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Opinion dynamics on social networks have been received considerable attentions in recent years. Never-
theless, just a few works have analyzed theoretically the condition in which a certain opinion can spread in
the whole structured population. In this paper, we propose an evolutionary game approach for a binary opinion
model to explore the conditions for an opinion’s spreading. Inspired by real-life observations, we assume that an
agent’s choice to select an opinion is not random, but is based on a score rooted from public knowledge and the
interactions with neighbors. By means of coalescing random walks, we obtain a condition in which opinion A
can be favored to spread in the weak selection limit. In particular, when individuals adjust their opinions based
solely on the public information, the vitality of opinion A depends solely on the difference of basic scores of A
and B. Furthermore, when there are no negative feedback interactions between connected individuals, we find
that opinionA can be favored if the ratio of the obtained positive feedback scores of competing opinions exceeds
a critical value. To complete our study, we perform computer simulations on fully-connected, small-world, and
scale-free networks, respectively, which support and confirm our theoretical findings.

The spreading of opinions on social networks can be
detected in several ways in modern times and to under-
stand related collective behaviors is the focus of research
interest in last decades. Several examples can be raised
ranging from political elections to fashion and marketing
which influence our daily life. Albeit the microscopic pro-
cess seems to be simple, it is still challenging to find ana-
lytical solutions. Our present theoretical approach utilizes
the fact that to change an opinion, which can be consid-
ered as a decision-making process, depends not only pub-
lic knowledge, but also on local interactions. In particular,
we introduce an evolutionary game-theoretical approach
with which an opinion update depends directly on a score.
This score is calculated both from globally reachable pub-
lic knowledge and also from restricted interactions with
neighbors. Our principal goal is to provide theoretical
conditions which ensure the spreading of opinion A in a
binary opinion model. By means of coalescing random
walks, we obtain a theoretical condition and study differ-
ent cases to identify decisive factors. When only public
information is available, the final evolutionary outcome
depends exclusively on the difference of basic scores of
binary opinions. However, when only local interactions
without negative feedbacks with neighbors are considered,
an opinion’s final diffusion depends sensitively on the ra-
tio of the obtained positive feedback scores of competing
opinions and this ratio should exceed a critical value. For
a more comprehensive study, we have checked interaction
graphs with different topologies and confirmed our theo-
retical predictions by computer simulations.
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I. INTRODUCTION

Because of its paramount importance in several social phe-
nomena, the study of opinion dynamics in structured popula-
tions has become an intensively studied research area in the
last decades [1–7]. In order to study the evolution and dif-
fusion of opinions among interacting agents, a huge variety
of mathematical models have been proposed [8–17]. In gen-
eral, these models can be divided into two main categories:
the first branch assumes discrete opinion model in which indi-
viduals take the discrete opinion values, like voter model [12],
majority rule model [13], or Sznajd model [14]. The other ap-
proach uses continuous opinion models in which continuously
distributed opinion values are considered, including Defffuant
model [15], HK model (Hegselmann-Krause model) [16, 17],
and so on.

It is worth mentioning that the above mentioned models
have provided theoretical paradigms for studying opinion dy-
namics on social networks. In a realistic world, when an in-
dividual chooses or changes a certain opinion, then it could
be the consequence of interactions with neighbors. From this
viewpoint, how to choose an opinion can be regarded as a
decision-making process with strategic interactions [18, 19].
In general this is a missing feature from previous theories,
and thus it is meaningful to characterize the microscopic pro-
cess of opinion choice in the mentioned way [20–26]. Evolu-
tionary game theory, as a powerful mathematical tool, can be
used to achieve this goal. Recently, some related efforts have
been made along this research path. For example, Di Mare
and Latora studied how to use game theory in the modeling
of opinion formations in a way to simulate the basic inter-
action mechanisms between two individuals and particularly
have shown how opinion formation can be obtained by just
changing the rules of the game [20]. Subsequently, Yang pro-
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posed a consensus model of binary opinion in the framework
of evolutionary games and studied how the necessary time to
reach a consensus state can be reduced [23]. It was found that
there exists an optimal cost-benefit ratio in the game leading
to the shortest consensus time. Furthermore, Zhou et al. intro-
duced conformity-driven teaching ability into the evolutionary
process of opinion dynamics [24]. By means of computer sim-
ulations, they found that when the teaching ability strongly de-
pends on the conformity, the consensus time can be shortened
significantly. On the other hand, Lorenzo et al. proposed a
novel model that captures the coevolution of actions and opin-
ions on social networks and considers the interplay between
the dynamics of actions and opinions. To be more specific,
each agent updates his/her opinion, depending on the opin-
ions shared by others, the actions observed on the network,
and possibly an external influence source [25]. However, the
mentioned work does not take into account the microscopic
opinion updating with strategic interactions. It is worth point-
ing out that most of previously related works are based on
computer simulations and thus far a few studies have tried an-
alytical calculations to identify the theoretical conditions of
successful opinion spreading in a structured population.

In this work, we thus would like to analyze the evolutionary
process of opinion spreading on social networks theoretically
where we integrate the evolutionary game approach. Accord-
ingly, we consider binary opinion and assume that each indi-
vidual can choose one of the two opinions A and B. When
an individual chooses an opinion, he/she can obtain a basic
score based on the available public information. Practically,
in many situations the opinion choice of individuals are also
influenced by the decisions of their neighbors or friends. We
therefore also assume that individuals can interact with each
others via pairwise interactions [27]. In particular, when an
individual interacts with a neighbor who shares the same opin-
ion, our agent receives a positive score due to a positive sup-
porting feedback effect. Otherwise, our agent gets a negative
score because of the conflicting decisions which can be imple-
mented as a negative feedback. This is a psychologically rea-
sonable assumption because the positive score received from
an interaction with akin neighbor expresses a sense of belong-
ing to the same group, and the negative score represents a
stress of nonconformity [28–31]. This argument establishes
a certain interaction of neighboring agents that can be han-
dled in the framework of a game-theoretical model [32–35].
Having considered the mentioned interactions, the final score
can be calculated which determines how an agent updates per-
sonal opinion. In general, we can say that during the evolu-
tionary process individuals will imitate neighboring opinions
which provide higher individual score for them [36].

