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Abstract⎯ The aim of this work was the regionalization of low flow for chosen 
catchments located in the upper Vistula river basin using non-hierarchical cluster analysis. 
Next, with such creative clusters, the regional relationships were determined between the 
specific low flow discharge q95 and the meteorological and physiographic parameters of 
the catchment. The study evaluated regional regression models for low flow (specific q95 
discharge) in selected, 30 catchments located in the upper Vistula river basin. The data for 
calculations were a series of observations of daily discharge from the multiannual period 
of 1963–2016 and were obtained from the Institute of Meteorology and Water Management 
– National Research Institute in Warsaw. The study showed, that the k-means method can 
be used for regional regression determination. The parameters which influenced the 
catchments grouping in clusters were the specific low flow discharge q95, precipitation, 
median catchment altitude, mean catchment slope, soil, and land use. The study indicated 
that k-means method may be an effective tool for evaluating low flow in rivers of the 
southern parts of Poland. 
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1. Introduction 

The flow in a river is the sum of natural processes that take place within the 
catchment, such as: supplying, storing, and outflowing of water. Supply of water 
depends highly on precipitation, landscape and use of the area, and the roughness 
coefficient. Storage of water and its flow are dependent on complex physiographic 
elements of the catchment. The natural factors that affect the low flow in the river 
are: the type and infiltration capacity of the soil, deposition of aquifers, speed and 
frequency of water supply, evapotranspiration, management and topography of the 
area, and the climate. In many cases, ground waters provide supply of water for 
streams during the time of low flows. Low flows do not unbalance the ecology at 
such times. Therefore, it is important for aquifer layers to have access to sufficient 
volume of water, the level of ground waters to be sufficiently low to cross the 
watercourse, and the size and hydraulic conditions of the aquifer to be sufficient to 
maintain the flow during dry time. Supply of water for low flows may also come 
from the nearby surface of the valley bottom, where water is stored in the form of 
saturated soil, alluvial area, and wetlands. These are places saturated with water 
during or right after precipitation (Smakhtin, 2001; Ziernicka-Wojtaszek and Kaczor, 
2013). The geological structure of the catchment also significantly affects the 
appearance of low flows. Armbruster (1976) and Smith (1981) confirmed in their 
study the direct relationships between the geological structure of the catchment and 
the speed of outflow at low flow time.  

Modern society faces the common phenomenon of shortage of water. This 
problem is enhanced with the fact that water deficits occur in many parts of the 
world at the same time (Bates et al., 2008). Shortage of water is related to drought 
that affects resources of surface and underground waters and can lead to reduction 
of the supply of water, deterioration of its quality, crop failure, and disturbances 
in habitats (Mishra and Singh, 2011). 

The water balance is the main and commonly used model to determine low 
flows in controlled catchments. It requires entering some data, which in most cases 
are easily available, and the method is relatively simple and easy (Merz and Blöschl, 
2004). In general, hydrometric gauging records are not available at the site of interest. 
Where these records are available, they may be of short length, leading high 
uncertainties in the selection of the probability distribution and the estimation of the 
parameters of selected model. When the observed streamflow records are 
unavailable or inadequate for a proper local frequency analysis, other approaches 
must be used (Ouarda et al., 2008). In uncontrolled catchments, the relevant 
parameters are acquired from other sources of information, such as the neighboring 
catchments or the data concluded on the basis of literature information (Merz and 
Blöschl, 2004; Wałega and Młyński, 2017). In Poland, in case of controlled 
catchments, statistical methods based on different type of distribution of extreme 
value are in use, i.e., Gumbel method for low flow calculation (Byczkowski, 1972). 
For uncontrolled catchments, empirical formulas are used. There are few formulas 
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to low and average flow calculations, but they were worked out based on 
hydrological data for years 1950–1980 by the 20th century, for example the Punzet 
formula (Punzet, 1981). At present there is a need of verification or updating of these 
formulas, especially since actual hydrological data sequence are much longer at 
present (Wałęga et al., 2014).  

