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Az OTKA téma keretében végzett kutatdsokat az aldbbi pontok foglaljik tssze.

e A mikropoldris testek alakviltozasi és fesziiltségi dllapotanak szamitdasdra egy haromdi-
menzios végeselemes eljarast dolgoztunk ki, 20 csomépontos izopareméteres elemek
felhasznéldsaval. Az elem csomodpontjaiban 3 elmozduléds és hdrom (az elmozdulés-
mez6tol fiiggetlen) forgds koordindta van értelmezve. A végeselemes programban az
Eringen-féle mikropoldris test leiré egyenletei keriiltek beépitésre. A linedrisan ru-
galmas modellt kiterjesztettiik a kis rugalmas-képlékeny alakvéltozasi tartomanyba.
A mikropoldris testre vonatkozé rugalmas torzitdsi energia alapjan médositottuk a
Mises-féle képlékenységi feltételt. Az egyenértékii fesziiltség szdamitdsdra vonatkozo
Osszefiiggés a fesziiltség tenzor mellett a fesziiltségpdr tenzort is tartalmazza. Ezt
roviden az aldbbi egyenletek foglaljdk 6ssze (Gombos, Szabs [2,4,3-w]):
a mddositott Mises-féle képlékenyséqgi feltétel:

F(t,m,R(a)) = \/Q_JQ_R(O‘) <0
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Itt sg, s4, mys és my, a devidtoros fesziiltségi és fesziiltségpar tenzor szimmetrikus

és ferdén szimmetrikus része, N, [; és [, mikropoldris anyagparaméterek, R (o) kemé-

nyedési fiiggvény.
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e A rugalmas-képlékeny konstitutiv egyenlet integraldsara rugalmas-idedlisan képlékeny
anyagmodell esetén analitikus megoldast allitottunk eld. Keményedo esetben a prog-
ramba a "Return mapping" eljardst épitettiik be. Mindkét eljardshoz kidolgoztuk a
konzisztens érintd méatrixot( Gombos,Szabd[2,4,2-w,3-w,5-w]).

e Kétdimenzids rugalmassagtani feldatok megolddsdra a meshless eljardson alapuld
programot dolgoztunk ki. A programot Kkiterjesztettiik a peridynamikus modell
szdmitdsara is( Ladanyi [5,6,7]).

o Egy kristdlyok véges alakvaltozdsdnak szamitasara kiillonbozo algoritmusokat dolgoz-
tunk ki. A teljes konstitutiv egyenletrendszerben a rugalmas alakvaltozést leiré
modelleket kiilon vizsgéltuk kiilonb6zo6 hiper és hipoelasztikus anyagmodellek alapjén.
Egy és két csuszdsi rendszert tartalmazoé nyirdsi feladaton sszehasonlité szédmita-
sok torténtek. Az eredmények alapjén jol koriilhatarolhaté az az alakvéltozasi tar-
tomédny, ahol mar jelent6séggel birnak a rugalmas modellek.(Kossa,Szabd[1,3])
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o A klasszikus Prandtl-Reuss elmélet konstitutiv egyenletének integraldsara analitikus
eljarast dolgoztunk ki linedrisan izotrop keményedési modell esetén. A megoldds az
"incomplete Beta" fiiggvények alkalmazédsén alapul(Szabd[1-w]).

e Az izotrop modellre kidolgozott eljdrdst tovdabbfejlesztettiik a kombindlt izotrop-
kinematikai modellre. Mivel szdmos végeselemes program az egytengelyti fesziiltség-
képlékeny alakvaltozds gorbét linedris szegmensekbol épiti fel, ezért a javasolt egzakt

integralasi eljards a gyakorlati alkalmazds szemponjabdl nagy jelentéséggel bir (Kossa,
Szabd [4-w,6-w]).
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COMPUTATIONAL ASPECTS OF MICROPOLAR ELASTOPLASTICITY

A. Gombos, L. Szabé
Department of Applied Mechanics, Budapest University of Technology and Economics,
Budapest, Hungary

1. Introduction

The micropolar continuum model have been fairly extensively analysed in the last decad.
The Cosserat theory have been employed to the Jo-flow theory by de Borst [2], Willam at el. [6],
and to the deformation theory by Miilhaus and Vardoulakis {5] in two dimensional range at small
deformation. A more general elastoplastic micropolar models in the large deformation range
developed by Forest [3] and Grammenoudis and Tsakmakis [4]. However, despite considerable
theoretical and computational contributions made in the computational analysis of micropolar
continua, many questions are still unanswered and useful formulations similar to the classical
continuum plasticity are not available in the literature.

