
Detecting security vulnerabilities with static
analysis – A case study

Midya Alqaradaghi1,2p , Gregory Morse1,3 and
Tam�as Kozsik1,3

1 Department of Programming Languages and Compilers, Faculty of Informatics, E€otv€os Lor�and
University, Egyetem t�er 1-3, 1053 Budapest, Hungary
2 Technical College of Kirkuk, Northern Technical University, 36001 Kirkuk, Iraq
3 Research Group, E€otv€os Lor�and University, Martonv�as�ar, Hungary

Received: May 29, 2021 • Revised manuscript received: September 23, 2021 • Accepted: September 30, 2021
Published online: December 3, 2021

ABSTRACT

Many security vulnerabilities can be detected by static analysis. This paper is a case study and a per-
formance comparison of four open-source static analysis tools and plugins (PMD, SpotBugs, Find
Security Bugs, and SonarQube) on Java source code. Experiments have been conducted on the widely
used Juliet Test Suite with respect to six selected weaknesses from the official Top 25 list of Common
Weakness Enumeration. In this study, analysis metrics have been calculated for helping Java developers
decide which tools can be used when checking their programs for security vulnerabilities. It turned out
that particular weaknesses are best detected with particular tools.

KEYWORDS

static analysis tool, accuracy, security vulnerability, Java, common weakness enumeration, Juliet

1. INTRODUCTION

One of the most important responsibilities for a software company is to ensure the secure
operation of their software products. People’s lives depend more and more on software
intensive systems (e.g., in self-driving cars, smart cities and homes, health, government, and
financial sectors), hence security failures and vulnerabilities have an increasing effect. One
reason behind many security vulnerabilities is the low quality of the source code [1, 2].
Vulnerability is a flaw present in one of the system components, which may result in security
failure when triggered accidentally or exploited intentionally [3]. A software security failure
can lead to a user getting unauthorized access and affecting badly its behavior and func-
tionality.

For ensuring high quality, it is essential to perform vulnerability detection during the
development and maintenance of the code. One way to achieve this is to perform static
analysis, which can detect vulnerabilities in the early phases of the software development
process. Several static analysis tools are available today for different programming languages,
both proprietary and open source.

There are many research results to assess the capabilities of static analysis tools. In this
paper, three tools for the Java programming language, namely PMD [4], SpotBugs (SB) [5],
and SonarQube � Community Edition with its SonarScanner engine (SS) [6], as well as a
tool extension, Find Security Bugs (FSB) [7] have been selected because they are free, open-
source and widely used. They are evaluated according to their ability to detect six weakness
categories (Integer Overflow, Resource Exhaustion, Null Pointer Dereference, Resource Leak,
Command Injection, and SQL-Injection), which have been selected from the Common
Weakness Enumeration � (CWE) [8]. CWE is a common taxonomy of software weaknesses

Pollack Periodica •

An International Journal
for Engineering and
Information Sciences

17 (2022) 2, 1–7

DOI:
10.1556/606.2021.00454
© 2021 The Author(s)

ORIGINAL RESEARCH
PAPER

pCorresponding author.
E-mail: Alqaradaghi.Midya@inf.elte.hu

Brought to you by Library and Information Centre of the Hungarian Academy of Sciences MTA | Unauthenticated | Downloaded 07/19/22 09:32 AM UTC

https://orcid.org/0000-0001-9881-5854
https://orcid.org/0000-0002-0231-6557
https://orcid.org/0000-0003-4484-9172
https://doi.org/10.1556/606.2021.00454
mailto:Alqaradaghi.Midya@inf.elte.hu

and vulnerabilities, and it covers a wide range of design and
implementation flaws. The analyses were applied on test
cases of the Juliet Test Suite [9], which is an artificial code
base developed specifically for the evaluation of the perfor-
mance of static analysis tools. Juliet contains six weakness
categories from the Top 25 Most Dangerous Software
Weaknesses for 2019 and 2020 [10] – these six categories are
used in the present research.

The goal of this paper is to evaluate the performance of
some of the most commonly used open-source tools on
some of the most dangerous weaknesses and on a test suite
developed exactly for this purpose. This research therefore
can only give estimation on how well these tools would
perform on real-world software.

