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after metamorphosis was not adversely affected by temperature treatments in either species. Our results indicate that
heat waves may have devastating effects on amphibian populations, and the severity of these negative consequences,
and sensitivity can vary greatly between species and with the timing and intensity of heat. Finally, thermal treatments
against cold-adapted pathogens have to be executed with caution, taking into account the thermo-sensitivity of the spe-
cies and the life stage of animals to be treated.

1. Introduction

Earth's ecosystem is facing the sixth mass extinction event. Extreme cli-
matic conditions due to anthropogenetic environmental alterations clearly
contribute to the ongoing biodiversity crisis (Ceballos et al., 2015). Due to
global climate change, heat waves occur with increasing frequency, inten-
sity and duration (Gardner et al., 2016; Stillman, 2019). Extreme tempera-
tures during heat waves expose species to intensified physiological stress
(Williams et al., 2016) and can even induce mass-mortality events
(Welbergen et al., 2008; McKechnie and Wolf, 2019). Warming climate
with frequently reappearing heat waves can alter species distributions
(Krockenberger et al., 2012; Stillman, 2019), trigger shifts in the timing
of the breeding season and directly affect breeding success in a taxonomi-
cally diverse range of species (Blaustein et al., 2001; Oswald et al., 2008;
Truebano et al., 2018; Stillman, 2019). These factors can generate profound
changes in community structure and ecosystem functioning via the forma-
tion of interactions between species with previously non-overlapping spa-
tial or temporal distributions (Williams et al., 2016) and the alteration of
predator-prey and host-pathogen systems (Blaustein et al., 2010; Cohen
etal., 2019; Stillman, 2019; Carreira et al., 2020). Fluctuations in tempera-
ture affect ectotherms in particular because they lack the metabolic, physi-
ological and anatomical mechanisms that would allow them to maintain
constant body temperature, and, therefore, ectotherms are able to maintain
high physiological performance only within a narrower environmental
temperature range than are endotherms (Clarke and Portner, 2010).

Amphibians are among the most threatened vertebrate groups, because
41% of the species are endangered (IUCN, 2021), and almost 50% show
population declines worldwide, mainly due to anthropogenic environmen-
tal change (Stuart et al., 2004; Wake and Vredenburg, 2008; Hof et al.,
2011; Monastersky, 2014; Campbell Grant et al., 2016). The growing inci-
dence of meteorological extremes and rising temperatures resulting from
global climate change and anthropogenic heat pollution (i.e. urban heat
islands; Arnfield, 2003, Brans et al., 2018) are major threats to amphibians.
Their complex life cycle, usually including an aquatic stage, the unshelled
eggs and a highly permeable integument make amphibians excessively sen-
sitive to water availability. Also, though amphibian larvae generally exhibit
a relatively high thermal tolerance (Ultsch et al., 1999, Sunday et al., 2011,
but also see Harkey and Semlitsch, 1988, Wallace and Wallace, 2000,
Bellakhal et al., 2014, Goldstein et al., 2017) temperatures as low as 30
°C experienced during the larval period can be detrimental to them. Heat
can result in delayed metamorphosis (Goldstein et al., 2017), reduced
body mass (Harkey and Semlitsch, 1988; Phuge, 2017; Lambert et al.,
2018), disabled locomotor activity (Goldstein et al., 2017), sex reversal
(Dournon et al., 1984; Wallace and Wallace, 2000; Miké et al., 2021) and
biased sex ratios (Phuge, 2017; Lambert et al., 2018; Ruiz-Garcia et al.,
2021). Exposure of adult frogs to 30 °C or higher can increase stress hor-
mone levels (Juréni et al., 1973; Narayan and Hero, 2014) and enhance
the processes that contribute to accelerated ageing (Burraco et al., 2020).

Emerging infectious diseases represent another serious threat to am-
phibians (Harvell et al., 2002; Pounds et al., 2006). Due to repeated intro-
ductions arising from human activities (Lips, 2016; O’Hanlon et al.,
2018), chytridiomycosis caused by the chytrid fungi Batrachochytrium
dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) (Van
Rooij et al., 2015) has already led to the decline or extinction of several
hundred species and continues to cause mass mortality events on five con-
tinents (Scheele et al., 2019). Since Bsal was only discovered eight years ago
(Martel et al., 2013) and its known geographic distribution is much smaller
(Spitzen-van der Sluijs et al., 2016), we focus here on the much better