The purpose of this paper is to develop a stress updating algorithm to elastoplastic micro-
polar solid, and to derive the corresponding consistent (algorithmic) tangent operator to three
dimensional case at small deformation. The elastic part of the constitutive model is based on
the Eringen’s [1] micropolar theory, and the plastic part is defined by an extended Mises-type
flow theory of plasticity. The yield function considered in this work is obtained by a consistent
derivation of distortion strain energy, so it represents by the deviatoric parts of the stress and
the couple stress. In addition, in the case of perfect plasticity an analytical solution of time
integration of the constitutive equation is presented.

2. Constitutive relations for micropolar solids

The kinematic equations for micropolar continuum at small deformation are of the form
(Eringen [1]): € = gradTu + (e- ¢)T, ~ = grad ¢, where u is the displacement vector, ¢ is the
microrotation vector, € and - are the strain measures.

The rate form of the elastic-plastic constitutive equations in the case of small deformation

can be summarized as

: . . . . . . 6f . 8f .
— A® - P T - Re- p P — = P — -
(1) t=A°:(¢-¢"), m'=B:(¥-%"), ¢ 5 )\a 7 @ =Ah(t,m);

where t is the stress, m is the couple stress tensor, A is the plastic multiplier, « is a hardening
parameter, and A¢ and B¢ are the fourth-order elastic constitutive moduli.
The extended form of the von Mises yield condition takes the form

(2) F(t,m,k(a)) = /2J5(t,m) — \/gn (@) <0,

where the function « (c) defines the hardening law, and J>(t, m) defined as

1 2u+ kK 20+
(3) Jg(t,m)=§<55:ss+u—n——zsA:sA+ H

K 2u+k
Mg : Mgs —

B+ B -

Here p, ks, Band « are the micropolar material parameters, and sg,s4, Mgs and mg, are the
symmetric and skew-symmetric parts of the stress and couple stress, respectively.

mgy : mdA) .
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3. Stress updating algorithm and consistent tangent operator

In this work, the implicit backward Euler method is employed to determine the updated
stress and plastic state variables. In the strain driven problem, the Newton-Raphson iteration
privides the strains €,.; and <y, values which use to define the stress and couple stress at
stepn+1 as

of
m7 ’

n+1

Tia e 8 rial\ T e
(4) to1= tiie — ANA :6—{ m?, = (m¥9)" — AXB®:
n+1

where t¥7i% and mire are the so-called trial stress and couple stress, respectively. The set
of equations (4) with the yield condition Fri1(tny1,Myt1, & (0tni1)) = 0 a set of nonlinear
equation in terms of values t,.y, m,; and AX which is effectively solved by a local Newton
iterative procedures.

The consistent tangent operator is essential to preserve the quadratic rate of asymptotic
convergence of global Newton-Raphson iteration. To derive this quantity, we use the standard

method, and by linearizing the algorithm considered above we obtained the formulas
(5) dt = A% : dAe — CP : dAvy, dm® = B?:dAvy — CPT : dAe,

where the consistent tangent moduli, A?, B% and C% are expressed in explicit form.

The algorithm and the consistent tangent operator has been implemented in a finite element
code based on 20-noded solid element type. Some numerical examples are presented that
demonstrate the capability and accuracy of the proposed algorithm.

In the case of non-hardening micropolar plasticity a closed-form solution is given to the time
integration of the constitutive equations with constant strain rate assumption. This analytical
solution will serves as a reference for the numerical solutions. The errors in stress and couple
stress predictions are analysed for the radial return and the tangent predictor-radial return
methods.
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USING LOGARITHMIC STRESS RATE IN COMPUTATIONAL SINGLE CRYSTAL
ELASTOPLASTICITY

A. Kossa, L. Szabo
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1. Introduction

In crystal plasticity at finite strain the constitutive relations usually is expressed in terms of
the relation between an objective stress rate and the rate of deformation. In most cases the elastic
part of the constitutive equation is a spatial hypoelastic rate equation [1],[4],[5].

