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ABSTRACT

The aim is to derive an expression to calculate the natural frequencies and plot the mode shapes of a
simply-supported beam with an overhang with an end overhang point mass by using the Euler-
Bernoulli theory in the case of free transverse vibrations. The results are validated by finite element
analysis. The importance of the system presented is that it can represent machine tool spindles or
even machining tools like boring bars. The results are in good agreement with the results from the
finite element analyses. The derived expression can be used in optimizing the value of the point mass
and optimizing the support location for better performance of the system without the need to
perform complex analysis to obtain the values of the natural frequencies and to plot the mode
shapes.
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1. INTRODUCTION

Beams with different configurations can be essential elements in representing engineering
systems, starting from truck axels [1] to sandwich beams structures [2] to machine-tool
systems, mainly when it comes to machine-tool spindle systems. Being able to calculate
the natural frequencies of beam systems help optimize them in terms of weight, per-
formance and cost. Double span beam systems attract a lot of researchers’ attention since
it is the case, which is present in many engineering applications in addition to the
traditional beam configurations. Euler-Bernoulli beam theory is widely used in the
analysis of the mechanical vibrations of beams. Beams are analyzed using many methods
and different techniques. The researcher He’s Variational Iterational Method (VIM) was
used by Alima and Desmond [3] to analyze a Euler-Bernoulli beam on an elastic support
in the case of free mechanical vibrations. Also, Lai et al. used the Adomian Decompo-
sition Method (ADM) as an innovative eigenvalue solver for free vibration of a Euler-
Bernoulli beam under different supporting conditions [4]. A method called Differential
Transforms Method (DTM) was used by Ozgumus and Kaya [5] to analyze flap-wise
bending vibrations of a double tapered rotating Euler-Bernoulli beam. The natural fre-
quencies and mode shapes of Euler-Bernoulli beams were determined by Yieh [6] using
the singular value decomposition method. An approximate solution to the transverse
vibration of the uniform Euler-Bernoulli beam under linearly varying axial force was
derived by Naguleswaran [7].

In this study, transverse vibration analysis of a Continuous Pinned-Pinned-Free Beam
(CPPFB) with a mass attached at the free end is carried out using the Euler-Bernoulli
beam theory. Then the results of the natural frequency and mode shapes obtained by the
analysis will be compared to the results of the Finite Element Analysis (FEA) of the
same case.
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2. FREE VIBRATION OF A SIMPLY
SUPPORTED BEAM WITH AN OVERHANGING

Figure 1 illustrates a pinned-pinned-free beam with an
overhang with a mass attached to the free end. The beam is
assumed to be slender and subjected to a transverse load.
Since the interest of this research is about uniform beams
and for free vibrations and using Euler-Bernoulli’s beam
theory the governing equation can be written as [8]:

EI
v4w
vx4

ðx; tÞ þ rA
v2w
vt2

ðx; tÞ ¼ 0; (1)

where E is the Young’s modulus; I is the moment of inertia
of the beam cross section; w is the vertical deflection; t is
time; r is the mass density of the beam and A is the cross-
sectional area of the beam.

Assuming a solution of Eq. (1) by the help of the sepa-
ration of variables method, the solution takes the
following form:

wðx; tÞ ¼ XðxÞTðtÞ; (2)

where X is the solution related to space; T is the solution
related to time.

The solution X can be written as:

XðxÞ ¼
�
X1ðxÞ; 0≤ x≤ a;
X2ðxÞ; a≤ x≤ L:

(3)

X1ðxÞ and X2ðxÞ can be expressed in the general solution
form as follows:

X1ðxÞ ¼ a1 sinðbxÞ þ a2 cosðbxÞ þ a3 sinhðbxÞ
þ a4 coshðbxÞ; (4)

X2ðxÞ ¼ b1 sinðbxÞ þ b2 cosðbxÞ þ b3 sinhðbxÞ
þ b4 coshðbxÞ; (5)

where b is the beam vibration eigenvalue.