1.1. Related work

When performing similar comparisons on Java and other
programming languages, researchers followed various ap-
proaches, often different from the present study. Some re-
searchers used existing, real code bases; others relied on
artificial codebases (like in this study), and some developed
their own applications and have injected vulnerabilities into
them for benchmarking purposes. Without completeness in
mind, some of the related works are pointed out here.

Emanuelsson and Nilsson [11] survey the underlying
technology for three commercial tools: Klocwork, Coverity,
and FlexeLint. Their survey includes checks for security
vulnerabilities. They also present practical experiences from
evaluations at the telecom company Ericsson. This research
focuses on free, rather than commercial, tools.

Kaur and Nayyar [12] made a comparison among
three C/Cþþ tools and two Java tools based on the cate-
gories of vulnerabilities detected by those tools, and the ratio
of False Positives (FPs) produced by each one of them. They
showed that there are certain vulnerabilities that were not
detected by any of the tools, and their results on the Java
tools showed that SpotBugs was able to find more vulnera-
bilities than PMD, which is in accordance with the findings
of this study. They present five vulnerabilities categories for
both Java tools. Among those, there are two, which are
addressed by this study as well (CWE89 and CWE476).
Further analysis tools have been also investigated, and the
comparison has been done on a different input.

Goseva-Popstojanovaa and Perhinschi [13] evaluated
three commercial static analysis tools (which support both
C/Cþþ and Java) using 19 CWEs, including two from the
present research (CWE190 and CWE476). They work with
three real-world open-source programs (Gzip, Dovecot, and
Tomcat) and with the Juliet Test Suite. They experienced
high false-negative rates, and they state that the state-of-the-
art tools were not very effective in detecting security weak-
nesses. The present research focuses on mostly different
CWEs and different tools, although merely on the Juliet Test
Suite.

Beba et al. [14] present usability, coverage, and perfor-
mance evaluation on five static analysis tools and plugins
including SpotBugs and Find Security Bugs (but not PMD

and SonarQube Community Edition). They also rely on the
Juliet Test Suite, and they have two vulnerability categories
in common with us (CWE78 and CWE89). Their study
explains many interesting anomalies and proposes valuable
improvements on Find Security Bugs.

Compared to the aforementioned related works, the
present study focuses on a limited, but important set of
weaknesses (ones in the Top 25 Most Dangerous Software
Weaknesses for 2019 and 2020) and uses a more refined
methodology yielding more detailed results.

2. METHODOLOGY

This paper evaluates free static analysis tools for the Java
programming language. The three static analysis tools and
the plug-in used in these experiments are PMD 6.34.0,
SpotBugs 4.2.3, Find Security Bugs 1.11.0, and SonarQube
8.8.0.42792 (Community Edition) with SonarScanner
4.6.0.2311. Moreover, SpotBugs has been extended with
FindBugs-Contrib library 7.4.7. The development kit for the
presented experiments was Oracle Java 8 (1.8.0_281). Note
that running the SonarQube server requires Java 14, but it is
only used to present analysis results, while SonarScanner
with Java 8 is used for the experiments. Find Security Bugs
plug-in performance results have been considered separately
in this paper, but they were actually obtained by adding it as
a plug-in to SpotBugs. All the tools were used with default
configuration except for SpotBugs and Find Security Bugs
where medium (which also includes high) confidence set-
tings were applied as justified in Section 3.

The study focuses on security vulnerabilities described in
the CWE�, which is a list of common software and hard-
ware weakness types that have security ramifications. Six
vulnerability categories have been chosen, all present in the
2020 and 2019 CWE Top 25 Most Dangerous Software
Weaknesses, as well as in the Juliet Test Suite (version 1.3)
for Java, which is an extensive set of test cases organized
around 112 CWE categories.

The tools of this study have a difficult time detecting the
6 CWE because all of them are better suited to dynamic
analysis as they require data-flow tracing. This is likely why
they are on the Top 25 list. Following is a brief description of
each investigated CWE.

CWE190 (Integer Overflow) is about performing an
integer operation that results in a value too large or too small
to store in the specified representation. This can lead to a
wraparound e.g., a negative number instead of an expected
positive value. If the wrapping around is unexpected, it could
lead to security problems, especially if the integer overflow is
triggered using user inputs. The case becomes security-
critical when the result is used to control looping, make a
security decision, or determine the offset or size in behaviors
like memory allocation, copying, concatenation, etc.