This paper presents a constitutive model of single crystal elastoplasticity. The hypoelastic
relation implemented in this model based on the logarithmic stress rate, and its integrated form
associated with Hencky’s hyperelastic relation [6],{7]. In addition, a numerical algorithms for the
proposed model is also presented. Some numerical results illustrate the capability and performance
of the present model in modelling large elastoplastic deformation of single crystal.

2. Kinematics of single crystals at finite deformation

In crystal plasticity the total deformation gradient F can be written in the form F = F'F?,
where F” is the plastic deformation solely due to plastic shearing on crystallographic slip systems
and F" is a non-plastic deformation gradient which contain the stretching and rotation of the crystal
lattice. In the reference configuration s and m{ are an unit vector along a slip direction and an

unit normal of a slip plane, respectively, of the a-th slip system. The Eulerian velocity gradient may
be decomposed into a part due to slip-induced plastic deformation, and a part due to elastic
deformation, as follows:

) 1=FF' =F'F' +FFF'F" =1 + FI’F"'
Because of the plastic deformation leaves the lattice structure unaffected, therefore s; and

m. are transformed by only the elastic part of the deformation gradient: s, =F's] and

o

m, = (F )-T m. . In view of this fact, the plastic part of velocity gradient due to crystallographic slip

may be expressed by
) P =FF"'=> i @m=)7Z,.
a=l a=1

The plastic velocity gradient can be resolved uniquely into two parts. The symmetric part d°
is the plastic part of the rate of deformation, and the skew-symmetric part w” is the plastic part of
vorticity:

@) & =3 N, , and w’ = 3 §°Y, , where N, =(Z,+Z1), Y, =4(Z, - ZI).
o=1 o=1

The yield function for the o-th slip system is defined of the form
(4) ¢a(ra)=’ra—‘c¥’
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where 1, is the Schmid resolved stress in the a-th slip system:
) 1, =8, Tm, =1:7Z,.

t n
1, 18 the resolved yield stress, which is a given function of the accumulated slip I" = IZ vedt .
0 a=1
Using logarithmic stress-rate in the elastic part of the deformation, we obtain the following
hyperelastic constitutive relation [6],[7]:

6) T =0 d = T=0°:N,

where @° is the fourth rank tensor of elastic moduli, and h' =Inb’ =1n(F'F‘T) is the spatial

logarithmic strain (Hencky-strain), calculated from the elastic part of the deformation gradient.

3. Numerical method

The numerical framework in rate-independent context is based on the implicit approximation
to the inelastic flow equation. The differential equation (2) can be numerically integrated in an
implicit fashion with use of the tensor exponential [2],[3]:

0 oo Terzm o B, -RE oo -Sarz),
a=i a=1
where Ay® is the plastic slip increment in the time interval [t,,t,,,]. The accumulated slip variable

n

is update by the formula: T, =T, +ZAy“. The incremental plastic slip must satisfy the
a=1

incremental plastic consistency criterion:

®) P (Ta,n—H » Ty (rn+l )) <0, Ay* 20, #* (Tu,nﬂ > Ty (rn+l ))A‘YﬂL =0

for all a. The stress update procedure requires the solution of the above non-linear system.
Dlustrative examples will be presented to demonstrate the performance of the proposed formulation.
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Summary. The goal of this paper is to present a constitutive relations in single crytal plasticity using
logarithmic stress-rate. This equation is composed of fourth-order elastic-plastic tangent tensor, and the rate of
deformation tensor and objective corotational rate of Kirchhoff stress tensor. In addition elastic-plastic relations
are derived for other objective corotational stress-rates. A comparative numerical study of derived models is
presented by using symbolic mathematical software MAPLE, and finite element program ABAQUS.

1 INTRODUCTION

In crystal plasticity at finite strain the constitutive equation usually is expressed in terms of the relation between
a corotational stress rate and the rate of deformation. In most cases the elastic part of the constitutive equation is
a spatial hypoelastic rate equation. In past years, studies demonstrated that in all spatial hypoelastic rate
equations only the one based on the logarithmic stress rate is consistent with elasticity [3]. This favorable
property can be use in elastic constitutive relation of single crystal plasticity. This paper presents a general
elastic-plastic consitutive equation for various corotational stress rates, including logarithmic stress rate. Finally
numerical comparisons are presented, using ABAQUS UMAT subroutine and MAPLE symbolic mathematical
software.