Based on the above description, we propose an evolutionary
game-theoretical model of binary opinion on social networks
and accordingly study the evolution of binary opinion with
strategic interactions. Indeed, one crucial quantity for study-
ing evolutionary dynamics of binary opinions on networks
is the fixation probability ρA of opinion A, which means
the probability that individuals with opinion A take over the
whole structured population given that initially an individual
at a vertex is chosen randomly to have opinion A in a popu-

lation of individuals with opinion B. Furthermore, if ρA >
1/N , then opinion A is favored, which indicates that opinion
A can spread on the whole network. Hence, using evolution-
ary game theory we derive the formula of fixation probabil-
ity of opinion A by calculating coalescence times [37–40],
and obtain the condition in which opinion A can be favored
to spread in the weak selection limit. We find that whether
opinion A can diffuse or not depends on the score parame-
ters we considered and the weight values in the network struc-
ture. Particularly, when individuals only adjust their opinions
based on the basic score derived from the information of pub-
lic knowledge, we find that the success spreading of opinion
A depends solely on the difference of basic scores of A and
B. Besides, we consider a special case of our game model in
which the negative feedback effects of strategic interactions of
opinions are ignored and the two basic scores about opinion
A and B are the same for the evolution of binary opinion. In
this particular case, we find that opinion A can be favored in
the weak selection limit if the ratio of positive scores of com-
peting opinions exceeds a critical value. We finally carry out
computer simulations on fully-connected, small-world, and
scale-free networks to confirm the robustness of our theoreti-
cal predictions.

The rest of this paper is structured as follows. We first intro-
duce the basic definition and construct our model in Section
2. Then, we obtain the condition in which opinion A can be
favored to spread under weak selection and carry out simula-
tions to validate our theoretical results in Section 3. Finally,
we summarize our conclusions in Section 4.

II. MODEL

We consider a structured population of individuals with size
N . The interaction graph is represented by a weighted graph
G with edge weight ωij ≥ 0, where individuals are located on
the nodes and interactions with neighbors are linked by edges
as shown in Fig. 1(a). Here, graph G is undirected and self-
loops are not allowed. The weight of vertex i is indicated by
ωi =

∑
j∈G ωij and the total weight value of all vertices is

expressed as W =
∑
i∈G ωi =

∑
i,j∈G ωij .

During the evolutionary process, each individual will
choose between the optional opinions A and B, which are
marked as 1 and 0, respectively. In this way, a particu-
lar state of all individuals can be represented by a vector
s = (si)i∈G, where si ∈ {0, 1} denotes the opinion that indi-
vidual i chooses. When an individual chooses an opinion, we
assume that he/she can obtain a basic score about the chosen
opinion based on the information of public knowledge, which
is set as δA for opinion A and δB for opinion B. Here, the
basic score is derived from the information of public knowl-
edge. In addition, each individual with the chosen opinion can
interact with his/her neighbors via pairwise interactions [41].
Such interactions can induce some feedback scores for all in-
dividuals. To be specific, we assume that when an individ-
ual with opinion A(B) interacts with a neighbor who shares
the same opinion A(B), he/she can receive a positive score a
(d) due to the positive feedback effect. Otherwise, when an
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Fig. 1. Illustration of interaction-based opinion dynamics on weighted graphs. In panel (a), population structure is represented by a weighted
and connected graph G with edge weights ωij . In panel (b), individual i interacts with nearest neighbors and gets an edge-weighted accu-
mulated score in state s, denoted by Pi(s), which means the sum of scores obtained from each neighbor multiplied by the corresponding
edge weight. In panel (c), a new graph G′ is generated based on the graph G. The green arrow on G′ indicates that individual i imitates the
opinion of individual j. The imitation probability is pijF (i, j) for j 6= i, otherwise individual imaintains the original opinion with probability
1 −

∑
k pikF (i, k), indicated by the self-loop in the figure. In panel (d), individual i performs coalescing random walks on G′. The arrow

in panel (d) indicates that a step from i to j is taken with probability pijF (i, j). Here, coalescing random walk is a process of looking for
ancestors backward, which is dual to the neutral case in our model.

individual with opinion A(B) interacts with a neighbor hav-
ing the opposite opinion B(A), he/she gets a negative score
b (c). The score matrix for the pairwise interactions [32–35]
between two individuals can be thus described as

(A B

A a b
B c d

)
, (1)

where the a and d matrix elements are positive representing
positive feedback score values, while elements b and c are
negative because of adverse response.

After interacting with all nearest neighbors, each individual
i receives a total score fi(s), which means the sum of the basic
score and the accumulative scores from the interactions with

his/her neighbors, given as

fi(s) = siδA + (1− si)δB + Pi(s), (2)

where Pi(s) represents the accumulated score value of indi-
vidual i in state s. Here, Pi(s) means that the score value
obtained from neighbors are multiplied by the corresponding
edge weights and then summed, as illustrated in Fig. 1(b). Ac-
cordingly, Pi(s) can be written as

Pi(s) = Wπi

(
asis

(1)
i + bsi

(
1− s(1)i

))
+Wπi

(
c (1− si) s(1)i + d(1− si)

(
1− s(1)i

))
= Wπi

(
(a− b− c+ d) sis

(1)
i + (b− d)si

)
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+Wπi

(
(c− d) s

(1)
i + d

)
, (3)

where s(1)i = ΣNi=1pijsj describes the expected type of near-
est neighbors of individual i, pij = ωij/ωi represents the
probability of the step from i to j for a random walk on G,
and πi = ωi/W can be understood as the stationary proba-
bility of i in the stationary distribution of random walks on
G [40].