known and more widespread Bd. The fungus infects keratinous epidermal
layers of the skin with waterborne motile zoospores (Berger et al., 1998),
impairs its osmoregulatory function, which leads to shifts in electrolyte bal-
ance that can ultimately result in cardiac asystolic death in metamorphosed
anurans (Voyles et al., 2009). Tadpoles exhibit keratinous elements only in
their mouthparts; therefore they are less susceptible to Bd infection than
subsequent life stages (Marantelli et al., 2004; Blaustein et al., 2005). None-
theless, it is often the early ontogeny (larval and metamorphic stages) when
individuals become infected, due to their aquatic lifestyle (Kilpatrick et al.,
2010). The thermal optimum of this cold-adapted fungus is between 18 and
24 °C, and its growth ceases above 27-28 °C (Cohen et al., 2017, Voyles
et al., 2017; Kasler et al., unpublished data), while the vast majority of am-
phibian species can survive temperatures above 30 °C (Ultsch et al., 1999;
Sunday et al., 2011). Consequently, when and wherever microclimatic con-
ditions allow amphibians to sufficiently raise their body temperature via
thermoregulation, Bd infection prevalence and intensity are low
(Richards-Zawacki, 2010; Forrest and Schlaepfer, 2011; Becker et al.,
2012), and mass mortalities typically only occur in constantly cool environ-
ments (Berger et al., 2004; Woodhams and Alford, 2005). Accordingly,
thermal treatment of amphibians with 28 °C and higher for a few days
can be effectively applied for Bd-disinfection of larval, juvenile or adult am-
phibians in captive populations (Woodhams et al., 2003, Retallick and
Miera, 2007, Chatfield and Richards-Zawacki, 2011, Geiger et al., 2011,
McMahon et al., 2014) and may also prove effective for fighting Bd in situ
(Hettyey et al., 2019).

Based on the above information, heat waves may exert several opposing
effects on developing amphibians, which may be beneficial for combating
Bd but harmful for other fitness-related traits. Heat waves usually last for
only a couple of days, and just a few days of heat treatment can be sufficient
for the suppression or even the complete clearance of cold-adapted patho-
gens, such as Bd (Woodhams et al., 2003, Retallick and Miera, 2007,
McMahon et al., 2014). However, we still know little about the develop-
mental costs of brief periods of high temperatures for larval amphibians be-
cause most experiments that investigated the effects of heat on larval fitness
exposed animals to heat chronically for several weeks, and the effects of
shorter heat pulses are rarely tested (Miko et al., 2021). Because the effects
of high temperatures are likely to depend on the intensity, timing and dura-
tion of exposure, and may differ between species, studies focusing on these
sources of variation are necessary to assess potential malign impacts of heat
waves on amphibians and uncover hidden risks arising from thermal treat-
ment of diseased animals.

In this study, we experimentally investigated the developmental effects
of six-day long exposures to 28 and 30 °C during early, mid, and late larval
development of two amphibian species. We assessed the effects of these ex-
perimental heat waves on the survival, growth, somatic and sexual develop-
ment of agile frogs (Rana dalmatina) and common toads (Bufo bufo). These
two species are common in Europe, they inhabit various types of water bod-
ies, have different thermal optima (Morand et al., 1997; Hettyey et al., un-
published data) and represent two globally widespread families (Bufonidae
and Ranidae). The elevated temperatures we applied occur during heat
waves in aquatic habitats of amphibian larvae in the temperate climate
zone (Lambert et al., 2018, Lindauer et al., 2020; Hettyey et al., unpub-
lished data) and are also recommended for thermal treatment of diseased
amphibians (Chatfield and Richards-Zawacki, 2011; McMahon et al.,
2014; Cohen et al., 2017; Hettyey et al., 2019). Thus, our aim was twofold:
to reveal developmental effects of heat waves that may occur in natural
habitats, and to assess possible negative consequences of thermal treatment
applied against cold-adapted pathogens.
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2. Material and methods
2.1. Experimental procedures

In March 2019, we collected 50 eggs from each of 12 freshly laid egg
clutches of the agile frog from three ponds in the Pilis-Visegradi Mountains,
Hungary (Katlan: 47.71110° N, 19.04570° E, Ilona-t6: 47.71326° N,
19.04050° E, and Apétkiti pisztrdngos: 47.76656° N, 18.98121° E; four
clutches from each population). We transported the eggs to the Experimen-
tal Station of the Plant Protection Institute in Julianna-major, Budapest, and
placed each clutch (family hereafter) into a plastic container (24 X 16 x
13 cm) filled with 1.3 L continuously aerated reconstituted soft water
(RSW; APHA, 1992, Békony et al., 2020). In the laboratory, we maintained
16.3 + 0.3 °C (mean + SD) and the lighting was adjusted weekly to out-
door conditions, starting with 12:12 h light:dark cycles in late March,
which we gradually changed to 14:10 h by the end of April. In April, we col-
lected 50 eggs from each of 12 freshly laid egg strings of the common toad
from two ponds in the Pilis-Visegradi Mountains (Apatkiti tarozo:
47.77444° N, 18.98624° E, and Hatarréti t6: 47.64644° N, 18.90920°
E) and one pond in Budapest (Hidegkidti horgaszté: 47.56942° N,
18.95509° E), i.e. four clutches from each population. We housed common
toad eggs as described above for agile frogs. The sampled habitats fall
within an area of a few dozens of square kilometres, and differences in alti-
tude are negligible (less than 175 m).