CWE400 (Uncontrolled Resource Consumption) is about
triggering the allocation of some limited resources like
memory, file system, and CPU by an unauthorized user.

2 Pollack Periodica 17 (2022) 2, 1–7

Brought to you by Library and Information Centre of the Hungarian Academy of Sciences MTA | Unauthenticated | Downloaded 07/19/22 09:32 AM UTC

This may lead to a denial-of-service attack that consumes all
available resources, especially if the number or size of the
resources is not controlled.

CWE476 (Null Pointer Dereference) occurs when the
application dereferences a reference which is supposed to be
valid but is actually null, and that will cause runtime
exception in Java. This issue can occur as a result of several
flaws, like race conditions, and simple programming errors.

CWE772 (Missing Release of Resource after Effective
Lifetime) occurs when resources are not released after use.
This may lead to denial-of-service attacks by causing the
allocation of resources without triggering their release.

CWE78 (Improper Neutralization of Special Elements
used in an OS Command/OS Command Injection)may result
in the execution of unexpected and dangerous commands
directly on the operating system, and that leads to a
vulnerability in the environment which the attacker is not
supposed to have direct access to, like in a web application.

CWE89 (Improper Neutralization of Special Elements
used in an SQL Command/SQL Injection) is similar – it may
allow attackers to force the execution of unwanted or ma-
licious SQL commands. This flaw occurs when the program
constructs SQL commands or queries by textually including
the values received from untrusted sources, e.g., user input,
without any validation or escaping.

2.1. Juliet Test Suite (version 1.3) for Java

The Juliet Test Suite – created and developed by the Center
of Assured Software (CAS) of the National Security Agency
(NSA) – is an artificial code base, which contains intentional
flaws, and is created specifically to test the abilities of static
analysis tools for detecting flaws and security vulnerabilities.
This test suite contains test cases for different programming
languages, including Java.

Each test case for the 6 CWEs that are selected for this
study targets exactly one type of flaw. Since the flaw can
ultimately occur in one method, the method with the flaw
with rule criterion is enough to determine a Real Positive
(P). Every non-trivial function except the one with the flaw
is a Real Negative (N).

Juliet uses the concept of a flow variant [15]. Each test
case [16] is generated with one of three possible flow vari-
ants: Baseline, Control flow, and Data flow, which refer to
the required analysis to reveal a flaw. The comments in the
test cases also document which flow variant the test case
belongs to. The test cases themselves have file groups based
on name, numbering, and suffix.

For test cases without a suffix and those with an alpha-
betic suffix “a”, “b”, etc., Juliet sometimes uses the concept of
a data source and a data sink to divide the chain of events
leading to a flaw into two parts, both of which must be
flawed for a flaw to actually occur. The naming convention
of Juliet uses bad() for the entry into a flaw, and this may,
in turn, use a badSource()and badSink()pattern. The
function badSink() is the P if present otherwise bad() is
used. Every other function aside from trivial wrapper
functions, which in this case is good()when it merely calls

good1(), good2(), etc., is an N. Of four possible com-
binations with sources and sink, three are not flawed: a bad
source to a good sink (B2G), a good source to a bad sink
(G2B), and where source and sink are good (which Juliet
does not bother testing). For test cases with suffixes “_bad”
and “_good”, the action()function in the former is the P.

In this context, the term Raw FPs has been used for the
actual number of FP detections, while when referring to FPs
this indicates the count based on the number of functions
containing one or more FPs. This way, it is easier to reason
about FPs and merely interprets the raw form in terms of its
average per function. If multiple detections occur in a P
function, one is a True Positive (TP), the remainder(s) are
Raw FPs.

The six CWE categories and their representations in
Juliet are shortly introduced here. Due to space limitations,
the test cases and the different flow variants they follow are
not detailed. The interested reader is referred to the Juliet
CWE source code [9].