The regional frequency analysis is the most commonly used tool for the 
estimation of extreme hydrological events (floods, droughts) at sites, where little or 
no reliable data are available (Vogel and Kroll, 1990; Tucci et al. 1995; Durrans and 
Tomic, 1996; Hamza et al., 2001; Ouarda et al., 2005; McLean and Watt, 2005; 
Laaha and Blöschl, 2006). In general, a regional frequency analysis procedure is 
composed of two main steps: the identification of groups of hydrologically 
homogenous catchments (or regions) and the application of a regional estimation 
method within each delineated region (Ouarda et al., 2008). Regionalization of 
catchments is founded on the premise, that catchments of the same climate, geology 
and topography, vegetation and soils have similar values of low flow parameters. It 
is possible to define the homogenous regions in a variety of manners: as 
geographically contiguous region, as geographically non-contiguous regions 
(Ouarda et al., 2008). Regions grouped in this way are not always strictly 
homogeneous, but this approach may produce sufficient results when availability of 
data is limited. A homogeneous region can be also perceived as a group of 
catchments hydrologically similar, but not necessarily geographically neighboring. 
Multidimensional statistical analyses are often used to group catchments. cluster 
analysis is the general name of multidimensional statistical techniques that are used 
to study, interpret, and classify the data with those of a similar group or groups. The 
data from one cluster should be as close to each other as possible, whereas parameters 
from different clusters should differ, if possible.  

Non-hierarchical methods of grouping require the initial determination of the 
number of clusters. They may be classified based on the techniques used to initiate 
the clusters, the criteria for cluster creation, and the types of the data for which 
they are appropriate (Rao and Srinivas, 2008). One of the most frequently used 
and the best known of the non-hierarchical clustering methods, i.e., for catchments 
grouping for the sake of flooding, is the k-means method (Lecce, 2000; Burn and 
Goel, 2000). In India, Ahuja (2012) used the k-means method for data 
regionalization of Godaravi catchments. In Poland, Cupak (2017) used it for low 
flow grouping. This method is effective for grouping large sets of data with 
numerical attributes. However, there are some limitations to this method in the 
breaking down of the data into categories. The method is also sensitive to presence 
of errors (Rao and Srinivas, 2008).  

The objective of this work was the regionalization of low flow in chosen 
catchments located in in the area of the upper Vistula river basin with use of the 
non-hierarchical cluster analysis – the k-means method. Next, with such creative 
clusters, the regional relationships were determined between low flow q95 and the 
meteorological and physiographic parameters of the catchment. 
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2. Material and methods 

The analysis was conducted for 30 selected catchments of the upper Vistula river 
basin (Fig. 1). The source material for the analysis were daily flows from the 
period 1963–2016 (Table 1). It was assumed, as a criterion of catchments’ 
selection, that for analysis, only those catchments will be taken, for which daily 
streamflows are available with a minimum record length of 20 years. 13 
physiographic and meteorological characteristics of catchments were also used 
(Table 1) in the analysis. The data related to daily flows, temperature, and 
precipitation were obtained from the Institute of Meteorology and Water 
Management, National Research Institute in Warsaw.  
 
 

 
Fig. 1. Location of the upper Vistula river basin 
(https://pl.wikipedia.org/wiki/Plik:Polska_hydrografia2.jpg) 

 
 
 
 

The first step was to determine Q95%, that is the flow achieved during 95% 
of days in the studied timeframe. This low flow characteristic is widely used in 
Europe and was chosen because of its relevance for multiple choices of water 
management, among other things in case of projection of water supply systems. 
Then, Q95% was subsequently standardized by the catchment area resulting in 
specific low flow discharges q95 (dm3∙s-1∙km-2). The data were standardised on the 
basis of Eq.(1) in order to obtain average values expected for the individual 
variables, which were given in various units. 
 

 
 𝑥௜௝ =  ௪ೕఙೕ  ൣ𝑓(𝑦௜௝)൧       𝑓𝑜𝑟   𝑗 = 1, … ,𝑛  , (1) 
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where  
f(yij) is the function subject to transformation, 
yij is the value of the feature j, in n – dimensional function of the vector yi, 
wj is the weight assigned to the given feature, 
σj is standard deviation. 
In the k-means method, the first step is to determine the number of clusters. 

The center is determined for each group, which is defined as the function of the 
vector between the clusters. After assigning the variables to the clusters, the 
function of the vector is calculated again to redetermine the location of the center 
of the cluster. The variables are again assigned to the groups, according to the 
position of the new cluster (Dikbas et al., 2013). The Euclidean distance was used 
to calculate the distance of the objects from the centers of the clusters.  