2 CONSTITUTIVE RELATIONS IN SINGLE CRYSTAL ELASTOPLASTICITY

In crystal plasticity the total deformation gradient F, can be divided into a non-plastic deformation gradient F",
and a plastic deformation gradient F", as follows: F=FF’. The velocity gradient L in the current
configuration can be calculated by the following equation: L=FF"' =L +L° =d" +w +d” +w", where d”

and wP are plastic deformation rate and plastic vorticity, respectively, due to dislocation slip, and d* and w’
are the non-plastic deformation rate and non-plastic spin due to the crystal lattice deformation and rotation. The
vector s, in the slip direction of the « th slip system at the current state is defined in the following way:

s, =F's’. To keep vector m, normal to the slip plane, the following relation has to be introduced:

a

m, =m_F . The time-rate-of-change of the vectors s, and m, which define the current direction of the & th

slip on the slip plane of normal m, are defined by §, = L*sa ,and m, = -L7 m_ , respectively. The plastic parts

of the rate of deformation and vorticity become
d” =y“N,,and w" =y7Y , (2.1

where N, =2(s, ®m_+m,_ ®s,),and Y, =1(s, ®m, —m, ®s,_).

2.1 Elastic constitutive relations

The elastic constitutive relations by using objective corotational stress-rate is defined by:

*

-9 d, 2.2)

o
where T'=T-Q'T+7TQ" is the elastic part of the objective corotational rate of Kirchhoff stress T, and Q" is

the elastic spin tensor, which can be written:
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Q' =w+ :d, (2.3)
where the expression of the fourth-order tensor .’ = .’ (FF *T) is different for each objective corotational

rate (for example in case of Jaumann-rate tensor . identical to zero).
The elastic constitutive equation, using the relations between total and elastic parts of deformation can be
written as:

T-9°:(d-70,), 24)
where @°=2° +4, O, :(@e +.,IZ)71 :[@e :N, —T(Ya +ol :Na)+(Ya ol :Na)‘r] Here & is defined
by:

(-t ):d || (-t )id|T=lid, sy =T (A =S )~ (g = ) T (25)

2.2 Elastic-plastic constitutive relations

The hardening law without non-Schmid effect is defined as 7, = haﬂj}ﬂ , where h_; is the hardening matrix,

and 7. is the critical shear strength. Using this hardening law, the equation (2.4) can be reformulated to the

widely used form of the elastic-plastic constitutive relation. A straightforward manipulation yields

T=92%:d, (2.6)
where the fourth-order elastic-plastic tangent tensor @% is defined as:
~ ~ -1 ~ ~ ~
P = [y+Gﬁ“ (2° :@,f)@Na] :[@e -G (9°:0,)®(N, :Jt)], 2.7)

where G/ = (gaﬂ )71 ;and g, =h,+N, :[(Nﬁ —Yﬁ)T—T(Nﬂ -Y, )J , and & is the the fourth-order unit

tensor, and . is defined by:
(:d)T-T(:d) =l :d, My =T, Ay — Ay T,

mj >

(2.8)
where the fourth-order tensor & = J(FFT ) is derived from the expression of spin tensor € respect to the total

deformation in the following way:
Q=w+£:d. 2.9

3 APPLICATIONS

The consitutive models presented above has been implemented in the finite element program ABAQUS through
subroutine UMAT. In possession of material parameters, numerical tests can be perform, using different
corotational rates, and the results can be compared. From this comparison, features of corotational rates will
appear, which is useful in deciding on an appropriate elastic constitutive relation in single crystal plasticity at
large deformation.
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Summary. This paper is concerned with the computational analysis of elastoplastic micropolar solids at
small deformation. A stress updating integration algorithm is derived and an explicit expression is deduced
for the consistent tangent operator. The applicability and the performance of the proposed numerical
method are illustrated by sevaral three dimensional finite element applications.

1 INTRODUCTION

The micropolar continuum model have been fairly extensively analysed in the last decad. The micropolar
theory have been employed to the J>-flow theory by de Borst [2], Willam at el. [6], and to the deformation
theory by Miilhaus and Vardoulakis [5] in two dimensional range at small deformation. A more general
elastoplastic micropolar models in the large deformation range developed by Forest [3] and Grammenoudis
and Tsakmakis [4]. However, despite considerable theoretical and computational contributions made
in the computational analysis of micropolar continua, many questions are still unanswered and useful
formulations similar to the classical continuum plasticity are not available in the literature.