Four days after hatching, when all individuals reached the free-
swimming stage (development stage 25; according to Gosner, 1960), we
started the experiment by haphazardly selecting 36 healthy-looking larvae
from each family (36 individuals x 12 families = 432 individuals per spe-
cies). Tadpoles not used in the experiment were released at the site of their
origin. We reared tadpoles individually in opaque plastic containers (18 X
13 X 12 cm) filled with 1 L RSW, arranged in a randomized block design,
where each block contained members of one family. Air temperature in the
laboratory was 20.1 + 1.1 °Cresulting in 19.0 = 0.2 °C water temperature
in tadpole containers. We changed water in the tadpole rearing containers
twice a week and fed tadpoles ad libitum with slightly boiled, chopped spin-
ach.

We exposed tadpoles to 19 (unheated control), 28, or 30 °C water tem-
perature for six days, starting 6, 12, or 18 days after hatching (Fig. S1).
Thus, thermal treatments were applied during three ontogenetic periods:
in early, mid, and late larval stages (hereafter 1st, 2nd and 3rd larval pe-
riod). This resulted in nine treatments with 48 replicates (4 individuals
per family x 12 families) in each treatment for each species. In agile
frogs, data from the 19 and 30 °C treatments presented here were also
used (combined with data from additional treatment groups) for testing an-
other a-priori study question, which we published elsewhere (Miké et al.,
2021). We performed thermal treatments in a separate room adjacent to
the room where we reared tadpoles. Lighting conditions and room temper-
ature were set to be identical in the two rooms. Immediately before starting
thermal treatments, we performed a water change and topped up the RSW
to reach a depth of 10 cm (1.7 L RSW in each container during treatment).
We placed the containers in 80 x 60 X 12 cm trays filled with tap water to
a depth of 8 cm (to avoid floating of the rearing containers), and started to
heat the water in the trays to the treatment-specific temperature using
thermostated aquarium heaters (Tetra HT 200 in 28 °C treatments and
Tetra HT 300 in 30 °C treatments, Tetra GmbH, Melle, Germany). Thereby,
water temperature increased gradually to the desired level in ca. two hours,
allowing tadpoles to adjust. Opposite to heaters, we placed water pumps
(Tetra WP 300) to ensure homogeneous water temperatures, resulting in
<0.5 °C difference among tadpole containers within trays. Overall, this re-
sulted in 28.1 = 0.4 and 30.0 = 0.3 °C (mean *+ SD) in heated tadpole con-
tainers in respective treatments (for details on temperature setting and
validation, see the Electronic Supplementary Material; Fig. S2, Table S1).
Each tray hosted twelve containers, one from each family (Fig. S3), result-
ing in four trays in each thermal treatment at a time. During the treatment
period, we changed water in the tadpole containers every other day with
aerated RSW pre-heated to the treatment-specific temperature, and fed
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tadpoles with a reduced (ca. 1/3) amount of spinach to prevent water foul-
ing and anoxia. Control individuals experienced the same handling and
treatment conditions, except that their trays lacked heaters. At the end of
the six-day long thermal treatment periods, we changed water with 1 L
heated and aerated RSW, removed the containers from the trays and placed
them back into their original position in the laboratory, allowing tadpoles
to cool down gradually.

After the last thermal treatments, when tadpoles approached metamor-
phosis, we checked all rearing containers daily. When an individual started
to metamorphose (emergence of forelimbs; development stage 42), we
measured its body mass to the nearest 0.1 mg with an analytical balance
(Ohaus Pioneer PA-114, Ohaus Europe Gmb, Nanikon, Switzerland), re-
placed its rearing water with 0.1 L fresh RSW, lifted one side of the con-
tainer by ca. 2 cm to provide the metamorphs with both water and a dry
surface, and covered the container with a transparent, perforated lid.
When metamorphosis was completed (complete tail resorption; develop-
ment stage 46), we placed the individual into a new, lidded container of
the same size as before, equipped with wet paper towel lining and a piece
of cardboard egg-holder as a shelter. Twice a week, we fed froglets ad
libitum with small crickets (Acheta domestica, instar stage 1-2) sprinkled
with a 3:1 mixture of Reptiland 76,280 (Trixie Heimtierbedarf GmbH &
Co. KG, Tarp, Germany) and Promotor 43 (Laboratorios Calier S.A., Barce-
lona, Spain) to provide the necessary vitamins, minerals and amino acids.
Due to their smaller size, we fed toadlets with springtails (Folsomia sp.) in
the first three weeks after metamorphosis, and switched to crickets after-
wards. For each individual we recorded the dates of starting metamorpho-
sis, completion of tail resorption, and eventual mortality.