The calculation procedure was run four times – for two, three, four, and five 
clusters. First, two clusters are generated. In the last step, analysis of correlations 
was conducted and models of correlations were defined. The coefficient of 
correlation was calculated, which describes the relationship between the unit 
outflow q95 and selected meteorological and physiographic features of the 
catchment. The coefficient of determination R2 was also determined for the level 
of confidence α = 0.05. Regional regression is built as a multiply regression 
(Eq.(4)), which shows relationships between low flow (as a dependent variable) 
and morphoclimatic parameters (as independent variables). It is used to identify 
the parameters that most strongly influence the low flow. To determine the power 
of regression equation, adjusted coefficient of determination R2

adj for the level of 
significance 0.05 was calculated. The best results were obtained while using 
stepwise regression:  
 
 𝑞ଽହ =  𝛽଴ +  𝛽ଵ ∙  𝑥ଵ +  𝛽ଶ  ∙  𝑥ଶ + ⋯+  𝛽௣ିଵ  ∙  𝑥௣ିଵ , (2) 

 
where 

xi are the morphoclimatic parameters of a catchment, 
βi is the regression coefficient. 
The statistical calculation were made using STATISTICA 13 software. Figs. 

2 and 4 were made in Inkscape.  

2.1. Model performance criteria 

The performance measures used in this study were the Nash–Sutcliffe efficiency 
(E), the percent bias (PBIAS), and the adjusted coefficient of determination (R2

adj). 
Additionally to the regression model the goodness of fit was tested in case, when 
uncontrolled catchment will be included to a region. 

The value of percent bias (Eq.(3)) and a root mean sum of squares error 
(Eq.(4)) were calculated for each clusters obtained with use cluster analysis 
(Patel, 2007). 
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 𝑃𝐵𝐼𝐴𝑆 =  ଵ௡ ∑ (௤వఱ೚್ೞି ௤వఱೞ೔೘௤వఱ೚್ೞ௡௜ୀଵ ) ∙ 100% , (3) 

 

 𝑅𝑀𝑆𝐸 =  ටଵ௡∑ (௡௜ୀଵ 𝑞ଽହ௢௕௦ −  𝑞ଽହ௦௜௠)2 , (4) 

 
where  𝑞ଽହ௢௕௦ is the observed specific low flow discharge q95 for catchment i, 
          𝑞ଽହ௦௜௠is the model prediction. 

RMSE and PBIAS values of 0 indicate a perfect fit. PBIAS measures the 
average tendency of the simulated data to be larger or smaller than observed ones. 
The optimal value of PBIAS is 0. Positive values indicate model underestimation, 
while negative values indicate model overestimation (Fang et al., 2014). For the 
assessment under PBIAS a classification was used suggested by Van Liew et al. 
(2007), described as follows: PBIAS<10%: it is a very good model, 
10% < PBIAS < 15%: the model is good; 15% < PBIAS < 25%: the model is 
satisfactory, and when PBIAS ≥ 25%: the model is unsatisfactory model (Pereira 
et al., 2016). 

The E value (Eq.(5)) is a normalized statistic, that expresses the relative 
magnitude of the residual variance compared to the variance of the measured data 
(Nash and Sutcliffe, 1970; Tegegne et al., 2017). E indicates how well a plot of 
observed versus simulated data fits a 1:1 line (Tegegne et al., 2017). E was 
recommended for two major reasons: it is recommended for use by ASCE (1993) 
and Legates and McCabe (1999), and it is very commonly used, which provides 
extensive information on reported values (Moriasi et al., 2007). It is calculated 
as: 
 
 𝐸 = 1 − ( ∑ (௤వఱ೚್ೞି௤వఱೞ೔೘)మ೙೔సభ∑ (௤వఱ೚್ೞି ௤వఱ೚್ೞതതതതതതಿ೙೟సభ  )మ) , (5) 

 
where  𝑞ଽହ௢௕௦ is the observed specific low flow discharge,  𝑞ଽହ௦௜௠ is the predicted specific low flow discharge, 𝑞ଽହ௢௕௦തതതതതത is the average value. 