The purpose of this paper is to develop a stress updating algorithm to elastoplastic micropolar solid,
and to derive the corresponding consistent (algorithmic) tangent operator to three dimensional case at
small deformation. The elastic part of the constitutive model is based on the Eringen’s [1] micropolar
theory, and the plastic part is defined by an extended flow theory of plasticity.

2 CONSTITUTIVE RELATIONS FOR MICROPOLAR SOLIDS

The kinematic equations for micropolar continuum at small deformation are of the form [1]:
e=grad’u+(e )", v=gradg, (1)

where u is the displacement vector, ¢ is the microrotation vector, € and ~ are the strain measures.
The rate form of the elastic-plastic constitutive equations in the case of small deformation can be
summarized as
. oF oF
t=A°%: (&6 —¢&P), n’ =B (F—4P), P=A—, AP=A—x, a=Mi(t,m), 2
( ), m (=" 50 =g @ (t,m), (2
where t is the stress, m is the couple stress tensor, and A¢ and B¢ are the fourth-order elastic constitutive
moduli, A is the plastic multiplier, « is the hardening parameter.
The extended form of the von Mises yield condition is defined by
L, 1 T T L,

F(t,mx (o)) = f(t,m) — 3h () = 3 (t :T:t+m :M:m ) — 3k (o) <0, (3)
where the fourth-order tensors T and M defined as (T)ijkl = % (I1+a) §a55bd+% (1—aq) 5ad5bc—%5ab55d,
(M)ijk,l = % (b1 + b2) 00clpa + % (b1 — b2) 6aadpe — %5@56(1, here a1, bjand by are the micropolar material
parameters. The yield function defined above is obtained by a consistent derivation of distortion strain
energy, so it represents by the deviatoric part of t and m.
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3 STRESS UPDATING AND CONSISTENT TANGENT OPERATOR

In this work, the implicit backward Euler method is employed to determine the updated stress and plastic
state variables. In the strain driven problem, the Newton-Raphson iteration privides the strain €,+; and
torsion «,,,; values which use to define the stress and couple stress at step n + 1 as
, ) T 0
thi1= tfﬁr‘il — AMNAC: or mz;rl: (mfﬂr‘il) — AMNB®: / (4)

: 7 ,
ot 1 om 1

where tfﬁr‘}l and mfffr‘}l are the so-called trial stress and couple stress, respectively. The set of equations

(4) with the yield condition F, 41 (t,41, m;11,k (anr1)) = 0 a set of nonlinear equation in terms of values
tn+1, my1 and AX which is effectively solved by a local Newton iterative procedures. It is important
to note that in the case of perfect plasticity or linear isotropic hardening a closed form exact solution is
possible.

The consistent tangent operator is essential to preserve the quadratic rate of asymptotic convergence
of global Newton-Raphson iteration. To derive this quantity, equation (4) is differentiated to give

. AN of
dt7l+1 = DE :dAe — dAANt, DE = (A + AAatat) s Nt = DE : a (5)
o o2 f ! of
dm},, = D,:dAy—dAMN,,, D,= <B 4 A)\amT(?mT> , N,=D,: T (6)

Using the consistency condition dF (dAX) = 0, the plastic multiplier can be expressed as dAA =

1 0 0 2 Ok (au,
7 (N, : dAe + N, : dA¥), where h = a—{ N, + anJ:T :N,, + glﬁl(an+1) Mh(tn+1,mn+l).

By combining these equations defined above, the consistent tangent relations takes the following form

1 1
{ dt ] D. - ENt ® Ny —ENt ® Ny, { dAe ] 7)
T == .
dm _%Nm ©N; D, %Nm ®N,, dA~

It should be note that the inversion in tensors D, and D, can be evaluated in a closed form.

The method is intended for use in finite element calculations that employ the micropolar plastic-
ity model in small deformation range. The algorithm and the consistent tangent operator has been
implemented in a finite element code based on 20-noded solid element type. Some full three dimen-
sional numerical examples are presented that demonstrate the capability and accuracy of the proposed
algorithm.
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Summary. One of the greatest drawback of the classical elasticity is the lack of discontinuities. The
peridynamic material model of Silling et al. can solve this problem and in other hand using this there is
no need of any additional technique to enforce the natural boundary conditions in meshless methods. In
this paper a simple example shows this second feature of peridynamic material model.