Furthermore, we have

fi(s) = Wπi

(
(a− b− c+ d) sis

(1)
i + (b− d)si

)
+Wπi

(
(c− d) s

(1)
i + d

)
+ siδA + (1− si)δB . (4)

Subsequently, each individual can update his/her opinion
choice based on the total score information. By following pre-
vious studies about binary opinions [23, 24], the microscopic
updating procedure of opinions on networks is governed by
the “pairwise comparison” updating in our study [41–44]. To
be specific, at each time step an individual i is randomly se-
lected from the population to imitate the opinion of a ran-
domly chosen neighbor j with probability F (si, sj), given as

F (si, sj) =
1

1 + exp[−β(fj(s)− fi(s))]
, (5)

where β denotes the intensity of selection. For β → 0, the
selection is weak [45, 46], which means that the score value is
only a small perturbation to the neutral drift that is a baseline
at β = 0 [47]. In contrast, for β → +∞ limit the selection
is strong in the sense that individual i will deterministically
imitate the opinion of his/her neighbors with higher score val-
ues [48–51]. In this paper, we consider weak selection which
is reasonable, because current score is only one of the factors
considered by individual i who makes a decision about the
opinion change.

III. RESULTS

Based on the above description, we can consider the evolu-
tionary process as a continuous-time Markov chain (S(t))t≥0
and call it as evolutionary Markov chain, in which state tran-
sitions occur via imitation events [40, 52]. We indicate the
imitation event that individual i randomly imitates the opin-
ion of neighboring j by j → i. Accordingly, the j → i event
occurs with probability R[j → i], given as

R[j → i] = pijF (si, sj). (6)

Hence the probability that individual i keeps the original
opinion is given as

R[i→ i] = pij(1− F (si, sj)). (7)

The evolutionary Markov chain in our model will be ab-
sorbed in one of the two states: all-A and all-B, which repre-
sents to the fixation ofA andB, respectively. Notably, the sys-
tem spends only a short intermediate time in mixed states [52].

Here, we focus on the fixation probability ρA of opinionA un-
der weak selection [40], which represents the probability that
the population state eventually reaches the absorbing state of
all-A from an initial state s0 in which there are only one indi-
vidual with opinion A and N − 1 individuals with opinion B.
We can obtain the mathematical expression of fixation prob-
ability ρA (for detailed derivations see Appendix), given as

ρA =
1

N
+ β〈D′(s)〉◦u + o(β2), (8)

where D′(s) is the first-order term of the Taylor-expansion of
D(s) at β = 0 and D(s) represents the instantaneous rate of
change in the degree-weighted frequency of opinion A from
state s. Here 〈D′(s)〉◦u is expressed as

〈D′(s)〉◦u

=
W

2
(b− d)

∑
i,j

π2
i pij

〈
s2i − sisj

〉◦
u


+
W

2
(a− b− c+ d)

∑
i,j,k

π2
i pijpik

〈
s2i sk − sisjsk

〉◦
u


+
W

2
(c− d)

∑
i,j,k

π2
i pijpik 〈sisk − sjsk〉

◦
u


+
Wd

2

∑
i,j

π2
i pij 〈si − sj〉

◦
u


+

(δA − δB)

2

∑
i,j

πipij
〈
s2i − sisj

〉◦
u

 , (9)

where

〈si〉◦u =

∫ ∞
0

E◦u [Si(t)]dt, (10)

〈sisj〉◦u =

∫ ∞
0

E◦u [Si(t)Sj(t)]dt, (11)

and

〈sisjsk〉◦u =

∫ ∞
0

E◦u [Si(t)Sj(t)Sk(t)]dt. (12)

For calculating the quantities in Eq. (9), we use the concept of
coalescence times which will be introduced in the next sub-
section.

A. Coalescing random walks

In order to calculate 〈si〉◦u, 〈sisj〉◦u, and 〈sisjsk〉◦u, we con-
sider coalescing random walks on graphs [37, 38, 40, 53]. Co-
alescing random walks on graph G are defined as a collection
of random walks, which is a process corresponding to tracing
backwards ancestors. Specifically, if individual i imitates the
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opinion of neighboring j at a certain step during the evolu-
tionary process, then individual j is called the “ancestor” of
individual i at that corresponding step.

During the evolutionary process in our model, individual i
imitates the opinion of individual j under neutral drift (β = 0)
with probability p̃ij = pij

1
1+exp[−β(fj(s)−fi(s))] = 1

2pij when
j 6= i, hence individual i keeps the original opinion with prob-
ability p̃ii = 1−

∑
j p̃ij = 1−

∑
j

1
2pij = 1

2 . Therefore a new
graph G′ can be generated based on graph G, on which self-
loops are introduced due to the possible opinion keeping by
some individuals. We can then note that for a random walk on
G′, a step from i to j is taken with probability p̃ij = 1

2pij for
j 6= i, and a step from i to i is taken with probability p̃ii = 1

2 .
Hence, the case under neutral drift in our model is dual to the
continuous-time coalescing random walks on G′ as depicted
in Fig. 1(c) and (d). Furthermore, we need to consider one-,
two-, and three-dimensional coalescing random walks on G′

to calculate the values of 〈si〉◦u, 〈sisj〉◦u, and 〈sisjsk〉◦u, re-
spectively.