The range of E lies between 1.0 (perfect fit) and −∞. An efficiency of lower 
than zero indicates that the mean value of the observed time series would have 
been a better predictor than the model (Krause et al., 2005). 
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3. The description of the study area 

The research included 30 selected catchments located in the upper Vistula river 
basin (Fig. 2). This area is spread within three great Carpathian physiographic 
units: the Carpathians (40% of the basin area), the Subcarpathian valleys (about 
35% of the basin area), and the Małopolska Upland (about 25% of the basin area). 
The Carpathians and the Upland are the source areas for most of the upper Vistula 
tributaries, while the Subcarpathian valleys are a transit area for the Vistula and 
an estuary area for the rivers and streams formed in the Carpathians and 
Subcarpathian Uplands (Chełmicki, 1991).  
 
 

 
Fig. 2. Location of analyzed catchments in the upper Vistula river basin, where: 1 – 
Dłubnia, 2 – Opatówka, 3 – Biała Tarnowska, 4 – Szreniawa, 5 – Wieprzówka, 6 – Łeg, 7 
– Tanew, 8 – Biała, 9 – Pszczynka, 10 – Skawa, 11 – Łososinka, 12 – Biała Nida, 13 – 
Trzebośnica, 14 – Czarna, 15 – Soła, 16 – Wisła, 17 – Dunajec, 18 – Koprzywianka, 19 – 
Skawica, 20 – Czarna Nida, 21 – Wschodnia, 22 – Ropa, 23 – Jasiołka, 24 – Solinka, 25 – 
Osława, 26 – Stupnica, 27 – Mleczka, 28 – Łubinka, 29 – Grabinianka, 30 – Wielkopolska 

 
 
 
 

Catchments (Fig. 2) chosen for analysis are diverse in respect of analyzed 
parameters. The average annual precipitation amounted more than 1000 mm for 
the Carpathian inflows of Vistula river, and in case of other catchments it is about 
600 –800 mm (Table 1). 

 
 
 
 



34 

Table 1. Statistical summary of catchments’ characteristics 

Variable Variable description Units Min. Mean Max. 

A 
L 
 
T 
 
P 
 
I 
Hme 
 
LU1 

LU2 

LU3 

LU4 

S1 

S2 

S3 

Catchment area  
Length of the watercourse 
 
Mean annual air 
temperature 
Mean annual precipitation 
 
Mean catchment slope 
Median catchment altitude 
 
Coniferous forests 
Mixed forests 
Grassland 
Arable land 
Fluvisols 
Cambisols 
Luvisols 

km2 

km 
 

°C 
 

mm 
 
– 

m a.s.l. 
 

% 
% 
% 
% 
% 
% 
% 

66.3 
8.8 

 
5.0 

 
603.8 

 
0.002 
202.0 

 
0.0 
0.0 
0.0 
7.4 
0.0 
0.0 
0.0 

472.8 
33.2 

 
7.0 

 
796.6 

 
0.022 
391.5 

 
16.0 
13.0 
8.3 
57.2 
15.6 
28.0 
17.1 

2034.0 
72.0 

 
8.0 

 
1192.6 

 
0.091 
836.0 

 
77.6 
53.1 
30.0 
87.0 
34.0 
100.0 
73.4 

 
 
 
 
 
 

Catchments with different area were also chosen, from small ones (like 
Łubinka with an area of 66.3 km2) to large ones (like Tanew – 2093 km2 or Biała 
Tarnowska – 957 km2). The mean slope is in range from 0.002 for Łęg river to 
0.091 for Biała river. In case of some catchments, cambisols and arable land 
dominates (Table 1). 

In the analysis, data of precipitation and temperature were also used for the 
meteorological station located in the area of the upper Vistula river basin (Table 2).
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Table 2. Meteorological stations used in this study 

Station Altitude Latitude Longitude 
Annopol 165 50 53 21 50 
Frampol 245 50 40 22 40 
Gorlice 439 49 40 21 10 
Jarocin 187 50 34 22 18 
Jasło 228 49 44 21 29 
Jawiszowice 265 49 58 19 08 
Kalwaria Zebrzydowska 339 49 52 19 42 
Kamesznica 821 49 36 19 04 
Kańczuga 237 49 59 22 24 
Klimontów 258 50 40 21 27 
Konieczno 256 50 48 20 03 
Kowaniec 672 49 30 20 02 
Maków Podhalański 578 49 44 19 41 
Osielec 525 49 41 19 45 
Pilzno 193 49 59 21 18 
Radomyśl Wielki 189 50 12 21 18 
Radziemice 249 50 15 20 15 
Raków 265 50 41 21 03 
Rozdziele 375 49 48 20 27 
Rudzica 272 49 51 18 53 
Rybotycze 301 49 39 22 39 
Sandomierz 217 50 41 21 42 
Skoczów 302 49 47 18 47 
Szaflary 686 49 25 20 02 
Szczawne 463 49 24 22 09 
Terka 668 49 18 22 26 
Tuchów 223 49 54 21 03 
Wadowice 257 49 52 19 30 
Zawichost 139 50 48 21 52 
Żabnica 824 49 34 19 11 
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4. Results 