1 INTRODUCTION

The meshless methods are known as good alternatives to eliminate the disadvantages of finite element
method. For example using them the handling of discontinues are possible. One of the simplest meshless
method is the Radial Basis Functions method (RBF), but like others, it suffers from the difficulties of
enforcement of boundary conditions because meshless shape functions suffice the Kronecker condition on
the nodal points. To eliminate this problem in the last decade many solutions were born, like Lagrange-
multipliers, penalty methods [1].

In the classical theory of elasticity the main variable is the displacement. Usually, the numerical determi-
nation of this is made with approximation of the equilibrium equations, but in them only the derivatives
of displacement appear.

In 2000, Silling S. A. has introduced a new material model, the peridynamic type. Using it the problem
of natural boundary conditions and discontinous displacement field can be solved in one hand.

2 DEFINITION OF PERIDYNAMIC MATERIAL

Let € be the set on the inner points of a solid body, I';, the boundary with prescribed movement and I
the boundary with surface load.
Let X,Y € Q two points of the body, u the displacement and b the body load at the point X. By the

Figure 1: Peridynamic inner force between two points

hypothesis of peridynamic material model, during the motion, there is an £(X,Y, u(X),u(Y")) pairwise
force between X and Y (see Figure 1). As in the work of Silling and co. [2] can be found, with the
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introduction of ¢ =Y — X and n = w(Y) — u(X) variables the pairwise force function must have next
features:

f(—n,—&) = —£(n,6);£(n,&) = F(n, &) - (n + ). (1)

In case of small displacements and linear microelastic material, the function f is linear function of n and
it can be written in f(n,£) = C(§) - n form. Assuming these properties the equilibrium equation of an
inner point has new shape:

/QUD, C(§) - (u(Y) — u(X))dY — /r C(é) - u(X)dY = — /F C(€) - a(Y)dY — b(X). 2)

The (2) equation is a Fredholm-type integral equation of the second kind. The numerical solution of
these equations is possible on quite wide range of function spaces by many techniques, like collocation,
least-square or Galerkin method.

3 RADIAL BASIS SIMULATION IN THE CASE OF HOOKEAN PLANE STRESS
PROBLEMS

In present work an uniconstant Hookean material was modelled. An inner nonlocal spring was assumed
between every two point of the body with semi-Hookean behavior. The distribution theory was used to
describe this phenomena with Gaussian distribution function where [, was the characteristic length of
material. Introducing the A = £/|€| vector the kernel function of (2) was

92 81
(S Aen (3)

CX,Y)=ES"([Y — X|)- A@ A — C(X,Y) = E- —_
02

Let X; and X nodal points in Q and T, respectively. If [IV] is the matrix of radial basis functions [3]
and {U} is the vector of nodal coefficients, then from (2) integral equation and the natural boundary
conditions, an asymmetric system of collocation equations can be set.

g O (V) = N, a /

'y

C(&) - N(X;)dY{U} = {*/F C)-u(Y)dY —b(X;)} (4)
[N(Xp)H{U} ={a(X)}. (5)

The presented example is a lmm wide plate with b = 1N/mm? uniaxial volumetric load. (Figure 2)
shows the convergence of numerical solution to the analytical solution (u,) with 175, 324 and 637 nodal
points.

45 1.

1
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Figure 2: Plate with uniaxial load: solution and convergence
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Numerical analysis of peridynamic material with moving
least square method

Gébor Ladanyi(!)

Abstract:  The meshless methods are known as robust and well-known solutions of problems
in elasticity, especially on the field of crack mechanics. On of the greatest difficulty of meshless
methods is the enforcement of boundary conditions. In our text we introduce a new type of nonlocal
material, the peridynamic material, that can solve these problems. After some theoretical words we
show sample problems to demonstrate the abilities of this material.

Keywords. peridynamic material, nonlocal elasticity, MLS.
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1 Introduction

The meshless methods are known as good alternatives to eliminate the disadvantages of finite el-
ement method. For example, by using them the handling of discontinuities is possible. One of
the simplest methods is the moving least square method (MLS), but like others, it suffers from the
problem of enforcement of boundary conditions. These difficulties originate from a special feature
of meshless shape functions. They do not suffice the Kronecker condition on nodal points. In the
last decade many solutions were born to eliminate this problem, eg. Lagrange-multipliers, penalty
methods, still this field is one of the most researched of all recently.