2.1. Setting the boundary conditions

For the presented beam system in Fig. 1, the boundary
conditions are to be determined at the first pin, the second
pin and at the free end from left to right. For the first pin, the
displacement and the moment are equal to zero, so:

X1ð0Þ ¼ 0; (6)

d2X1ð0Þ
dx2

¼ 0: (7)
Fig. 1. Pinned-pinned-free beam with a mass attached to the free end
At the free end, the bending moment is equal to zero and
the shear is represented in Eq. (9) [7], so:

d2X2ð0Þ
dx2

¼ 0; (8)

EI
d3X2ðLÞ
dx3

� m
d2T2ðL; tÞ

dt2
¼ 0; (9)

where m is the mass attached to the free end of the beam.
At the second pin, the following conditions are

present:

X1ðaÞ ¼ 0; (10)

X2ðaÞ ¼ 0; (11)

dX1ðaÞ
dx

¼ dX2ðaÞ
dx

; (12)

d2X1ðaÞ
dx2

¼ d2X2ðaÞ
dx2

: (13)

2.2. Substituting in the general form solution

Starting with the first boundary condition at the first pin
requires substituting Eq. (4) to Eq. (6) which gives:

X1ð0Þ ¼ a2 þ a4 ¼ 0: (14)

Then, after differentiating Eq. (4) two times and
substituting the result in equation (7), it gives:

d2X1ð0Þ
dx2

¼ −a2 þ a4 ¼ 0: (15)

Moving to the free end, by differentiating Eq. (5) two
times and substituting the result in Eq. (8), it gives:

d2X2ð0Þ
dx2

¼ −b1 sinðbLÞ � b2 cosðbLÞ þ b3 sinhðbLÞ
þ b4 coshðbLÞ ¼ 0: (16)

Rearranging Eq. (1) by isolating for d2T2ðL; tÞ=dt2 and
substituting to Eq. (9) gives:

d3X2ðLÞ
dx3

þ m
rA

d4X2ðLÞ
dx4

¼ 0: (17)

After differentiating Eq. (5) four times and substituting to
Eq. (17) it gives:

d3X2ðLÞ
dx3

þ m
rA

d4X2ðLÞ
dx4

¼

b1

�
� cosðbLÞ þ m

rA
b sinðbLÞÞ þ b2

�
sinðbLÞ þ m

rA
b cosðbLÞ

�

þb3

�
coshðbLÞ þ m

rA
b sinhðbLÞÞ þ b4

�
sinhðbLÞ þ m

rA
b coshðbLÞ

�
¼ 0:

(18)

Substituting Eq. (4) to Eq. (10) gives:

X1ðaÞ ¼ a1 sinðbaÞ þ a2 cosðbaÞ þ a3 sinhðbaÞ
þ a4 coshðbaÞ ¼ 0: (19)

Substituting Eq. (5) to Eq. (11) gives:
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X2ðaÞ ¼ b1 sinðbaÞ þ b2 cosðbaÞ þ b3 sinhðbaÞ þ b4 coshðbaÞ ¼ 0:

(20)

Substituting the first derivatives of Eqs (4) and (5) to Eq.
(12) gives:

dX1ðaÞ
dx

�dX2ðaÞ
dx

¼ a1 cosðbaÞ � a2 sinðbaÞ þ a3 coshðbaÞ
þ a4 sinhðbaÞ−b1 cosðbaÞ � b2 sinðbaÞ

þ b3 coshðbaÞ � b4 sinhðbaÞ ¼ 0:

(21)

Substituting the second derivatives of Eqs (4) and (5) to
Eq. (13) gives:

d2X1ðaÞ
dx2

� d2X2ðaÞ
dx2

¼ −a1 sinðbaÞ � a2 cosðbaÞ
þ a3 sinhðbaÞ þ a4 coshðbaÞ

þ b1 sinðbaÞ þ b2 cosðbaÞ � b3 sinhðbaÞ � b4 coshðbaÞ ¼ 0:

(22)

2.3. Matrix form and eigenvalues

Equations (14) to (22), excluding Eq. (17), are to be arranged
in a matrix (83 8) in order to obtain the determinant in
order to obtain the transcendental equation as follows:
2
66666666666666666666666666664