To facilitate the identification of clusters, the following symbols were applied for 
the individual groups: 

• for two clusters: 2a, 2b,  
• for three clusters: 3a, 3b, 3c,  
• for four clusters: 4a, 4b, 4c, 4d, 
• for five clusters: 5a, 5b, 5c, 5d, 5e. 

As a result of classification, clusters were obtained with the catchments of 
similar values of the analyzed parameters (Fig. 3). 

 
 a) b) 

 
 
 
 
 
 
 
 
 
 

 c) d) 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Chart of the centers of the individual parameters for: a – two clusters,  
b – three clusters, c – four clusters, d – five clusters. 

 

 
Fig. 4 presents the distribution of the analyzed catchments assigned to the 

individual clusters. cluster 2a includes 19 catchments located in the northern and 
central parts of the upper Vistula river basin. These are catchments varied in terms 
of area: from middle-size catchments of approximately 160 km2 to large ones, whose 
area exceeds 800 km2. In terms of the length of the streams, this cluster (Fig. 4a) 
includes varied catchments: from 17 km in case of Czarna river to 72 km in case of 

 Cluster 4a
 Cluster 4b
 Cluster 4c
 Cluster 4dA P Hme s1 s3 LU2 LU4

Variables

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

 Cluster 5a
 Cluster 5b
 Cluster 5c
 Cluster 5d
 Cluster 5eA P Hme s1 s3 LU2 LU4

Variables

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

 cluster 2a
 cluster 2bA P Hme s1 s3 LU2 LU4

Variables

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

 Cluster 3a
 Cluster 3b
 Cluster 3cA P Hme s1 s3 LU2 LU4

Variales

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5
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Tanew river. In terms of the specific low flow discharge q95, the cathments are in 
the range from 1 to 4 dm3.s-1.km-2. The parameters according to which catchments 
were classified in this cluster are: low median altitude of the catchment, which was 
up to 380 m a.s.l., the slope of the catchment (<0.03), with luvisols soils dominant 
in the catchments, as well as the catchment use, where arable lands are dominant, 
which constitute 64% of the catchment area on average. The parameters, which had 
the greatest influence on the shaping of the specific outflow in the cluster 2a, were 
the mean catchment slope and the median catchment altitude, for which the partial 
correlation coefficient resulted in 73%. A similar partial correlation value of 70% 
for this cluster was obtained for the mean annual air temperature and luvisols. In 
the cluster 2b, 11 catchments were included (Fig. 4a), similar in terms of median 
catchment altitude (over 390 m a.s.l.), large catchment slope (over 0.02), as well as 
soil type – cambisols prevail in the area of the catchments in the cluster 2b. 
However, similarly to the cluster 2a, catchments varied in terms of area (from 66 
to 681 km2) as well as specific low flow discharge q95 (in the range from 1.78 to 
7.98 dm3.s-1km-2). The parameters, which in the cluster 2b and 3b had the greatest 
influence on the shaping of the q95 outflow, had a mean catchment slope for which 
the partial correlation coefficient was 53%.  

 

 
 