Between 6 and 8 (for agile frogs) or 9-12 (for common toads) weeks
after metamorphosis (depending on species and development), when go-
nads became sufficiently differentiated and easy to observe (Ogielska and
Kotusz, 2004; Nemeshazi et al., 2020), we measured body mass to the
nearest 0.01 g and euthanized juvenile individuals in a water bath contain-
ing 6.6 g/L tricaine-methanesulfonate (MS-222) buffered to neutral pH
with the same amount of Na,HPO,. We dissected the animals and examined
the internal organs under an Olympus SZX12 stereomicroscope (Olympus
Europa SE & Co. KG, Hamburg, Germany) at 16 X magnification and
assigned fat bodies into one of four ordinal categories based on their size:
lacking, small, regular-sized, or large. We also categorized phenotypic sex
asmale (testes), female (ovaries) or uncertain (abnormally looking gonads).
Because many animals' guts contained food remains, we cut out the entire
digestive tract, measured its mass to the nearest 0.01 g, and subtracted it
from the body mass of juveniles to obtain ‘net body mass’. We removed
both feet of euthanized agile frogs and stored them in 96% ethanol until
DNA analyses.

We extracted DNA from agile frog foot samples with Geneaid Genomic
DNA Extraction Kit for animal tissue (Thermo Fisher Scientific, Waltham
USA) following the manufacturer's protocol, except that digestion time
was 2 h. We used a recently developed molecular marker set for genetic
sexing validated on agile frog populations in Hungary (Nemeshazi et al.,
2020). We first tested all froglets for the Rds3 marker (= 95% sex linkage)
applying high-resolution melting (HRM). We considered an individual to be
concordant male or female if its Rds3 genotype was in accordance with its
phenotypic sex. Individuals that appeared to be sex-reversed based on the
Rds3 marker were also tested using PCR for Rds1 (= 89% sex linkage).
For a detailed description of HRM and PCR methods, see Nemeshézi et al.
(2020). When both markers congruently suggested sex reversal, we consid-
ered the given individuals to be sex-reversed. In case of contradiction be-
tween the results of analyses based on Rds1l and Rds3, we considered
genetic sex to be unknown (Table S2). We did not investigate sex reversal
in common toads because phenotypic sex ratios suggested no treatment ef-
fects on sex (see Results).

2.2. Statistical analyses

We analysed the data of the two species separately. We assessed treat-
ment effects on survival, length of larval development, body mass at



J. Ujszegi et al.

metamorphosis, net body mass at dissection, size of fat bodies, and pheno-
typic sex ratio. For each dependent variable, we ran a model (see model
specifications below) with temperature and treatment period as categorical
fixed factors and their interaction, the difference between the mean temper-
ature in each tadpole container and the nominal temperature of the given
treatment (measured as described in the Electronic Supplementary Mate-
rial/Information) as a numeric covariate, and family nested in population
as random factors. We tested the effect of temperature within each treat-
ment period by calculating pre-planned linear contrasts (Ruxton and
Beauchamp, 2008), correcting the significance threshold for multiple test-
ing using the false discovery rate (FDR) method (Pike, 2011). All analyses
were conducted in ‘R' (version 3.6.2), with the ‘emmeans' package for linear
contrasts.

For the analysis of survival, we used Cox's proportional hazards model
(R package ‘coxme’). Individuals were divided into five ordered categories;
1: died during treatment, 2: died after treatment, but before the start of
metamorphosis, 3: died during metamorphosis, 4: died after metamorpho-
sis, but before dissection, 5: survived until dissection. Animals that died be-
fore the treatment (four agile frog and five common toad larvae) were
excluded from survival analyses. We entered the ordinal survival categories
as the dependent variable and treated the fifth survival category as cen-
sored observations.

To analyse variation in the length of larval development, body mass at
metamorphosis and net body mass at dissection, we used linear mixed-
effects models (LMM; ‘Ime’ function of the ‘nlme’ package), allowing the
variances to differ among treatment groups (‘varldent’ function) because
graphical model diagnostics indicated heterogeneous variances. In the anal-
ysis of net body mass at dissection, we included age (number of days from
finishing metamorphosis to dissection) as a further covariate. In the case of
agile frogs, we entered the log-transformed values of the length of larval de-
velopment to achieve normal distribution of model residuals. For the anal-
ysis of fat-body size, we applied cumulative link mixed models (CLMM;
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‘clmm’ function of ‘ordinal’ package; Christensen, 2015), where we also en-
tered age as a covariate.