0 1 0 1 0 0 0 0

0 �1 0 1 0 0 0 0

0 0 0 0 �sinðbLÞ �cosðbLÞ sinhðbLÞ coshðbLÞ

0 0 0 0 �cosðbLÞ þ m
rA

b sinðbLÞ sinðbLÞ þ m
rA

b cosðbLÞ coshðbLÞ þ m
rA

b sinhðbLÞ sinhðbLÞ þ m
rA

b cos hðbLÞ

sinðbaÞ cosðbaÞ sinðbaÞ coshðbaÞ 0 0 0 0

0 0 0 0 sinðbaÞ cosðbaÞ sinhðbaÞ coshðbaÞ

cosðbaÞ �sinðbaÞ coshðbaÞ sinhðbaÞ �cosðbaÞ sinðbaÞ �coshðbaÞ �sinhðbaÞ

�sinðbaÞ �cosðbaÞ sinhðbaÞ coshðbaÞ sinðbaÞ cosðbaÞ �sinhðbaÞ �coshðbaÞ

3
77777777777777777777777777775

2
6666666666666666664

a1

a2

a3

a4

b1

b2

b3

b4

3
7777777777777777775

¼

2
6666666666666666664

0

0

0

0

0

0

0

0

3
7777777777777777775

:

(23)

Solving for the determinant, leads to the transcendental equation as follows:

1rA
7

��
−28ArcoshðbaÞ2 � 28ArcosðbaÞ2 þ 56mbsinhðbaÞcoshðbaÞ � 56mbsinðbaÞcoshðbaÞ þ 56rAÞsinhðbLÞ

þ 24mbcoshðbLÞsinhðbaÞsinðbaÞ � 28 cosðbLÞ�Ar coshðbaÞsinhðbaÞ � Ar cosðbaÞsinðbaÞ þ 2mbcosðbaÞ2

� 2mbÞÞsinhðbLÞ þ 28

�
ArcoshðbaÞsinhðbaÞ � ArcosðbaÞsinðbaÞ � 8mb coshðbaÞ2

7
þ 8 m b

7

�
coshðbLÞsinðbLÞ

þ 28A
��
coshðbaÞ2cosðbLÞ � cosðbaÞ2 cosðbLÞÞcoshðbLÞ þ 2 sinhðbaÞsinðbaÞrÞ ¼ 0: (24)

The natural frequencies are given by Eq. (25) [8]:
fn ¼ b2n
2p

ffiffiffiffiffiffi
EI
rA

r
; ½Hz�: (25)

3. VALIDATION OF THE MODEL

A beam model with specific properties is analyzed using the
analysis method in the previous sections to obtain the values
of the natural frequencies for the first four eigenvalues and
the first four mode shapes, then the same beam is analyzed
using the FEA in order to compare the results and calculate
the error percentage between both methods. Table 1 lists the
parameters of the validation model.

Since Eq. (24) has an infinite number of zeros and that
the interest of this research is the first four modes, the pa-
rameters in Table 1 are substituted to Eq. (24) and then it is
plotted for a domain of 4 p is illustrated in Fig. 2.

Then the zeros of the plot are extracted and tabulated in
Table 2 as follows:

Substituting b values in Eq. (25), gives the natural fre-
quencies values listed in Table 3.

In order to obtain the b values for different second pin
location, instead of repeating the previous step, Fig. 3 is used
for calculating b values can be obtained from Eq. (24). Two
variables are defined as follows, d ¼ b:l and λ ¼ a∕l. After
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Fig. 2. Beta values plot

Table 2. Extracted beta values

b Value

1 1.99
2 5.52
3 9.53
4 11.85

Table 3. Natural frequencies values

b fn ½Hz�
1 18.72
2 143.25
3 426.33
4 659.5

Fig. 3. Eigenvalues for the first 4 mode

Table 1. The parameters of the validation model

Parameter Value

L 1m
r 7,850 kg m�3

E 2.05∙eþ11 N m�2

m 0.628 kg
I 1.333∙e�8 m4

A 4∙e�4 m2

a 0.3m
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rearranging and substituting them into Eq. (32) then plot-
ting the new expression for d and λ it yields to Fig. 3. The
curves in the plot correspond to the modes one to four from
bottom to up respectively.