CWE190 test cases perform addition, increment, multi-
plication or squaring operations on byte, integer, Integer,
short and long values without checking if they are less than
their respective MAX_VALUE. A value can be read by
readLine() from the console, or a Transmission Control
Protocol (TCP) connection (socket), or from a database by
ResultSet.getString(), from an environment vari-
able, using System.getenv(), from a File, from
cookies, from a query string using getParameter(),
from a properties file, from a system property, and a Uni-
form Resource Locator (URL) connection, or a pseudo-
random number generator. A static analyzer should detect
the code line where the arithmetic operation is performed
without checking the suitability of the input value.

CWE400 is very similar to CWE190 in that they are both
checking boundary conditions for integer values, but this
time those integer values are used to control the iteration
count of loop constructs. Juliet provides test cases for values
that are read similarly to those for CWE190. CWE400 takes
non-validated input or maximal or minimal integer values
and executes a loop, which contains operations including
thread sleep, writing to a console, or file, and thus
exhausting resources including CPU, IO, disk space, as well
as process, thread, and other operating system handles.
Resources exhausted are CPU (for_loop) write to file (write/
Servlet), processes/threads/handles (sleep). A static analyzer
should only detect the line of in a bad() method where
there is a for loop using a non-validated variable in the loop
condition.

CWE476 refers to dereferencing a variable of a reference
type without checking for a null value. Technically, the test
cases invoke the length()method on a String. When the
value equals null, a NullPointerException is raised in the
program. The three tested scenarios are: value dereferenced
after null checking, value dereferenced without null checking
or unnecessary check for null after dereferencing the value.
The last one was missed by all the tools in this study because
they are not built with actual null dereference. So it is not a
correctness issue but a bad practice. The validation uses an

Pollack Periodica 17 (2022) 2, 1–7 3

Brought to you by Library and Information Centre of the Hungarian Academy of Sciences MTA | Unauthenticated | Downloaded 07/19/22 09:32 AM UTC

if-statement, while the dereference of null values is trig-
gered when calling some methods. A static analyzer should
detect the flawed method where a call is made on a null
value. The good() methods are built either with G2B:
setting data to a non-null value and not checking for
nullity before dereferencing, or with B2G: setting data to
null and then checking data for nullity before derefer-
encing. Neither should be reported by the static analysis
tool.

CWE772: Java DataBase Connectivity (JDBC) is allo-
cating system resources including a Connection object, a
PreparedStatement object, and a ResultSet object, and though
the test case is one test, there could be three or one TP
depending on the way the tool handles the resource closing
issues. Some ambiguity is present in these test cases where
due to aggregation, the JDK requires any one of several
objects to invoke a close()method, but this would not
increase the Ps. A static analyzer should detect one of the
following locations: the first or the last line of a function,
variable declaration line, object allocation line, nearest try
block (start or end line), the first line after catch block (in
case of a missing finally block), or the first or last line of the
finally-block.

CWE78: test cases of Juliet cover OS command
injections that are caused by passing a non-validated input
to Runtime.exec (String). A part of the input string is read
either from a TCP connection, the console, the result of a
database query, an environment variable, a file, a cookie, a
servlet query string, a properties file, a system property, or
a URLConnection. In contrast, the Ns use a hardcoded
String. None of the good() methods in the test cases
perform real input validation because they are all taking
data of good source (and of course bad sink). The analysis
tool is expected to report the code line in bad()where an
OS command with non-validated external input is
executed.

CWE89: here, the ways data is read are the same as
CWE78 test cases, except that it is using JDBC SqlConnec-
tion.executeQuery(String) to execute a database query. SQL
injections may happen when the non-validated external
input is concatenated to an SQL statement. The analyzer is
expected to report where the execution of the SQL command
containing non-validated parts takes place. Ns are built
either with G2B: using a hardcoded String and data
concatenating into SQL statement, or with B2G: get data
from external sources and use prepared statement and
execute properly. Neither should be reported by the analysis
tool.