To analyse phenotypic sex ratio, first, we excluded those few individuals
the gonads of which were not unambiguously categorizable either as male
or female (Table S2). Then we analysed the proportion of phenotypic males
using phenotypic sex as a binary response variable in generalized linear
mixed modelling procedures (GLMM) with binomial error distribution
and logit link (‘glmmTMB’ function of the ‘glmmTMB’ package; Brooks
et al., 2017). To analyse sex reversal in agile frogs, we could not apply the
same modelling framework as for sex ratios because of separation, i.e.
sex-reversed individuals were absent in certain treatment groups whereas
in some others there was 100% sex reversal. Therefore, we applied six sep-
arate analyses comparing the two elevated temperature treatments to their
associated controls in each of the three ontogenetic periods using Fisher's
exact tests. The dependent variable was phenotype, i.e. whether or not
the individual was sex-reversed. We restricted these analyses to genetic fe-
males since heat induces female-to-male sex reversal, and we detected no
male-to-female sex reversal. Because of multiple testing, we corrected P
values using the FDR method.

3. Results

Survival of agile frogs that were exposed to 30 °C during either the 1st or
the 2nd larval period was significantly reduced (by 56 and 17%, respec-
tively; Fig. 1, Table 1, Table S3). Survival of common toads also signifi-
cantly decreased upon exposure to 30 °C (by ca. 33%), but only if this
temperature was applied during the 2nd larval period (Fig. 1, Table 2).
Thermal treatments that exposed tadpoles to 30 °C in other larval periods
(3rd in both species and 1st in common toads) and those involving 28 °C
at any period did not affect survival in either species (Table 1-2).

Length of larval development of agile frogs was significantly prolonged
by all thermal treatments applied in all larval periods (Fig. 2, Table 1 and

Period 3

-

0 20 40 60 80 100120 0 20 40 60 80 100120 O 20 40 60 80 100 120
Days after hatching

Fig. 1. Survival of agile frogs and common toads during the experiment over time. Solid lines represent controls maintained at 19 °C throughout, dashed lines represent
treatment groups exposed to 28 °C and dotted lines represent treatment groups exposed to 30 °C in the indicated period. Vertical lanes depict the respective time window

when thermal treatments were performed.
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Table 1

Agile frog responses to heat by the timing of exposure (1st, 2nd and 3rd larval pe-
riod) and the applied temperature. Results represent pre-planned comparisons from
the models shown in Table S3, comparing each period and temperature combina-
tion to the 19 °C treatment in the corresponding period. Linear contrasts (c), associ-
ated standard errors (SE), t-values (z-values in case of Cox's proportional hazards
model in the analyses of survival) and P-values adjusted using the FDR method
are reported. Treatment groups that differed significantly (P < 0.05) from their cor-
responding controls are highlighted in bold.

Science of the Total Environment 835 (2022) 155297

Table 2

Common toad responses to heat by the timing of exposure (1st, 2nd and 3rd larval
period) and the applied temperature. Results represent pre-planned comparisons
from the models shown in Table S3, comparing each period and temperature com-
bination to the 19 °C treatment in the corresponding period. Linear contrasts (c), as-
sociated standard errors (SE), t-values (z-values in case of Cox's proportional
hazards model in the analyses of survival) and P-values adjusted using the FDR
method are reported. Treatment groups that differed significantly (P < 0.05) from
their corresponding controls are highlighted in bold.

