
sensitivity to two weather datasets was examined. The CAR-
PATCLIM climate data was assumed to be more reliable than
CFSR as the former was exclusively derived from gauged re-
cords and is available from the official page of Climate for
Carpathian Region Project [21]. On the other hand, CFSR
weather data sets are produced on a large spatial scale,
assimilating the ground observation and remotely sensed
measurements to provide estimates of atmospheric variables
worldwide with a continuous based record for several decades
is available from the SWAT homepage [25] in a format readily
usable in SWAT. When a gridded climatic data is used into
SWAT, the grid with its centroid nearest to the centroid of a
sub-basin is taken into consideration as the climatic data for
that sub-basin. SWAT is a semi-distributed hydrological model
and hence lumps the climatic data at the sub-basin level.

2.6. Model evaluation and calibration

Model calibration procedure plays an important step in
watershed modeling. A detailed procedure for calibration of
SWAT was presented by [26]. The Percent BIAS index
(PBIAS), coefficient of determination (R2), and Nash-Sut-
cliffe Efficiency (NSE) [27] were used to evaluate model
predictions. R2 was calculated to evaluate the degree of
correlation between the observed and simulated discharges,
values range from 0 to 1, with an R2 value equal to 1 means a
perfect correlation between observations and model pre-
dictions. NSE vales range from 1 to - ∞, and higher values
indicate a better prediction. If NSE is negative or very close
to zero, the model prediction is considered unacceptable
[26]. The coefficient of efficiency is an indication of how well
the plot of observed versus predicted values fit a 1:1 line. Bias
index measured the average tendency of the simulated values
to be smaller or larger to their observed value, acceptable
values under -\þ 10. The calibration procedure was per-
formed manually on a monthly basis. Streamflow compo-
nent of the model was calibrated for a 60-month period,
from January 1998 to Dec 2005 with three years as a warm-
up period to prepare the model for the simulation.

3. RESULTS AND DISCUSSION

3.1. The effect of watershed subdivision on streamflow
simulation

Using model default values with the CARPATCLIM climate
data as weather input, first, the response of the streamflow
components to the uncalibrated model subdivisions impact
was examined. It was found that a threshold drainage area
corresponding to 0.25% of Cuhai-Bakony�er Watershed area,
which corresponding to subdivision of 17 watershed was the
appropriate percentage that generate the closet model re-
sponses to the measured streamflow (Table 3).

Predicted annual average streamflow results that
occurred at Bony gauge located at the outlet of the watershed

Table 2. The results of different subdivision levels

Minimum
drainage area sub-watersheds HRU % watershed area

5 km2 57 1,052 0.1%
10 km2 p 27 713 0.25%
20 km2 17 499 0.5%
30 km2 11 385 0.75%
40 km2 1 – 1%

p Default value that given by SWAT model.

Fig. 2. Drainage network resulting from applying different mini-
mum drainage area in SWAT model, a) 30 km2, b) 20 km2, c)

10 km2, d) 5 km2
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corresponding with four different configurations, ranging
from 11 sub-watersheds at the coarsest level to 57 sub-wa-
tersheds for the most refined scenarios (Table 2) are pre-
sented in Fig. 3. The streamflow increased by less than 1
percent between the coarsest and finest watershed de-
lineations, the total number of HRUs simulated for the four
configurations increased in the same trend across the
different sub-watershed delineations (Table 2). The scenario
of subdivision corresponding to 17 sub-watershed showed
different behavior with closer streamflow discharge to the
observation (Table 3), in other hand, the error analysis
(Table 3) shows that all configuration have the same statics
with slightly better result corresponding to 17 sub-watershed
with R 2 value of 0.6, which is the better among the rest
results means good correlation between the simulated and
measured annual discharge. Other criteria did not show
differences between the four scenarios. Figure 4 shows
comparison between the four configurations and the
observation; it is appear that SWAT’s annual streamflow was
relatively insensitive to changes in the number of sub-wa-
tersheds.

3.2. Effect of weather input dataset

After the comparison between the subdivision configura-
tions, two dataset (CARPATCLIM, CFSR) were applied.
Table 3 shows the results of comparison between the two
weather dataset configurations with the observations. In
monthly predications, both scenarios overestimated the flow
over the simulation period (Fig. 5). Generally,

CARPATCLIM gave better result based on the error criteria
evaluation with value of 0.46 for R2 comparing to 0.33 for
the CFSR scenario. NSE and PBPIAS criteria were not
satisfied for the monthly predictions. Yearly predictions
between the scenarios follow the same trend with better
performance for the CARPATCLIM dataset with R2 of 0.6

Table 3. Evaluation result of the comparison between SWAT model monthly, yearly prediction streamflow and the observation at Bony
gauge

Configuration

Monthly Yearly

NSE PBIAS R2 NSE PBIAS R2

11 sub-watershed �0.97 �104.52 0.28 �3.7 �119 0.56
17 sub-watershed 0.188 �38.87 0.46 �3.6 �119 0.6
27 sub-watershed �1.102 �105.84 0.27 �3.7 �120 0.5
57 sub-watershed �1.006 �105.71 0.272 �3.77 �120 0.55
17 – CARPATCLIM * 0.188 �38.87 0.46 �3.6 �119 0.6
17 – CFSR �1.17 �111.34 0.33 �5.01 �121 0.56

* This refer to the configuration corresponding with 17 sub-watersheds and CARPATCLIM weather database as input.

Fig. 3. Average annual predicted streamflow using SWAT model
between 2001 and 2005 as a function of total sub-watersheds

Fig. 4. Comparison between the averages annual predict streamflow
for the four configuration at Bony station with measured flow

between 20012005 (Numbers referee to the number of sub-water-
shed)

Fig. 5. Comparison of average monthly flow predictions of CAR-
PATCLIM and CFSR scenarios with the observation
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comparing with 0.56 for CFSR dataset. The other criteria
were slightly different with unacceptable values.

3.3. Model calibration

Calibration procedure was done using the best scenario
corresponding to subdivision level of 17 watersheds and
CARPATCLIM weather dataset as model input result of
calibration process found in (Table 4). The uncalibrated
model overpredicted the average monthly streamflow over
the calibration period (2001–2005). During calibration,
calibration criteria and the ranges of parameter variations
were obtained from [28]. Before calibration, the model was
incapable of simulating the highest value (Fig. 6) and shows
poor NSE5 0.188. After calibrating the model, with the help
of parameters adjustments, the model performed well to
capture streamflow in calibrating period (Fig. 6). The cali-
brating period showed an NSE of 0.52 above 0.5, which
indicates the acceptability of the model. Calibrated results
showed an R factor of 0.56. Visual comparison of simulated
and observed monthly flows, throughout the calibration
period is shown in Fig. 6. It shows significant improvement
to capture the observed value comparing with before cali-
bration (Fig. 6).

4. CONCLUSION

In this paper, the study conducted a study to investigate the
effect of watershed subdivision and two weather inputs
datasets on streamflow simulation for small watershed in
Hungary. It found that in general, the result indicated that
the SWAT model streamflow predictions for the Cuhai-
Bakony�er watershed not sensitive to watershed subdivision.
Moreover, for this watershed with an area of 475 km2, it was
found that the appropriate level of subdivision correspond-
ing to 0.5% of the watershed area. Streamflow predictions
showed significant sensitivity to the variations in weather
inputs data and CARPATCLIM dataset gave better results
comparing with the CFSR dataset.
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