B. One-dimensional coalescing random walks

For one-dimensional coalescing random walks on G′, we
assume that there is a walker X(t) where t ≥ 0, which occu-
pies an arbitrary vertex i at the initial time, i.e., X(0) = i. At
each time step, X(t) takes a random step on G′. Each step is
taken with the probability corresponding to the rate at which
the imitation event occurs in the continuous-time evolutionary
process.

As stated above, the case under neutral drift in our model
is dual to the continuous-time coalescing random walks on
G′. We thus can use the following equation to illustrate the
duality relationship: for any initial state s0 and any two types
of opinions m,n ∈ {1, 0},

P ◦s0 [Si(t) = m] = PCRWi [(s0)X(t) = m], (13)

where P ◦s0 [] denotes the probability in the neutral evolution-
ary process started from state s0, and PCRWi [] represents
the probability value in one-dimensional coalescing random
walks started from i. Eq. (13) means that in the neutral case
of evolutionary process, the probability of individual i with
type m is the same to the probability that the walker X(t)
steps to the ancestor of individual i at time t in the coalescing
random walks started from i. In other words, the type of indi-
vidual i at time t is identical to the type of his/her ancestor at
the initial state.

For a special initial state s0 satisfying (s0)l = 1 and (s0)k =
0 for all k 6= l, according to Eq. (13) we have

E◦s0 [Si(t)] = E◦s0 [Si(t) = 1] = P ◦s0 [Si(t) = 1]

= PCRWi [(s0)X(t) = 1] = PCRWi [X(t) = l],

(14)

where E◦s0 [] denotes the expectation in the neutral evolution-
ary process started from state s0.

We now define a probability distribution u over all states s,
assigning probability 1

N to the special states in which there is
only one vertex with opinion A, and probability zero to other
states. When the initial state is sampled from the probability
distribution u, according to Eq. (14) we have

E◦u [Si(t)] =
1

N

∑
l

PCRWi [X(t) = l] =
1

N
. (15)

Furthermore, we obtain 〈si〉◦u as

〈si〉◦u =

∫ ∞
0

E◦u (Si(t))dt =

∫ ∞
0

1

N
dt. (16)

C. Two-dimensional coalescing random walks

For two-dimensional coalescing random walks on G′,
we consider continuous- and discrete-time versions, respec-
tively [40]. In the continuous-time coalescing random walks,
we assume that there are two walkers (X(t), Y (t))t≥0, which
occupy arbitrarily chosen i and j vertices at the initial time,
i.e., X(0) = i and Y (0) = j. At each time step, they walk
independently until they meet for the first time (coalescence).
The first meeting time in two-dimensional coalescing random
walks on G′ is denoted by T (2)

coal. After this time, they walk
together, that is, X(t) = Y (t) for all t > T

(2)
coal. We define

PCRW(i,j) [] and ECRW(i,j) [] to respectively represent the probabil-
ities and expectations in continuous-time coalescing random
walks started from i and j.

In the discrete-time coalescing random walks, we also as-
sume that there are two walkers (X(t), Y (t))∞t=0, which oc-
cupy randomly chosen i and j vertices at the initial time, i.e.,
X(0) = i and Y (0) = j. Unlike continuous-time coalescing
random walks, at each time step if X(t) 6= Y (t), then one
of X(t) and Y (t) will be randomly chosen to make a random
step until their time of coalescing. If X(t) = Y (t), they will
take the same step at the next time step. We define P̃CRW(i,j) []

and ẼCRW(i,j) [] to respectively represent the probabilities and
expectations in discrete-time and two-dimensional coalescing
random walks on G′ started from i and j.

Obviously, it can be seen that in the continuous-time ver-
sion two steps are taken per unit time, while in the discrete-
time version one step is taken every time step. In the discrete-
time coalescing random walk started from i and j, the ex-
pected coalescence time is defined by τij = ẼCRW(i,j) [T

(2)
coal].

Due to the different numbers of steps per unit time between
the two versions, we obtain the expected coalescence time
in continuous-time coalescing random walksECRW(i,j) [T

(2)
coal] =

τij/2.
Due to the fact that the neutral drift case of our model is

dual to the continuous-time coalescing random walks on G′,
for any initial state s0 and any two types of opinions m,n ∈
{1, 0} we have

P ◦s0 [Si(t) = m,Sj(t) = n]

= PCRW(i,j) [(s0)X(t) = m, (s0)Y (t) = n], (17)
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which indicates that the types of individual i and j at time t
in the evolutionary process under neutral drift are the same to
their corresponding ancestors at the initial state.

Furthermore, we consider a special initial state s0 satisfying
(s0)l = 1 and (s0)k = 0 for all k 6= l. According to Eq. (17),
we have

E◦s0 [Si(t)Sj(t)] = P ◦s0 [Si(t) = 1, Sj(t) = 1]

= PCRW(i,j) [X(t) = Y (t) = l]

= PCRW(i,j) [T
(2)
coal < t,X(t) = l].

(18)

When the initial state is sampled from the probability distri-
bution u, we have

E◦u [Si(t)Sj(t)] =
1

N

∑
l

PCRW(i,j) [T
(2)
coal < t,X(t) = l]

=
1

N
PCRW(i,j) [T

(2)
coal < t],

(19)

where the second equality can be derived by the law of total
probability.