2.2. Comparison metrics

Ten different metrics have been used in this study and they
are defined as follows:

TPR ¼ TP
P
; FPR ¼ FP

N
; Avg FP ¼ Raw FP

FP
;

Gi ¼ 23TPR3 1� FPRð Þ
TPRþ 1� FPR

;TPO ¼
P

i∈CTPRi

jCj ;

FPO ¼
P

i∈CFPRi

jCj ; GiO ¼
P

i∈CGii
jCj ;

TPSCt ¼
P

i∈CTPRi

jCtj ;

FPSCt ¼
P

i∈CFRi

jCtj ; GiSCt ¼
P

i∈CGii
jCtj :

True Positive Ratio (TPR, recall) is the ratio of the number
of TP reports given by a tool to the sum of Ps for every
CWE. Similarly, false positive ratio (FPR, probability of false
alarm) provides the ratio of FP reports to the sum of Ns. Avg
FP provides the average duplicity of FPs per function,
recalling that Raw FP is FPs þ duplicated TPs. Gi describes
the accuracy of the analysis as the harmonic mean of TPR
and 1 – FPR (where 1 – FPR is the ratio of true negatives and
Ns). C stands for the set of identifiers of CWEs: C5 {190,
400, 476, 772, 78, 89}, and t indicates a tool: t ∈ {PMD, SB,
FSB, SS}, CPMD 5 {476, 772}, CSB 5 {476, 772, 89}, CFSB 5
{400, 78, 89}, CSS 5 {190, 400, 476, 772, 89}.

GiO is the overall accuracy of the analysis given by
dividing the total sum of the Gi by |C|, which is the total
number of CWEs in this study), while GiSCt is the per tool
accuracy given by dividing the total sum of Gi by |Ct|, which
is the total number of CWE(s) that the specified tool has a
rule(s) to detect. Similarly, overall TP (TPO), per tool TP
(TPSCt), and overall FP (FPO), per tool FP (FPSCt), have
been calculated regarding TPR and FPR, respectively. Ac-
curacy has been characterized with Gi, since the classical
accuracy metric Acc ¼ ðTN þ TPÞ=ðTN þ FN þ TP þ FPÞ
is not applicable in the current experiment, as the positive
and negative occurrences are imbalanced in the investigated
Juliet Test Suite test cases.

3. RESULTS AND DISCUSSION

The experiment conducted a comparison of the tools with
six categories of test cases of the Juliet Test Suite (version 1.3)
for Java. Section 3.1 presents the results of running every
tool on each CWE, Section 3.2 presents the results of
analyzing CWE78 and CWE89 test cases with FSB using
different Java compiler versions, while Section 3.3 presents
overall tools’ performance results.

SB and FSB classify the detected weaknesses by the
likelihood of their veracity into low, medium, and high
confidence. In this paper, only medium and high confidence
detections are presented, for the following reasons:

1. CWE476 analysis results have been improved this way as
this excludes all the FPs that are coming from duplicate
detections by the rule NP_LOAD_OF_KNOWN_NULL_
VALUE of Style category, which also gives a large number
of FPs;

2. For CWE772 nothing will change;
3. SB and FSB are using taint analysis with string concate-

nation, which is the reason for giving high FPR in both

4 Pollack Periodica 17 (2022) 2, 1–7

Brought to you by Library and Information Centre of the Hungarian Academy of Sciences MTA | Unauthenticated | Downloaded 07/19/22 09:32 AM UTC

CWE78 and CWE89. They detect most of the lines that
bind data to dynamic OS and SQL commands execution
regardless of the source of the data. In other words, they
detect all Ns that use G2B; so, when detections with low
confidence are removed, the results are improved in the
case of CWE78: most of the FP excluded, while only a few
TP have been missed, which improves the accuracy score,
Gi. In the case of CWE89 detections results by FSB with
medium and high confidence decrease the Gi by 0.38, but
on the other hand, it also decreases the #FPs from 1016 to
252, which is a significant improvement.

4. The results for CWE89 by SB do not change as they are
all medium and high confidence detections.

3.1. Running tools on the six CWEs of Juliet Test Suite

Table 1 presents the results of running the tools on the six
CWEs of the Juliet Test Suite. The number of test cases is
presented in the second column for each CWE and was
extracted from the Juliet documentation (and program-
matically verified). The number of real negatives is presented
in the third column deduced programmatically. CWE190
and CWE400 were not detected in any of the tools, because
determining boundary values on integers requires having
analysis, which can propagate boundary value information
across any control flow units like loops while having perfect
data flow analysis. The difficulty of making inferences based
on the undecidability of static analysis [17] has a theoretical
limit as well as many practical constraints e.g., with con-
structs as ordinary as loops whose invariants and post-
conditions need to be deduced. For this reason, boundary
value issues are largely not covered by static analysis tools,
beyond some primitive heuristics to find specific patterns. In
a certain regard, this applies to all of the six CWEs studied,
except the others follow more common patterns where
heuristics are broader while still being straightforward to
implement.