Dependent variable Period Temperature c SE t(orz) P Dependent variable Period Temperature c SE t(orz) P
(0 Q)
Survival# 1 28 0.31 0.51 0.62  0.610 Survival# 1 28 -0.06 040 -0.15 0.882
2 28 -0.47 091 -0.51 0.610 2 28 0.88 0.60 1.46  0.433
3 28 —-0.43 065 -0.67 0.610 3 28 —-0.21 0.56 —0.38 0.882
1 30 2.11 0.43 4.85 <0.001 1 30 -0.09 042 -0.23 0.882
2 30 1.56 0.65 2.41 0.048 2 30 1.51 0.57 2.66 0.047
3 30 0.60 0.52 1.16 0.490 3 30 0.12 0.53 0.23 0.882
Length of larval 1 28 0.14 0.03 4.38 <0.001 Length of larval 1 28 0.03 1.55 0.02  0.986
development (log 2 28 0.05 0.01 4.58 <0.001 development (days) 2 28 -7.24 0.59 -12.21 <0.001
(days)) 3 28 0.05 0.02 2.57 0.011 3 28 -7.11 0.81 -8.73 <0.001
1 30 0.24 0.04 6.24 <0.001 1 30 —0.48 0.96 —0.50 0.742
2 30 0.19 0.02 8.29 <0.001 2 30 —-1.28 095 -1.36 0.263
3 30 0.14 0.02 9.12 <0.001 3 30 -3.24 0.87 -3.76 <0.001
Body mass at 1 28 —52.53 19.20 -2.74 0.020 Body mass at 1 28 —63.80 8.04 -7.93 <0.001
metamorphosis (mg) 2 28 7.75 11.20 0.69  0.490 metamorphosis (mg) 2 28 —63.20 7.89 —8.01 <0.001
3 28 —-23.12 13,50 -1.71  0.106 3 28 —73.00 7.36 —9.92 <0.001
1 30 -51.06 27.00 —1.89 0.089 1 30 -54.00 7.29 -7.40 <0.001
2 30 —32.23 13.60 —2.37 0.036 2 30 —-76.30 9.30 —8.02 <0.001
3 30 —34.01 12.30 -2.77 0.020 3 30 —73.50 9.32 -7.88 <0.001
Net body mass at 1 28 0.03 0.03 1.01 0.374 Net body mass at 1 28 —-0.39 017 -—227 0.144
dissection (g) 2 28 0.07 0.03 2.05 0.123 dissection (g) 2 28 —0.01 0.15 —0.06 0.950
3 28 -0.07 0.03 -176 0.127 3 28 -0.02 0.12 -0.14 0.950
1 30 0.09 0.05 1.73  0.127 1 30 -0.28 0.15 -—1.95 0.156
2 30 0.13 0.03 3.97 <0.001 2 30 —-0.29 0.20 —1.47 0.288
3 30 -0.02 0.03 -0.63 0.528 3 30 0.11 0.13 0.83  0.615
Size of fat bodiess* 1 28 -1.76 0.47 -3.78 <0.001 Size of fat bodies: 1 28 —-0.11 047 —0.23 0.941
2 28 0.21 0.38 0.54 0.705 2 28 0.03 0.47 0.07 0.941
3 28 0.47 0.41 1.15 0.375 3 28 -0.57 047 -1.21 0.675
1 30 -1.86 0.56 —3.31 0.003 1 30 —-0.09 047 —0.20 0.941
2 30 -0.73 042 -171 0.175 2 30 -0.19 048 -0.39 0.941
3 30 0.06 0.43 0.14 0.889 3 30 —0.97 0.46 —-2.11 0.211
Phenotypic sex ratio 1 28 —-0.22 047 -047 0.640 Phenotypic sex ratio 1 28 -0.67 048 -1.38 0.377
(proportion of 2 28 0.72  0.45 1.62  0.127 (proportion of 2 28 —-0.46 045 —1.01 0.377
males)ssx 3 28 3.83 1.06 3.60 0.002 males)ss 3 28 0.76 0.46 1.65 0.377
1 30 1.63 0.71 2.30 0.034 1 30 -058 049 -1.19 0.377
2 30 1.54 0.55 2.80 0.011 2 30 —-0.23 048 —0.50 0.621
3 30 3.70 1.06 3.47  0.002 3 30 0.55 0.49 1.13 0.377

* The linear contrast is the log (hazard ratio).
** The linear contrast is the log (cumulative odds ratio).
*** The linear contrast is the log (odds ratio).

S3). By contrast, in common toads, the length of larval development was
not affected when tadpoles were exposed to 28 °C during the 1st larval pe-
riod, but larvae that were exposed to this temperature during the 2nd and
3rd larval period developed faster compared to their control groups (Fig. 3,
Table 2 and S3). When common toad tadpoles were exposed to 30 °C, their
larval development was only shortened upon exposure during the 3rd larval
period but remained unaffected if treated in the 1st or 2nd larval period
(Fig. 3, Table 2 and S3).

Body mass at metamorphosis was significantly reduced in agile frogs
by the 28 °C thermal treatment if applied during the 1st larval period but
was not affected if 28 °C was applied later on (Fig. 2, Table 1). Exposure
to 30 °C tended to decrease body mass at metamorphosis when applied in the
1st larval period and exerted a significant negative effect during the 2nd and
3rd larval period (Fig. 2, Table 1 and S3). In common toads, both thermal
treatments applied in all larval periods resulted in significantly reduced
body mass at metamorphosis (Fig. 3, Table 2 and S3).

At dissection, net body mass of juvenile agile frogs was only increased in
animals treated with 30 °C during the 2nd larval period, but remained un-
affected in all other treatment groups (Fig. 2, Table 1 and S3). Thermal
treatments applied in any larval period did not affect the net body mass
of common toads (Fig. 3, Table 2 and S3). The number of days between

* The linear contrast is the log (hazard ratio).
** The linear contrast is the log (cumulative odds ratio).
*** The linear contrast is the log (odds ratio).

metamorphosis and dissection positively affected net body mass at dissec-
tion in both species (Table S3).

The size of fat bodies was significantly smaller in juvenile agile frogs as
a result of both thermal treatments, but only upon exposure during the 1st
larval period and not during later periods (Fig. 2, Table 1). In juveniles of
the common toad the size of fat bodies was unaffected by thermal treat-
ments applied in any larval period (Fig. 3, Table 2), and positively corre-
lated with the age of juveniles (Table S3).