Based on the calculation of E◦u [Si(t)Sj(t)], we can have〈
1

N
− sisj

〉◦
u

=

∫ ∞
0

(
1

N
− E◦u [Si(t)Sj(t)]

)
dt

=
1

N

∫ ∞
0

(
1− PCRW(i,j) [T

(2)
coal < t]

)
dt

=
1

N
ECRW(i,j) [T

(2)
coal]

=
τij
2N

,

(20)

where τij/2 denotes the expected coalescence time of
continuous-time coalescing random walks.

Accordingly, we obtain the expression of 〈sisj〉◦u as

〈sisj〉◦u =

∫ ∞
0

1

N
dt− τij

2N
. (21)

The expected coalescence time τij of two-dimensional and
discrete-time coalescing random walks started from i and j
satisfies the recurrence relation [40]

τij =

{
0 i = j
1 + 1

2

∑
x∈G (p̃ixτjx + p̃jxτix) i 6= j,

(22)

where Eq. (22) is a system of
(
N
2

)
linear equations.

D. Three-dimensional coalescing random walks

Similar to the two-dimensional case, for three-dimensional
coalescing random walks on G′ we also consider continuous-
and discrete-time versions. In the continuous-time coalesc-
ing random walks, we assume that there are three walkers
(X(t), Y (t), Z(t))t≥0, which occupy randomly chosen i, j,
and k vertices at the initial time, i.e., X(0) = i, Y (0) = j,

and Z(0) = k. At each time step, they walk independently
until they meet for the first time. The first meeting time is rep-
resented by T (3)

coal. After this time, they will walk together, i.e.,
X(t) = Y (t) = Z(t) for t > T

(3)
coal. Particularly, if any two

of them meet before T (3)
coal, then the two walkers who have

met will walk together afterwards. We define PCRW(i,j,k) [] and
ECRW(i,j,k)[] to respectively denote the probabilities and expecta-
tions in the continuous-time and three-dimensional coalescing
random walks on G′ started from i, j, and k.

For discrete-time coalescing random walks, we also assume
that there are three walkers (X(t), Y (t), Z(t))∞t=0, which oc-
cupy arbitrary three i, j, and k vertices at the initial time, i.e.,
X(0) = i, Y (0) = j, and Z(0) = k. Unlike continuous-time
coalescing random walks, at each time step if X(t), Y (t), and
Z(t) occupy different vertices, one of X(t), Y (t), and Z(t)
will be randomly chosen to make a random step until their
time of coalescing. Particularly, if any two of them meet be-
fore coalescing, then these walkers stay together. Evidently, if
X(t) = Y (t) = Z(t), they all stay together in the following
time. As previously, here we define P̃CRW(i,j,k) [] and ẼCRW(i,j,k)[] to
respectively represent the probabilities and expectations in the
discrete-time and three-dimensional coalescing random walks
on G′ started from i, j, and k.

Obviously, it can be seen that in a continuous-time three-
dimensional coalescing random walk three steps are taken per
unit time, while in a discrete-time coalescing random walk
one step is taken every time. In the discrete-time version,
the expected coalescence time of three-dimensional coalesc-
ing random walks started from i, j, and k is defined by
τijk = ẼCRW(i,j,k)[T

(3)
coal]. Since the different numbers of steps

per unit time between two versions, we obtain the expected
coalescence time in continuous-time coalescing random walks
ECRW(i,j,k)[T

(3)
coal] = τijk/3.

Similarly, the three-dimensional coalescing random walks
in the continuous-time version have the same relationship
with the neutral drift case in our model as found in two-
dimensional coalescing random walks. For any initial state
s0 and any two types m,n ∈ {1, 0}, we thus have

P ◦s0 [Si(t) = m,Sj(t) = n, Sk(t) = m]

= PCRW(i,j,k) [(s0)X(t) = m, (s0)Y (t) = n, (s0)Z(t) = m],

(23)

which indicates that the types of individual i, j, and k at time
t in the evolutionary process under neutral drift are the same
to their corresponding ancestors at the initial state.

For a special initial state s0 satisfying (s0)l = 1 and (s0)k =
0 for all k 6= l, we have

E◦s0 [Si(t)Sj(t)Sk(t)] = PCRW(i,j,k) [X(t) = Y (t) = Z(t) = l]

= PCRW(i,j,k) [T
(3)
coal < t,X(t) = l].

(24)

If the initial state is chosen from u, according to Eq. (24) we
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obtain

E◦u [Si(t)Sj(t)Sk(t)] =
1

N

∑
l

PCRW(i,j,k) [T
(3)
coal < t,X(t) = l]

=
1

N
PCRW(i,j,k) [T

(3)
coal < t].

(25)

Based on the calculation ofE◦u [Si(t)Sj(t)Sk(t)], we can have

〈
1

N
− sisjsk

〉◦
u

=

∫ ∞
0

(
1

N
− E◦u [Si(t)Sj(t)Sk(t)]

)
dt

=
1

N

∫ ∞
0

(
1− PCRW(i,j,k) [T

(3)
coal < t]

)
dt

=
1

N
ECRW(i,j,k)[T

(3)
coal]

=
τijk
3N

.

(26)

Accordingly we obtain the mathematical expression of
〈sisjsk〉◦u as

〈sisjsk〉◦u =

∫ ∞
0

1

N
dt− τijk

3N
. (27)

The expected coalescence time τijk of discrete-time and
three-dimensional coalescing random walks started from
i, j, k satisfies the recurrence relation

τijk =

0 i = j 6= k

1 + 1
3

∑
x∈G (2p̃ixτxxk + p̃kxτiix) i 6= j = k

1 + 1
3

∑
x∈G (p̃ixτxjj + 2p̃jxτixx) i 6= j = k

1 + 1
3

∑
x∈G (p̃jxτixi + 2p̃kxτxjx) i = k 6= j

1 + 1
3

∑
x∈G (p̃ixτxjk + p̃jxτixk + p̃kxτ ijx) i 6= j 6= k,

(28)

where Eq. (28) is a system of
(
N
3

)
linear equations.