In the case of CWE476, SS gave the highest accuracy
metric 68.9. All test cases of flow variant Baseline and most
of those of Control flow were detected perfectly without any
FP. However, SS missed the test cases of flow variant Data
flow. SB detects 102 test cases without FP, with the rule
NP_ALWAYS_NULL. Those are flow variants of type

Baseline, most of the control flow, and only one test case
with data flow type. Two other rules of SB detected 26 of the
chained test cases (NP_NULL_PARAM_DER-
EF_ALL_TARGETS_DANGEROUS), and one data flow
variant (NP_NULL_PARAM_DEREF_NONVIRTUAL).
However, these detections are reported where the null value
is passed in method bad() rather than the location of
receiving it in badSink(), hence according to this meth-
odology, those are FP. The extra Raw FPs are coming from
duplicate detection for some test cases by one of the Style rule
detectors. PMD results in 46.3 accuracy due to the high FPR.
The rule in PMD is not detected Null Pointer Dereference, it
actually targets Null Assignment. FPs come from null as-
signments without dereferencing the null value. Moreover, it
totally missed all the test cases that are named binary_if
(baseline flow variant), deref_after_check, and null_check_-
after_deref (which are both control flow variants).

CWE772 is detected by PMD with an accuracy of 100.0.
It gives five detections for the two test cases, one for each
non-closed resource. The extra detections are also in the
bad()method, and they are Raw FP according to the meth-
odology. SB and SS could detect only one of the test cases. SB
reports two FPs from the method bad().

CWE78 is only detected by FSB because there are no
available rules in the other tools to detect this weakness.
However, the accuracy is very high, 90.5.

CWE89 is detected by FSB with an accuracy of 91.1,
which is the highest among the tools. The FPs are coming
from G2Bmethods in data flow variant test cases. However,
the accuracies for SB and SS are smaller because they detect
issues in G2Bmethods for all the flow variant test cases. For
detecting SQL-Injection in a better way using SS, the pro-
grammer might use the vulnerability rule “Database queries
should not be vulnerable to injection attacks” (s3649) of the
Developer Edition.

The tool with the highest accuracy for CWE476 is SS, but
the tool with the lowest FPR is SB (including only medium
and high confidence). FSB plug-in has the highest accuracy
for both OS command and SQL injections (CWE78 and
CWE89), with an accuracy of 90.5 and 91.1 respectively.
This is not surprising because these types of weaknesses are
the focus of the tool. However, in the case of CWE89, the
highest TPR is achieved by SB and SS, which had identical

Table 1. The results of running all the tools on four CWEs of Juliet (as CWE190 and 400 have not been included in the table because they
have not been detected by any of the tools)

CWE # Test Cases # N # Files Tool TP TPR (%) FP FPR (%) Gi Raw FP Avg. FP

476 198 952 293 PMD 76 38.4 398 41.8 46.3 558 1.4
SB 102 51.5 27 2.8 67.3 44 1.63
SS 110 55.6 88 9.2 68.9 88 1.00

772 2 2 2 PMD 2 100.0 0 0.0 100.0 3 -
SB 1 50.0 0 0.0 66.7 2 -
SS 1 50.0 0 0.0 66.7 0 -

78 444 1,704 720 FSB 376 84.7 48 2.8 90.5 48 1.00
89 2,220 13,020 3,660 SB 2,220 100.0 3,000 23.0 87.0 3,000 1.00

FSB 1,889 85.1 252 1.9 91.1 252 1.00
SS 2,220 100.0 3,000 23.0 87.0 3,060 1.02

Pollack Periodica 17 (2022) 2, 1–7 5

Brought to you by Library and Information Centre of the Hungarian Academy of Sciences MTA | Unauthenticated | Downloaded 07/19/22 09:32 AM UTC

values. Details on detectors and rules as well as the analysis
workflow of this research can be found in [18].