In the classical theory of elasticity the main variable is the displacement. Usually the numerical
determination of it is made with approximation of equilibrium equations, but only the derivatives
of displacement appear in them.

In 1998, Silling S. A. introduced a new material model, the peridynamic type. Using of it equi-
librium equations contain dirrectly the displacements, so the natural boundary conditions can be
applied immediately.

nowg oy

rtenec oy
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2 Definition of peridynamic material

Let €2 be the set on the inner pointsS of a solid body and I be the boundary of €. We are going
to use the closure of €, the Q := Q  T". In the classical problem of elasticity the boundary of the
body can be split to two regions, the T',, where the movements of the points are known and I7,
where the surface load is given. We strictly require the I', UT’; =I" and I', NIy = @ features. Let
X € Q be the coordinate of a point in the unload state, and be u(X) : R — R the movement of X.
Let A,(X) : R3 + R be an operator that order the sum of the inner forces to X. Then the above
boundary conditions can be written as:

e e oot e

e T T

{u(X)=4(X);X e} €}

'Phd. student of Budapest University of Technology and Economics, Budapest (ladanyi @mail.duf.hu).
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it

{4,(X) =tX);X €T} ()
The hypothesis of peridynamic material says that, during the motion of body there is an
f(X, Y. u(X),u(Y)) pairwise force between the X and Y points. With the introduction ofn=Y-X

and & = u(Y) — u(X) variables f will be simpler f=1{(n.&) . The pairwise force function must have
: the next features[6]:

. f(-n,~&) = ~f(n.&) 3)
f(n,£) = F(.E)-(n+E) )
'f In the case of small displacements and linear microelastic material f is linear function of &:
| f(n,&) = K(&)n (5)

| | 3 Analysis of equilibrium equation
. Let g(X) be the volumetric force in €. then the equation of equilibrium is:

/;ﬁf(XﬁY?u(X).u(Y))dY+q(X) —0XeQ 6)

The shape of equation is the function of the position X and, the (6) is valid only in the Q, but should
be completed on I'; boundary. Introducing the general load function

{S(X):6Q(X)'Q(X)+(1—SQ(X))‘E(X);X€§} (N
with 8¢ inner Dirac-delta function, a new equation can be written:

- {/ﬁf(X. Y (), u(Y))dY +s(X) = 0:X € Q) ®)

which is valid on all the Q. In the next session we se€ only the case of linear elastic material. The
(8) equation, splitting the support of integral, is:

ﬂ i { K(X,Y)-(u(Y)»—u(X))dY~/ KX, Y)-u(X)dY = p(x); X € Q) 9
i QUr, Ly

- where:

I p(X) = _/r K(X.Y)-a(Y)dY —s(X) (10)

The (9) equation is a Fredholm-type integral equation of the second kind. The numerical solution
of these equations is possible on a quite wide range of function spaces by many technics, like

collocation, least-square or Galerkin method.

4 Numerical approximation in the case of plane stress problems

In piane stress problems the displacement function is

(X)) =[ u(X) v(X) ] (an

| Let {X,(N()de) € 0.1 = [1..NP]} be the set of nodal points with associated N(X) vector of shape
functions. Then @(X), the approximate displacement function is

B : (12)
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where U is the vector of nodal coefficients.
In our numerical tests we used the Galerkin method to determine the values of the U variables. Let
us introduce the pointwise residues and the volumetric integral of its square:

r(X) = /Qur, K(X,Y)~(ﬁ(Y)—ﬁ(X))dY—/r" K(X.Y) - 8(X)dY —p(X) (13)

. 2
R—/ﬁr (X)dX (14)

With the minimization of R by U variables the determination of approximation is possible and it is
equal with the Galerkin solution. This minimization leads to a set of linear equations:

M-U=f (15)
where
_ Ty . , _ _f .
M = 5(N (X)-( ur K(X,Y)- (N(Y) - N(X))dY /rK(X, Y)-N(X)dY)dX  (16)
f-/ (NT(x)- / K(X,Y)-a(Y)dY —s(X)))dX (17)