E. Condition for ρA > 1
N

Applying Eqs. (9), (16), (21), and (27), we obtain the fixa-
tion probability of opinion A under weak selection as

ρA =
1

N
+ β〈D′(s)〉◦u + o(β2), (29)

where

〈D′(s)〉◦u

=
W

2
(a− b− c+ d)

∑
i,j,k

π2
i pijpik

τijk − τiik
3N

+
W

2
(b− d)

∑
i,j

π2
i pij

τij
2N

+
W

2
(c− d)

∑
i,j,k

π2
i pijpik

τjk − τik
2N

+
(δA − δB)

2

∑
i,j

πipij
τij
2N

.

(30)

Hence opinionA is favored to spread under weak selection,
if and only if ρA > 1

N , i.e.,

〈D′(s)〉◦u > 0. (31)

F. Theoretical results for representative cases

In this subsection, we consider three special but represen-
tative cases. For each case, we aim to derive the condition in
which opinion A is favored in the weak selection limit.

Case I: We consider that individuals adjust their opinions
only according to the basic evaluation score derived from the
information of public knowledge. In other words, the positive
and negative feedback scores from pairwise interactions are
all zero, i.e., a = b = c = d = 0. In this case, we find that
opinion A is favored under weak selection if and only if

〈D′(s)〉◦u =
(δA − δB)

2

∑
i,j

πipij
τij
2N

> 0. (32)

It can be seen that since
∑
i,j πipij

τij
2N > 0, thus whether

opinion A can be favored to spread or not depends entirely
on the difference of basic scores of A and B. To be specific,
opinion A is favored if and only if δA > δB .

Case II: We consider that δA = δB and b = c = 0. In this
case, individuals adjust their opinion mainly based on the pos-
itive feedback scores. Accordingly, we can obtain the mathe-
matical condition in which opinion A is favored, given as
a

d
> (

a

d
)∗

=
3
∑
i,j π

2
i pijτij + 3

∑
i,j,k π

2
i pijpik(τjk − τik)

2
∑
i,j,k π

2
i pijpik(τijk − τiik)

− 1,

(33)

which implies that when the ratio of the obtained positive
scores of competing opinions exceeds the critical value (ad )∗,
opinion A is favored.

Case III: We consider the donation game for our model and
then the payoff matrix of donation game is given as

( A B

A b− c −c
B b 0

)
, (34)
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Furthermore, when δA = δB , we find that opinion A is fa-
vored under weak selection if and only if

b

c
>

∑
i,j π

2
i pijτij∑

i,j,k π
2
i pijpik(τjk − τik)

. (35)

In this special case, we find that our prediction is consistent
with the finding in Ref. [40], which verifies the effectiveness
of our theoretical analysis.

G. Simulation results

In this subsection, to verify our theoretical results derived
from Eq. (33), we carry out Monte Carlo simulations on three
representative network structures including fully-connected,
NW small-world [54], and BA scale-free networks [55]. All
simulation results are obtained by performing the pairwise
comparison updating rule. To reach the expected accuracy,
we average the results over 104 independent runs for a spe-
cific structure. In each simulation run, all individuals initially
choose opinion B, except a randomly chosen individual who
chooses opinion A. The fixation probability is approximated
as the fraction of Monte Carlo simulation runs which eventu-
ate in all-A state. In Fig. 2, we show the fixation probability
multiplied by the system size N as a function of the ratio a/d
for the three representative graphs. We find that the fixation
probability of A is close to 1/N to the greatest extent when
a/d reaches the theoretical critical value (a/d)∗ indicated by
the green dashed vertical line. When the ratio exceeds (a/d)∗,
the fixation probability is larger than 1/N , which means that
A is favored to spread under weak selection. From Fig. 2, we
can see that all simulation results are in good agreement with
our numerical results obtained from Eq. (33).

IV. CONCLUSION

Our basic motivation in this work is to provide a theoretical
framework for an opinion dynamics model where the micro-
scopic rule of opinion update is based on a score value which
is rooted from public knowledge about competing opinions
and also depends on the interactions with neighbors. Accord-
ing to the obtained total score, each agent in the population
can adjust individual opinion during the evolutionary process.
Importantly, we have studied the opinion dynamics on any
network structures in the framework of our model. By means
of theoretical analysis, we have derived a mathematical ex-
pression of fixation probability of opinion A and further ob-
tained the condition in which opinionA is favored under weak
selection. We find that whether opinionA is favored or not de-
pends sensitively on the score parameters and weight param-
eters of the network structure. In particular, when individuals
adjust their opinions based only on the basic score, the diffu-
sion of opinion A depends on the difference of basic scores of
opinion A and B. In addition, we consider a special case in
which the negative feedback effects of strategic interactions of
opinions are ignored and find that there exists a critical value

of the ratio a/d feedback parameters above which opinion A
is favored under weak selection. Interestingly, the value of this
critical ratio is related to the geometry of interaction graph and
predicts the smallest value for strongly heterogeneous scale-
free networks. To complete our study, we also carry out com-
puter simulations where we use the above specified interaction
graphs. These simulation data are in good agreement with our
theoretical predictions and confirm the robustness of our find-
ings. We hope that our work will contribute to a deeper under-
standing of different spreading process on complex networks
[56–60].