For the mode shapes, the boundary condition equations
are used in order to obtain relationships between the co-
efficients a1; a2; a3; a4; b1; b2; b3 and b4. Since there are no
enough equations to obtain the values of the coefficients, the
obtained values will be normalized by dividing all the co-
efficients by b4. Then the boundary condition equations can
be rewritten as:

�a1b
2 sinðbaÞ
b4

� a2b
2 cosðbaÞ
b4

þ a3b
2 sinhðbaÞ
b4

þ a4b
2 coshðbaÞ
b4

þb1b
2 sinðbaÞ
b4

þ b2b
2 cosðbaÞ
b4

� b3b
2 sinhðbaÞ
b4

¼ b2 coshðbaÞ;
(26)

a1b cosðbaÞ
b4

� a2b sinðbaÞ
b4

þ a3b coshðbaÞ
b4

þ a4b sinhðbaÞ
b4

�b1b cosðbaÞ
b4

� b2b sinðbaÞ
b4

� b3b coshðbaÞ
b4

¼ b sinhðbaÞ;
(27)

b1 sinðbaÞ
b4

þ b2 cosðbaÞ
b4

þ b3 sinhðbaÞ
b4

¼ −coshðbaÞ; (28)

a1 sinðbaÞ
b4

þ a2 cosðbaÞ
b4

þ a3 sinhðbaÞ
b4

þ a4 coshðbaÞ
b4

¼ 0;

(29)

b1
�
� b3 cosðbLÞ þ m

rA
b4 sinðbLÞ

�

b4

þ
b2
�
b3 sinðbLÞ þ m

rA
b4 cosðbLÞ

�

b4

þ
b3
�
b3 coshðbLÞ þ m

rA
b4 sinhðbLÞ

�

b4

¼ −

�
b3 sinhðbLÞ þ m

rA
b4 coshðbLÞ

�
;

(30)
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−b1b
2 sinðbLÞ
b4

� b2b
2 cosðbLÞ
b4

þ b3b
2 sinhðbLÞ
b4

¼ −b2 coshðbLÞ; (31)

−
a2b

2

b4
þ a4b

2

b4
¼ 0: (32)

The values of the coefficients from a1 to b3 divided by b4
can be obtained. Substituting the obtained coefficients values
Fig. 4. Proposed model mode shapes

Table 4. Theory and FEA method natural frequencies values with
the error percentage

Mode Theory [Hz] FEA [Hz] Error

1 18.72 18.79 0.37%
2 143.25 143.77 0.36%
3 426.33 426.20 0.03%
4 659.50 658.13 0.21%

Fig. 5. The normalized FEA mode shapes
to Eq. (3) and then plotting for each b value, the mode
shapes are as it is illustrated in Fig. 4.

4. FEA AND COMPARISON

The same model introduced in the last section is analyzed
using the FEA method to find the values of the first four
natural frequencies and for plotting the mode shapes. Table 4
lists the values of the natural frequencies of the FEA method
and the proposed model in addition to the error percentage.

Figure 5 shows the normalized mode shapes obtained by
the FEA.
5. CONCLUSIONS

A pinned-pinned-free beam with a mass attached to the free
end is studied. Euler-Bernoulli beam theory is used to derive
the transcendental equation, which can be applied to
different second-pin location and different attached mass
values. The eigenvalues for calculating the natural fre-
quencies and the mode shapes were obtained for a validation
model. FEA of the same validation model were carried out
and the first four natural frequencies were compared to the
proposed method. The comparison of the results shows a
very good match in the natural frequency values. However,
the mode shapes for both methods take the same form with
some differences in the peak’s values. The difference can be
attributed to the normalizing process of the mode shapes.

The developed analytical model can be helpful in the
design of many engineering applications like crane arms,
machine-tool spindles or even machine-tool boring bars.
Future work will include investigating different attached
mass to beam-mass ratio in addition to the effect of the
second pin location on the accuracy of the developed model,
as well as analyzing the model under the application of force.
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