Phenotypic sex ratio in agile frogs was affected by exposure to el-
evated temperature: exposure to 28 °C during the 3rd larval period
(but not in the earlier periods) caused a significant shift towards a
male-biased sex ratio, and treatment with 30 °C in all larval periods
resulted in highly male-biased sex ratios (Fig. 2, Table 1, S2 and
S3). Accordingly, the proportion of agile frog individuals that under-
went heat-induced sex reversal was significantly higher (between 30
and 100% of genetic females) at both temperatures and in all treat-
ment periods compared to the respective control groups (< 4.5%,
all P < 0.012; Fig. 2, Table S2 and S3). In contrast, none of the ther-
mal treatments applied in either larval period had any effect on the
phenotypic sex ratio of juvenile common toads (Fig. 3, Table 2, S2
and S3).
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4. Discussion

Our results demonstrate that high temperatures experienced for six days
during larval development can negatively affect the survival, growth, so-
matic and sexual development of amphibians, but the severity of these ef-
fects depends on the intensity and timing of thermal stress and can
largely differ between species. Agile frogs proved to be more sensitive: in
this species, all studied variables were affected by one or more heat treat-
ments, and almost all of the resulting changes are likely disadvantageous
for individual fitness and population viability (Fig. 4). In contrast, for com-
mon toads, the only consistent effect of thermal stress was reduced mass at
metamorphosis and, in a few treatments, faster larval development, while
we observed barely any effect on survival and no lasting developmental ef-
fects in juveniles (Fig. 4). These results highlight that even sympatric

species that are relatively similar in their ecology may be affected very dif-
ferently by heat waves.

Survival rate in both species was decreased by exposure to 30 °C, but
only if tadpoles experienced it relatively early on during their development
(during 1st and 2nd larval periods). Temperatures of around 30 °C through-
out the entire larval development often resulted in decreased survival in
earlier studies (Bellakhal et al., 2014; Goldstein et al., 2017; Phuge, 2017;
Lambert et al., 2018). Our results suggest that the adverse effect of elevated
temperature on larval survival depends on the species and on the timing of
exposure, indicating a peak in thermosenitivity during the early stages of
larval development (in addition to the increased thermosensitivity of the
final larval stages, directly before the onset of metamorphosis (Floyd,
1983), which we did not study). This is in line with many previous studies
suggesting that the earliest life stages of amphibians are the most
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susceptible to several stress factors such as chemicals, parasites, poor envi-
ronmental conditions and pesticides (Ortiz-Santaliestra et al., 2006;
Holland et al., 2007; Crespi and Warne, 2013; Miko¢ et al., 2017). The ener-
getically costly cellular repairing mechanisms and the maintenance and res-
toration of homeostasis during and after thermal stress compromise higher-
level functions that are necessary for survival (Williams et al., 2016). Fur-
thermore, dissolved oxygen level in the water decreases with rising temper-
ature (Stefan et al., 2001; Fang and Stefan, 2009), which in turn can cause
hypoxia and oxidative stress in tadpoles (Lushchak, 2011; Freitas and
Almeida, 2016). High temperature may also accelerate bacterial bloom in
the water (Ferreira and Chauvet, 2011), potentiating the accumulation of
opportunistic pathogens. All of these processes might contribute to mortal-
ity observed in experiments involving thermal treatments and, under natu-
ral conditions, during or after heat waves.

Timing of metamorphosis and body mass at metamorphosis are crucial
components of fitness in amphibians. Earlier metamorphosis allows for
leaving the more hazardous aquatic environment faster (Denver, 1997),
and allows for a longer post-metamorphic growth period compared to
late-metamorphosing individuals, which in turn leads to increased survival
during the first hibernation (Altwegg and Reyer, 2003; Uveges et al., 2016).
In the present study, the simulated heat waves prolonged larval develop-
ment in agile frogs but shortened it (when heat was experienced in the
late larval period) in common toads, whereas mass at metamorphosis de-
creased after heat exposure in both species (although in agile frogs the lat-
ter effect was only significant in a few treatment groups). According to the
temperature-size rule (Koztowski et al., 2004), high temperatures are asso-
ciated with increased metabolic rates and accelerated development in lar-
val anurans (Alvarez and Nicieza, 2002; McLeod et al., 2013; Courtney
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Jones et al., 2015), which results in earlier metamorphosis at a smaller
body size (Laugen et al., 2003; Niehaus et al., 2006). Our results likely doc-
umented this relationship between development and growth in common
toads. However, in agile frogs, this relationship was disrupted by heat treat-
ments, most probably because the applied elevated temperatures were
higher than the upper limit of their optimal temperature range and, there-
fore, acted as severe stressors. This result aligns with the observation that
larvae of the common toad are more thermophilic than those of agile
frogs, as suggested by a higher critical thermal maximum and higher pre-
ferred temperatures in the former than in the latter (Hettyey et al., unpub-
lished data). Also, the range of optimal temperatures may be wider in case
of common toads than in agile frogs, as suggested by a wider distribution
range of common toads extending further into both hotter (Iberian Penin-
sula, N-Africa, S-Anatolia) and cooler regions (N-Scandinavia and high alti-
tudes), where agile frogs cannot be found (Sillero et al., 2014).