In this study, we do not consider the issue of fixation time.
Indeed, beside the fixation probability, the fixation time de-
picting the average time until the fixation occurs is another
important quantity for studying evolutionary dynamics of bi-
nary opinions on social networks. In the framework of evo-
lutionary games on graphs, some previous work have studied
the fixation time of competing strategies on graphs [61–66].
For a future study it could be a promising extension to inves-
tigate the fixation time based on the theoretical approaches
from evolutionary games on graphs.

APPENDIX

In the following, we mainly carry out the derivation of the
fixation probability of opinion A. In order to describe the dis-
tribution of opinion A in the population in state s, we define
the degree-weighted frequency of opinion A as

ŝ =
∑
i∈G

πisi. (A1)

The degree-weighted frequency of A at time T can be de-
noted by a random variable Ŝ(T ), given as

Ŝ(T ) =
∑
i∈G

πiSi(T ). (A2)

The weighting πi in Eq. (A2) can be regraded as the repro-
ductive value of vertex i in evolutionary game theory, which
quantifies the fixation probability of opinion A under neutral
drift [67–70].

We consider the evolutionary Markov chain started from
arbitrary initial state S(0) = s0 ∈ {0, 1}G. According to
the Fundamental Theorem of Calculus [40], the expectation
of degree-weighted frequency Es0 [Ŝ(T )] satisfies

Es0 [Ŝ(T )] = ŝ0 +

∫ T

0

d

dt
Es0 [Ŝ(t)]dt. (A3)

As stated above, the evolutionary Markov chain will be ab-
sorbed in the fixation states, all-A or all-B, for any given
initial state. Thus, in the limit T → ∞ the expectation of
degree-weighted frequencyEs0 [Ŝ(T )] is equivalent to the fix-
ation probability of type A, that is,

ρs0 = ŝ0 +

∫ ∞
0

d

dt
Es0 [Ŝ(t)]dt. (A4)
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Fig. 2. The value of fixation probability ρA multiplied by the system size N as a function of the ratio a/d for three representative graphs,
including complete graph in panel (a), small-world networks with the initial number of neighbors k = 8 and edge creation probability p = 0.4
in panel (b), and scale-free networks with initial number of nodes m0 = 3 and linking number m = 3 in panel (c). The network size is all set
to N = 50 and all edge weight values are set to 1. Simulation results are represented by black solid circles and all green vertical dashed lines
indicate the critical value (a/d)∗ obtained from Eq. (33). When the a/d value is larger than (a/d)∗, opinion A is favored. Parameters are:
δA = δB and b = c = 0.

In the following part, we will focus on the calculation of
ρs0 . The crucial part is the integrand in Eq. (A4). There-
fore, a state function D(s) is defined in this section, which
describes the expected instantaneous rate of change about
degree-weighted frequency of opinion A in state s, exactly
corresponding to the differential in the integrand. D(s) satis-
fies

E[Ŝ(t+ ε)− Ŝ(t) | S(t) = s] = D(s)ε+ o(ε) (ε→ 0+).
(A5)

Substituting Eq. (A5) into Eq. (A4), we obtain

ρs0 = ŝ0 +

∫ ∞
0

Es0 [D(S(t))]dt. (A6)

Note that it is challenging to compute ρs0 exactly for arbi-
trary s0. Therefore we here concentrate on the effects of weak
selection on the fixation probability, meaning that β → 0. In
order to derive the fixation probability ρs0 under weak selec-
tion, i.e., the first order in β as β → 0+, we write the Taylor
series expansion of D(s) in β when β → 0 as

D(s) = D◦(s) + βD′(s) + o(β2)

= βD′(s) + o(β2),
(A7)

where D◦(s) denotes the value of D(s) under neutral drift
(β = 0). Here, the superscript ◦ is used to denote the case of
neutral drift. We will show that D◦(s) = 0 for all s ∈ {0, 1}G
under the pairwise comparison updating in the following part.

The expansion of integrand in Eq. (A6) can be written as

Es0 [D(S(t))] =
∑

s

Ps0 [S(t) = s]D(s)

= β
∑

s

P ◦s0 [S(t) = s]D′(s) + o(β2)

= βE◦s0 [D′(S(t))] + o(β2).

(A8)

Substituting Eq. (A8) into Eq. (A6), we obtain the formula of
fixation probability under weak selection as

ρs0 = ŝ0 + β

∫ ∞
0

E◦s0 [D′(S(t)]dt+ o(β2). (A9)

For convenience, we define a new operator 〈〉◦s0 to abbreviate
the expression of fixed probability. Given any initial state s0,
for any function g(s) of state s we have

〈g〉◦s0 =

∫ ∞
0

E◦s0 [g(S(t))]dt. (A10)

Hence Eq. (A9) is abbreviated as

ρs0 = ŝ0 + β〈D′〉◦s0 + o(β2). (A11)

In order to derive the formula of fixation probability ρs0 , we
have to calculate the expected instantaneous rate of the change
in degree-weighted frequency D(s) for state s in the weak
selection limit. If the imitation event that individual i im-
itates the opinion of his/her neighbor j occurs, the degree-
weighted frequency ŝ will be changed by πi(sj − si). There-
fore, the expected instantaneous rate of degree-weighted fre-
quency change from state s is given by

D(s) =∑
i

πi

−si +
∑
j

pijF (si, sj)sj +

1−
∑
j

pijF (si, sj)

 si


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=
∑
i

πi

∑
j

pijF (si, sj)sj −

∑
j

pijF (si, sj)

 si


=
∑
i

πi

∑
j

pijF (si, sj)(sj − si)


=
∑
i

πi

∑
j

pij(sj − si)

(1

2
− β

4
(fi (s)− fj(s))

)
+ o(β2)

=
∑
i

∑
j

πipijsj

(
1

2
− β

4
(fi(s)− fj(s))

)

−
∑
i

∑
j

πipijsi

(
1

2
− β

4
(fi(s)− fj(s))

)
+ o(β2)

=
1

2

∑
i

∑
j

πipijsj −
∑
i

∑
j

πipijsi


+
β

4

∑
i

∑
j

πipijsi (fi(s)− fj(s))

− β

4

∑
i

∑
j

πipijsj (fi(s)− fj(s)) + o(β2)

=
β

4

∑
i

∑
j

πipijsi (fi(s)− fj(s))

+
β

4

∑
i

∑
j

πjpjisj (fj(s)− fi(s)) + o(β2)

=
β

2

(∑
i

πisi

(
fi(s)− f (1)i (s)

))
+ o(β2) .