 
Fig. 4. Localization of the investigated catchments forming the clusters identified with the 
k-means method for: a – two clusters, b – three clusters, c – four clusters, d – five clusters 
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In the next step, three clusters were composed. cluster 3b (Fig. 4b) included 11 
catchments, the same that created the cluster 2b. In the cluster 3a, 14 catchments 
were included, similar in terms of precipitation (averaged at about 700 mm), 
median catchment altitude (200 m a.s.l. > Hme > 340 m a.s.l.), and with the 
domination of luvisols and arable land. These catchments were similar also in 
terms of specific low flow discharge q95 (averaged at 2 dm3.s-1km-2), and 
catchment area – compared to clusters 3b and 3c, the catchments in this cluster 
feature average areas from 154 to 755 km2. cluster 3b including the catchments 
with the smallest area, and the cluster 3c – the largest ones. Also, the streams were 
the shortest ones in this cluster (the longest ones were in case of the catchments 
in the cluster 3c). The parameter, which in the cluster 3a had the greatest influence 
on the shaping of the specific outflow, was the mean annual air temperature, for 
which the partial correlation coefficient was 74%. 
cluster 3c is composed of 5 catchments similar in terms of specific low flow 
discharge q95 (with the average of 2 dm3.s-1km-2), precipitation (750 mm on the 
average), and the largest catchment areas (> 600 km2), and stream lengths (> 40 
km). Further delineation of clusters (four – Fig. 4c and five – Fig. 4d) was not 
successful due to the creation of clusters with a small number of catchments. 
Additionally, the catchments included in the new clusters, whose analyzed 
parameters, on the basis of which the given catchment was assigning into the 
group, did not significantly differ from other clusters, e.g., the catchments in the 
clusters 4b, 4c, and 4d, as well as for the clusters 5a, 5c, and 5d featured very 
similar values of specific low flow discharge (in both cases in the range from 1 to 
4 dm3.s-1km-2), average annual precipitation (700 mm in case of the clusters 4a, 
4c, 5a, and 5c), median catchment altitude (about 260 m a.s.l. in case of clusters 
4a, 4c, 5a, 5c, and 5d) (Fig. 3c and 3d). The parameters, which in the cluster 4a 
had the greatest influence on the shaping of the specific outflow q95, were the 
coniferous forests (r = 97%). An equally high partial correlation coefficient of 
95% was obtained for the length of the watercourse and 93% for luvisols. In turn, 
for the cluster 5a, for the mean annual air temperature the particle correlation was 
76%.  

Then regression dependences were determined for selected clusters, for 
which more than 10 catchments were included (Table 3), between the specific 
discharge q95 and the individual parameters.  
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Table 3. Components of the regional regression model based on the k-means method 

cluster R2 (%) R2
adj (%) Model 

2a 87 75 
𝑞ଽହ = 6.906∗ − 0.0272 ∙  𝑆1∗ − 0.003 ∙ 𝑃 − 75.916 ∙  𝐼∗+ 0.018 ∙  𝑆3∗ + 0,017 ∙  𝐻௠௘∗ + 1.245 ∙ 𝑇∗− 0.029 ∙ 𝐿𝑈4∗ − 0.005 ∙ 𝐿𝑈2 + 0.026 ∙ 𝑆2 

2b, 3b 85 75 
 𝑞ଽହ =  27.9383 − 50.581 ∙ 𝐼 − 0.1579 ∙ 𝐿𝑈4 + 0.1681 ∙ 𝑆1− 0.0807 ∙ 𝐿𝑈2 − 0.013 ∙ 𝑃 − 0.003 ∙ 𝐴 − 0.0418∙ 𝑆2 + 0.0199 ∙ 𝐿𝑈1 − 0.0221 ∙ 𝐿 + 0.0197 ∙ 𝑇 

3a 69 59  𝑞ଽହ =  −11.1668∗ − 0.0385 ∙ 𝑆1∗ + 1.7797 ∙ 𝑇∗ + 0.0147∙ 𝑆3∗ 
4a 98 95 

𝑞ଽହ =  −12.223∗ + 0.0022 ∙ 𝑃 + 0.0912 ∙ 𝐿𝑈1∗ + 0.0841 ∙ 𝐿∗− 0.0016 ∙ 𝐴∗ + 0.0181 ∙ 𝑆3∗ + 0.834 ∙ 𝑇+ 0.0441 ∙ 𝐿𝑈3∗ + 0.0106 ∙ 𝐻௠௘∗  

5a 57 52 𝑞ଽହ =  −15.3857∗ + 2.2687 ∙ 𝑇∗ 
R2

adj denotes the goodness of fit coefficient of determination 
*Parameter statistically significant at level α=0.05 

 
 
 
 
 

The best regression model resulted in the case of the cluster 4a (R2
adj = 95%) 

– Table 3, for the level of confidence 0.05. Also, a strong adjusted coefficient of 
determination, with the value of 75%, was obtained for clusters 2a, 2b, and 3b.  