3.2. CWE78 and CWE89 test cases with FSB using
different Java compiler versions

The CWE test cases of this study have been investigated
using Java Compiler versions 14.0.1 and 16.0.1 and
different results have been observed for both CWE78 and
CWE89 when analyzed with FSB. FSB with these Java
versions yields total recall (100 TPR) but significantly
increased false alarm rate (36.6 FPR) and so less accuracy
(77.6 Gi) compared to results obtained with Java 8 (84.7
TPR, 2.8 FPR and 90.5 Gi). Similarly, analyzing CWE89
gives 100 TPR and 23.5 FPR, hence 86.7 Gi with higher
Java versions compared to TPR FPR Gi obtained with Java
8. The extra FPs result from G2B methods. The reason is
that Java compiler 8 is doing different string optimizations,
which leads to minimizing the FPs in both cases. (It is well-
known that Java byte code uses a constant pool, which
deals with immutable objects like Strings). Those results
cannot be further optimized by setting lower confidence
since they are all of medium confidence. Similar in-
consistencies across Java compiler versions were not found
for SS or SB, and PMD is not relevant here as it analyzes
source code rather than byte code.

FSB yields another type of inconsistency with CWE89 of
Juliet. It gives different results when using batches of test
case packages (s01, s02, s03, and s04) rather than processing
each one separately. This issue has been reported already
[19] and has been partially resolved [14].

From the above, it is concluded that the accuracy of the
CWE78 and CWE89 analysis in FSB depends heavily on the
used Java version so there is still room for improvement in
the tool chain, i.e., with the collaboration of FSB and SB.

3.3. Performance of the tools

Figure 1 presents the overall performance of the tools of this
study on analyzing the six CWEs. SS has the highest overall

accuracy in detecting the six CWEs. PMD and SB have the
highest per tool accuracy. However, PMD also has the
highest per tool FP which is 20.9.

4. CONCLUSION

SonarQube gave the highest accuracy for all investigated
CWEs, while PMD and SpotBugs result in the highest ac-
curacy when the analysis is restricted to those CWEs, which
the tools claim they can detect. As expected, test cases of
Juliet with flow variant of type data flow were the most
difficult for the tools to detect. All of the investigated tools
need improvements with respect to all the investigated
weaknesses. Juliet Test Suite would also benefit from a wider
weakness spectrum (e.g., CWE400) as well as an increased
number of test cases for some of the categories (e.g.,
CWE772, which only includes two test cases). Initial in-
vestigations on the combined use of the tools gave no sig-
nificant benefits as opposed to using the best particular tool
for a given CWE.

As for future work, the study would extend to cover all
112 test cases of the Juliet Test Suite, which would give a
better judgment of the performance of the static analysis
tools. Other (free and commercial) static analysis tools can
also be involved in the research (like the Infer static analyzer
from Facebook).

ACKNOWLEDGMENTS

Midya Alqaradaghi has been supported by the Stipendium
Hungaricum program. The research of Gregory Morse and
Tam�as Kozsik has been supported by the European Union,
co-financed by the European Social Fund (EFOP-3.6.2-16-
2017-00013, Thematic Fundamental Research Collabora-
tions Grounding Innovation in Informatics and Info-
communications).

REFERENCES

[1] C. Kuang, Q. Miao, and H. U. A. Chen, “Analysis of software

vulnerability,” in Proc. 5th WSEAS Int. Conf. Inf. Secur. Priv.,

Venice, Italy, Nov. 20–22, 2006, pp. 218–223.

[2] A. Bagnato, Ed., “Security in model-driven architecture,” in Pro-

ceedings on European Workshop on Security in Model Driven

Architecture, Enschede, The Netherlands, June 24, 2009.

[3] P. E. Black, M. J. Kass, and H. M. M. Koo, “Source code security

Analysis tool functional specification, Version 1.0,” Special Pub-

lication, National Institute of Standards and Technology, Gai-

thersburg, MD, USA, 2007, Paper no. 500–268.

[4] PMD An extensible cross-language static code analyzer. [Online].

Available: https://pmd.github.io/. Accessed: May 18, 2021.