The N(X) shape functions can be chosen from many function spaces. In our examples we
used the moving least square method, when shape functions are determined by the minimization of
weighted error-square [2]. With using polynomial basis the moving least square shape function can
be written as:

§(X) = pT (X)-a(X) (18)
where

alY)=A"1(X)-Cx) -U (19

A(X) = le] X —X7) - p(X7) - pT (X)) (20)

CLX) = wX —X,) - pT (X1, w(X = X2) - p’ (Xa,.., w(X — Xwp) - pT (Xwp] 1)

With the equations (19), (20) and (21) the shape function can be written as:
m I
= > pjX)(AT(X) - C(X)) (22)
i=l

One of the first problems that appeared in scientific papers were the difficult handling of natural
boundary conditions in meshfree methods [4]. Since the early times more technics were published to
solve this, like penalty [7], Lagrange-multiplier[1], inverse matrix and coupling with finite elements
method. In spite of this nowadays it is an active field of research. As we mentioned, the equilibrium
equations of peridynamic material contain the natural boundary conditions, so there is no need of
any addition technic to enforce boundary conditions, they appear in the force vector and the solution
will be good on the boundary in the term of least square.

We have to note that with pure application of this theory the constraints of the body are going to be
linear elastic springs with the same elastic moduli like the body’s material.
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5 Calibration and applications

etermined by the K kernel function

In the term of (9) the pairwise force between X and Y points is d
metric in X and Y so it can be the

of the integral equation. From statical viewpoint K must be sym
function only |&|. In our samples we used the
K(g,m) =MD -E®E

fies the requirements. We have quite freedom in the choosing of A, and we used

(23)

form, which satis
the simplest possibility:
c-E \&lérmat;
A = ’
w={ 6" gIm

This function is finite supported which is suggested by nonlocal real materials, where rpq 18 the

100
t__’/
j §4DDED5 g 400605
¥ —+—Oth order §’
A P 300805 6~ 1th order o 3.006:05
T & —+—1th order
8 - p= 100 N/fmm Ez 0OE-DS .E 2.00E-05 —a~0th order
- E=210000 MPa y b4 4
? 1.00605 g 1 0005
v Y ¥ "\e_____‘____j_ £
0 00 E+00 0 DO EBD +— t
8 139 324 0 16 15 % 4 84
L / pmber of integration points Number of nodes
b c
X a) ) )

Figure 1: Uniaxial loaded plate: a)configuration b)convergence in integral points c)convergence in

nodal points

For the determination of ¢ we made a numerical

radius of maximum range of internal forces.
— 0.1mm (fig.1). The analitical solution of

experiment serie on an uniaxial loaded plate with romar
this problem predicts the longitudinal strain as:
AL=N-L/(A-E)=0.05mm (24)

From successive approximation we found the material ¢ must be:

o&) = /&
As the error estimator we used the R from (14) and examined the convergence of integration and
numerical solution. The nodals and the integration points were put regularly into the body. We used
Gauss integration to calculate the outer and inner integrals, too. The second example was plate with
pure share and examined the movements of the body and convergence of the solution. This model
inherited the geometry and material constants from the previous example. The configuration can

be seen on (fig.2). The analytical solution of a linear elastic plate predicts the linear motion in x
and in y direction. In our example we tested the difference from this linearity in x dirrection. The

analytical predicted displacement was

(25)

(26)

ua(X) = u(0) + (u(L) —u(0))/L-X

The integral of square of difference between uq (X) and @#i(X )

characterize the error of approximation(fi g.2).
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Figure 2: Plate with pure shear: a)configuration b)integral of square of different from linearity
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Figure 3: The v(x)displacement of a cantilever beam, with 3x9, 4x13 and 5x13 nodes

The last example was a cantilever beam with uniform load at the end. The (fig.3) shows the ge-
ometry and configuration of the cantilever beam. In this example we tested the character of the
movement in y dirrection. From the beam theory it must be:

va(X,0) =F/(IE) - (Ix* /2 — X /6) @27

6 Conclusion

We have presented a study of a new nonlocal elastic, the peridynamic, material. We introduced
and derived the numerical approximation of the simplest linear elastic material. We emphasized
the benefits of peridynamic material versus Hookean material on the enforcing of natural boundary
conditions.

In our first example we showed the way how a peridynamic model can be calibrated to approximate
a Hookean model. The second and the third examples transparented the boundary conditions and
the convergence of solutions.
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