The scatter plots allow a detailed examination of the performance of 
individual catchments including the existence of outliers and a potential 
heteroscedasticity of the observations and the predictions (Laaha and Blöschl, 
2006). Overall, the relative scatter of the method (Fig. 5) corresponds well with 
the coefficient of determination in Table 3. The model fit was the best for the 
catchments closest to the diagonal line.  

In case of other clusters (with less than 10 catchments each), models of 
correlation dependence were determined between specific low flow discharge q95 
and individual independent variables. Table 4 summarizes only those correlation 
dependences whose coefficient of correlation (r) exceeded the average value  
(> 0.5). A pretty strong dependence (0.7>r>0.9) was obtained in case of the cluster 
3c, 5b, and 5d (for such variables as average precipitation, median catchment 
altitude, mean catchment slope, coniferous forests, and grassland). On the other 
hand, almost full correlation (for r>0.9) was obtained in the case of the clusters 
4b and 5c (the variables: catchment area, length of the watercourse, and fluvisols) 
and the cluster 5d in case of mean annual air temperature. 
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Fig. 5. Differences between observed and calculated q95 (dm3∙s-1∙km-2) for clusters: a – 2a, 
b – 2b, c – 3a, d – 3b, e – 4a, and f – 5a. 
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Table 4. Correlation models between q95 and each parameters 

cluster Correlation model Correlation coefficient R2 

3c q95 = 3.31 – 0.067 · S1 
q95 = 1.174 – 0.0078 · A 

-0.83 
0.78 

0.69 
0.61 

4b 

q95 = 0.54 + 0.0011 · A 
q95 = -2.57 + 0.73 · L 
q95 = 3.59 – 0.094 · S1 
q95 = 1.25 + 0.031 · LU1 
q95 = 2.69 – 0.0038 · LU3 

0.94 
0.97 

-0.98 
0.63 

-0.50 

0.88 
0.94 
0.96 
0.40 
0.25 

4c q95 = 2.72 + 42.47 · I 
q95 = 6.88 – 0.048 · LU4 

0.58 
-0.56 

0.34 
0.31 

4d 

q95 = 8.01 – 0.007 · P 
q95 = 1.29 + 0.016 · S2 
q95 = 2,.41 – 0.024 · S3 
q95 = 2.40 – 0.057 · LU1 
q95 = 1.19 + 0.029 · LU2 

-0.58 
0.51 

-0.55 
-0.64 
0.69 

0.34 
0.26 
0.30 
0.41 
0.48 

5b q95 = -5.37 + 1.16 · T 0.79 0.62 

5c 

q95 = 0.54 + 0.0011 · A 
q95 = -2.57 + 0.73 · L 
q95 = 3.59 – 0.094 · S1 
q95 = 1.25 + 0.031 · LU1 
q95 = 2.69 – 0.0038 · LU3 

0.94 
0.97 

-0.98 
0.63 

-0.50 

0.88 
0.94 
0.96 
0.40 
0.25 

5d 

q95 = 3.90 – 0.0026 · A 
q95 = -3.88 + 0.01 · P 
q95 = -11.60 + 1.97 · T 
q95 = 17.45 – 0.055 · Hme 
q95 = 3.69 – 113.0 · I 
q95 = 3.11 – 0.46 · S1 
q95 = 0.73 + 0.04 · S3 
q95 = 6.13 – 0.19 · LU1 
q95 = 2.01 + 0.13 · LU3 

-0.62 
0.88 
0.95 

-0.79 
-0.71 
-0.61 
0.60 

-0.81 
0.78 

0.38 
0.77 
0.90 
0.62 
0.50 
0.37 
0.36 
0.66 
0.61 

5e q95 = 2.72 + 42.47 · I 
q95 = 6.88 – 0.048 · LU4 

0.58 
-0.56 

0.34 
0.31 

 
 
 
 
A summary of the performance indicator statistics such as percentage bias 

(PBIAS) and the root mean sum of squares error (RMSE) for the models presented 
in this study is given in Table 5.  
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Table 5. Values of BIAS, RMSE and E for clusters obtained with the use of the k-means 
method 

cluster PBIAS [%] RMSE [dm3∙s-1∙km-2] E 

2a -22.2 0.68 0.81 
2b, 3b 9.9 0.79 0.79 

3a -6.10 0.48 0.69 
4a -1.50 0.11 0.98 
5a -6.62 0.45 0.57 

 
 
 