[5] SpotBugs, Find bugs in Java Programs. [Online]. Available:

https://spotbugs.github.io/. Accessed: May 18, 2021.

[6] SonarQqube. [Online]. Available: https://www.sonarqube.org/.

Accessed: May 18, 2021.Fig. 1. Overall and per tool performance on the six CWEs

6 Pollack Periodica 17 (2022) 2, 1–7

Brought to you by Library and Information Centre of the Hungarian Academy of Sciences MTA | Unauthenticated | Downloaded 07/19/22 09:32 AM UTC

https://pmd.github.io/
https://spotbugs.github.io/
https://www.sonarqube.org/

[7] Find Security Bugs. [Online]. Available: https://find-sec-bugs.

github.io/. Accessed: May 18, 2021.

[8] Common Weakness Enumeration. [Online]. Available: https://

cwe.mitre.org/. Accessed: May 18, 2021.

[9] Juliet Test Suite, National Institute of Standard and Technology.

[Online]. Available: https://samate.nist.gov/SRD/testsuite.php.

Accessed: May 18, 2021.

[10] CWE, Common weakness enumeration, A community-developed

list of software and hardware weakness types. [Online]. Available:

https://cwe.mitre.org/data/definitions/1350.html. Accessed: May

16, 2021.

[11] P. Emanuelsson and U. Nilsson, “A comparative study of indus-

trial static analysis tools,” Electron. Notes Theor. Comput. Sci., vol.

217, no. C, pp. 5–21, 2008.

[12] A. Kaur and R. Nayyar, “A comparative study of static code

analysis tools for vulnerability detection in C/Cþþ and JAVA

source code,” Proced. Comput. Sci., vol. 171, pp. 2023–2029,

2020.

[13] K. Goseva-Popstojanova and A. Perhinschi, “On the capability of

static code analysis to detect security vulnerabilities,” Inf. Softw.

Technol., vol. 68, pp. 18–33, 2015.

[14] S. Beba and M. M. Karlsen, “Implementation analysis of open-

source Static analysis tools for detecting security vulnerabilities,”

MSc Thesis, Norwegian University of Science and Technology, 2019.

[15] L. Kota and K. Jarmai, “Improving optimization using adaptive

algorithms,” Pollack Period., vol. 16, no. 1, pp. 14‒18, 2021.
[16] E. Ferencz and B. Goldschmidt, “A novel program synthesis

approach in test driven software development,” Pollack Period.,

vol. 12, no. 2, pp. 3‒15, 2017.
[17] W. Landi, “Undecidability of static analysis,” ACM Lett. Program.

Lang. Syst., vol. 1, no. 4, pp. 323‒337, 1992.
[18] Static-analysis-tools. [Online]. Available: https://github.com/

Midya-ELTE/Static-analysis-tools. Accessed: June 01, 2021.

[19] Random chance of detection for some files in Juliet 1.3 CWE89

SQL injection. [Online]. Available: https://github.com/find-sec-

bugs/find-sec-bugs/issues/456. Accessed: May 01, 2021.

Open Access. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited, a link to the CC
License is provided, and changes – if any – are indicated. (SID_1)

Pollack Periodica 17 (2022) 2, 1–7 7

Brought to you by Library and Information Centre of the Hungarian Academy of Sciences MTA | Unauthenticated | Downloaded 07/19/22 09:32 AM UTC

https://find-sec-bugs.github.io/
https://find-sec-bugs.github.io/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://samate.nist.gov/SRD/testsuite.php
https://cwe.mitre.org/data/definitions/1350.html
https://github.com/Midya-ELTE/Static-analysis-tools
https://github.com/Midya-ELTE/Static-analysis-tools
https://github.com/find-sec-bugs/find-sec-bugs/issues/456
https://github.com/find-sec-bugs/find-sec-bugs/issues/456
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Outline placeholder
	Detecting security vulnerabilities with static analysis – A case study
	Introduction
	Related work

	Methodology
	Juliet Test Suite (version 1.3) for Java
	Comparison metrics

	Results and discussion
	Running tools on the six CWEs of Juliet Test Suite
	CWE78 and CWE89 test cases with FSB using different Java compiler versions
	Performance of the tools

	Conclusion
	Acknowledgments
	References