(A12)

Eq. (A12) implies D◦(s) = 0 for all states s and here the
superscript ◦ denotes the case of neutral drift β = 0. It can be
seen that D(s) is related to the total score of individual i and
that of his/her one-step neighbor.

According to Eq. (A7), we have

D′(s) =
1

2

(∑
i

πisi(fi(s)− f (1)i (s))

)
. (A13)

Since the expected total score of the one-step neighbor of
individual i is given by

f
(1)
i (s) =

∑
j

pijfj(s)

= W
∑
j

pijπj

(
(a− b− c+ d) sjs

(1)
j + (b− d)sj

)
+W

∑
j

pijπj

(
(c− d) s

(1)
j + d

)
+
∑
j

pijsjδA +
∑
j

pij(1− sj)δB ,

(A14)

by substituting Eq. (A14) into Eq. (A13) we have

D′(s) =
1

2

(∑
i

πisi

(
fi(s)− f (1)i (s)

))

=
W

2
(a− b− c+ d)

∑
i

π2
i s

2
i s

(1)
i −

∑
i

∑
j

πiπjpijsisjs
(1)
j


+
W

2
(b− d)

∑
i

π2
i s

2
i −

∑
i

∑
j

πiπjpijsisj


+
W

2
(c− d)

∑
i

π2
i sis

(1)
i −

∑
i

∑
j

πiπjpijsis
(1)
j


+
Wd

2

∑
i

π2
i si −

∑
i

∑
j

πiπjpijsi


+

(δA − δB)

2

∑
i

πis
2
i −

∑
i

∑
j

πipijsisj

 . (A15)

Since random walks have the reversibility property for each
i, j ∈ G and πipij = πjpji, we have

D′(s) =
1

2

(∑
i

πisi

(
fi(s)− f (1)i (s)

))

=
W

2
(a− b− c+ d)

∑
i

π2
i s

2
i s

(1)
i −

∑
i

∑
j

π2
i pijsisjs

(1)
i


+
W

2
(b− d)

∑
i

π2
i s

2
i −

∑
i

∑
j

π2
i pijsisj


+
W

2
(c− d)

∑
i

π2
i sis

(1)
i −

∑
i

∑
j

π2
i pijsjs

(1)
i


+
Wd

2

∑
i

π2
i si −

∑
i

∑
j

π2
i pijsj


+

(δA − δB)

2

∑
i

πis
2
i −

∑
i

∑
j

πipijsisj

 , (A16)

where s
(1)
i =

∑
k piksk denotes the expected type of the

neighbor of individual i. Hence

D′(s) =
1

2

∑
i,j,k

πisi

(
fi(s)− f (1)i (s)

)
=
W

2
(a− b− c+ d)

∑
i,j,k

π2
i pijpik

(
s2i sk − sisjsk

)
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+
W

2
(b− d)

∑
i,j

π2
i pij

(
s2i − sisj

)
+
W

2
(c− d)

∑
i,j,k

π2
i pijpik (sisk − sjsk)


+
Wd

2

∑
i,j

π2
i pij (si − sj)


+

(δA − δB)

2

∑
i,j

πipij
(
s2i − sisj

) . (A17)

Accordingly, the fixation probability of A is given by

ρs0 = ŝ0 + β〈D′〉◦s0 + o(β2). (A18)

We have obtained ρs0 for any initial state s0. Here we con-
centrate on the initial state where there is only one individual
choosing A in the population. We mainly compute the fix-
ation probability for such a special initial state s0 in which
si = 1 and sj = 0 for all j 6= i. Let u be the probability dis-
tribution over all states s, assigning probability 1

N to states in
which there is only one vertex with opinion A, and probabil-
ity zero to all other states. Hence, when the initial state s0 of
the evolutionary Markov chain is sampled from u, the fixation
probability of opinion A is given as

ρA =
1

N
+ β〈D′〉◦u + o(β2), (A19)

where

〈D′(s)〉◦u

=
W

2
(a− b− c+ d)

∑
i,j,k

π2
i pijpik

〈
s2i sk − sisjsk

〉◦
u


+
W

2
(b− d)

∑
i,j

π2
i pij

〈
s2i − sisj

〉◦
u



+
W

2
(c− d)

∑
i,j,k

π2
i pijpik 〈sisk − sjsk〉

◦
u


+
Wd

2

∑
i,j

π2
i pij 〈si − sj〉

◦
u


+

(δA − δB)

2

∑
i,j

πipij
〈
s2i − sisj

〉◦
u

 . (A20)

Here

〈si〉◦u =

∫ ∞
0

E◦u [Si(t)]dt, (A21)

〈sisj〉◦u =

∫ ∞
0

E◦u [Si(t)Sj(t)]dt, (A22)

and

〈sisjsk〉◦u =

∫ ∞
0

E◦u [Si(t)Sj(t)Sk(t)]dt, (A23)

where the subscript u is used to denote the expectation of
a quantity, when the initial state of the evolutionary Markov
chain is sampled from u.
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