The highest value of PBIAS was obtained in the case of cluster 2a (Table 4). 
For clusters 2a, 3a, 4a, and 5a, the predicted values of the specific low flow 
discharge q95 were overestimated, only in case of clusters 2b and 3b, the estimated 
values were underestimated. According to Liew et al. (2007) classification, the 
models for cluster 2b, 3b, 4a, and 5a are very good, and for cluster 2a they are 
satisfactory. According to the criterion in (Pereira et al., 2016), the results 
obtained with the use of cluster analysis for almost every cluster, for which 
regional regression was made, except cluster 2a, are equal to a very good model. 
The values of the E coefficient were similar to the adjusted determination 
coefficient R2. For cluster 4a we got the highest value of E, what corresponds with 
the value of R2

adj (95%) and PBIAS (the lowest value equal -1.50), which means 
that in case of this cluster, we got the best fit of the regression model. 

5. Discussion and conclusion 

This paper discusses the regionalization of the specific low flow discharges q95 in 
chosen 30 catchments located in the in the area of upper Vistula river basin with 
use the non-hierarchical cluster analysis - the k-means method. Our research 
confirms that this method can be used for grouping of watersheds, according to 
hydrological characteristics. It is also important that this method can be a useful 
and interesting tool for low flow estimation in uncontrolled catchments. The 
positive aspect of this method is that we can determine the number of groups. 
However, when the number of clusters is too large, there is probably no training 
data in the cluster. Another disadvantage of the method is the lack of an 
unambiguous criterion on the basis of which the number of clusters can be 
determined (Lin and Chen, 2006). In the analysis, 13 physiographic and 
meteorological characteristics of catchments were also used. We started with two 
clusters and finished with five. The assumption of two clusters is too small 
number, because the given group includes catchments varied in terms of some 
parameters, for example for cluster 2a, in which the catchment areas ranged from 
about 160 km2 to more than 800 km2, while the strean length ranged from 17 km 
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to 72 km. In turn, defining four and five clusters resulted in the situation when 
they included catchments, whose analyzed parameters, on the basis of which the 
given catchment was included in the group, did not significantly differ from the 
other clusters. Additionally, these clusters featured a low number of catchments, 
e.g., clusters 4c and 5c had only 3 catchments.  

In our research, we got similar relationship to those got by Cupak (2017). In 
case of grassland, coniferous forests, median catchment altitude, mean annual air 
temperature, and eutric cambisols, the relationship had a positive character, that 
is the greater the value of each analyzed parameters, the greater the value of low 
flow is. For parameters, like mean catchment slope and fluvisols, we also got 
similar – negative relationship, which means, that the value of low flow increases 
as the value of these parameters decreases.  

We also got similar values of R2, in case of regression models got from 
cluster analyses, which are in the literature, but for hierarchical cluster analyses. 
For example in Austria, Laaha and Blöschl (2006) obtained R2 varying from 32% 
to 75% for clusters got with the use of Ward’s method between specific low flow 
discharge q95 and catchment characteristics. However, in their study, 325 
catchments were taken into research.  

In summary, the parameters which influenced the catchments grouping in 
clusters were the specific low flow discharge q95, precipitation, median catchment 
altitude, mean catchment slope, soil, and land use.  

The best fitting of the model was obtained in the case of cluster 4a, for which 
the adjusted coefficient of determination and the coefficient E rated high, at 95% 
and 0.98, respectively. The parameters, which had the greatest influence on the 
shaping of the specific outflow q95 in the cluster 4a were the coniferous forests (r 
= 97%). An equally high partial correlation coefficient of 95% was obtained for 
the length of the watercourse and 93% for luvisols. However, despite the high 
value of the obtained coefficients, optimum results (in our opinion: assigning 
individual catchments to clusters so that the given cluster includes only 
catchments most similar to each other in terms of hydrological, meteorological, 
and physiographic parameters, and definitely different from those included in the 
other catchments), was obtained in case of generation of three clusters, despite 
lower values of R2

adj (75% and 59%) and the coefficient E (0.69 and 0.79). The 
parameter, which had the greatest influence on the shaping of the specific outflow 
in the cluster 3a had the mean annual air temperature, for which the partial 
correlation coefficient was 74%, while in the cluster 3b, the parameter with the 
greatest influence was the mean catchment slope for which the partial correlation 
coefficient was 53%.  
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