Stress experienced early in life can have long-lasting consequences, such
as small adult size and limited energy reserves (Crespi and Warne, 2013;
Jonsson and Jonsson, 2014). However, in our study, the reduced mass at
metamorphosis in heat-treated groups did not persist into juvenility: after
a few months of post-metamorphic growth, we found no differences in
body mass or fat reserves in either species. There were only two exceptions
to this: in juvenile agile frogs, fat bodies were smaller if they received either
heat treatment in the 1st larval period, and unexpectedly, their body mass
was larger after exposure to 30 °C applied during the 2nd larval period.
The death of lighter individuals likely contributed to the equalization of ju-
venile body mass among treatment groups, given that most individuals that
died between the onset of metamorphosis and dissection had a lower body
mass at metamorphosis than conspecifics that survived until the end of the
experiment in both species (Welch's tests; agile frogs: t = —3.54, df = 32.0,
P = 0.001, common toads: t = —9.30, df = 53.9, P < 0.001). A further
contributing factor may be compensatory growth (Squires et al., 2010;
Hector et al., 2012). Nonetheless, compensatory growth can have hidden
costs (Stoks et al., 2006; De Block and Stoks, 2008; Murillo-Rincén et al.,
2017), so that the lack of among-treatment differences in juvenile mass
does not necessarily indicate the absence of long-term malign consequences
of high temperatures experienced during larval life. Indeed, the majority of
juvenile agile frogs completely lacked fat bodies if they were exposed to
heat during the 1st larval period. Fat bodies in amphibians are major energy
stores that are vital to survival (Scott et al., 2007) and regulate processes

related to reproduction (Pierantoni et al., 1983; Girish and Saidapur,
2000). Consequently, high temperatures experienced during early ontog-
eny may have long-lasting negative effects on the survival and reproductive
potential of agile frogs, which may compromise population persistence. The
observation that the size of fat bodies was not affected by thermal treat-
ments in common toads confirms that these are more tolerant to high tem-
peratures than agile frogs, and, more generally, reinforces the hypothesis
that there is large among-species variation also in the long-term conse-
quences of thermal stress.

Sex reversal can occur naturally in wild populations of agile frogs
(Nemeshazi et al., 2020) and other species (Alho et al., 2010; Lambert
et al., 2019; Xu et al., 2021), but high temperature can increase its fre-
quency in a wide range of ectothermic vertebrates (Baroiller and D’Cotta,
2016; Ruiz-Garcia et al., 2021; Whiteley et al., 2021). In our study, six-
day 30 °C heat waves caused male-biased sex ratios via sex reversal in
agile frogs, and the same effect was induced by exposure to 28 °C in the
3rd larval period. These results align with previous studies documenting al-
tered sex ratios in several anuran species where larvae were raised at high
temperatures throughout their development (Ruiz-Garcia et al., 2021), and
additionally suggest that the sensitivity of sex determination to elevated
temperature increases close to the end of larval development. Our findings
caution that heat waves lasting for only a few days during tadpole develop-
ment can trigger sex reversal, which may have wide-ranging consequences
including skewed sex ratios and lowered population viability (Békony
etal., 2017; Wedekind, 2017; Nemeshazi et al., 2021). However, our obser-
vation that the same thermal treatments did not affect phenotypic sex ratios
in common toads suggests that there is considerable interspecific variation
in the thermosensitivity of sexual development.

Heat treatment is a promising mitigation method against amphibian
chytridiomycosis (Chatfield and Richards-Zawacki, 2011; Geiger et al.,
2011; Hettyey et al., 2019). Our results, however, underline the importance
of pre-assessing the thermal sensitivity of each species, including that of
their sexual development. Based on our results, thermal treatment at 30
°C could be applied for 6 days to common toads, which would likely lead
to Bd clearance, or at least to a drastic suppression of Bd growth
(Retallick and Miera, 2007, Chatfield and Richards-Zawacki, 2011, Geiger
et al., 2011). This treatment could be recommended in specific situations,
such as epizootic outbreaks, when the benefits clearly outweigh the costs
arising from decreased body mass at metamorphosis, or when the latter
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can be compensated for (e.g. by supplemental feeding). In agile frogs, treat-
ment with 28 °C during the 2nd larval period (days 12-18 after hatching)
was the only treatment combination without adverse effects on most life-
history traits and sexual development. Although this treatment also caused
somewhat lengthened larval development, this cost may be negligible (es-
pecially so in captivity) considering the benefit of Bd clearance. Whether
treatment with temperatures lower than 28 °C would be applicable without
costs and still suppresses Bd growth sufficiently needs further investigation
(Hettyey et al., 2019). A further possibility to explore is that under con-
trolled conditions, capitalizing on the feminizing effect of estrogens or
other estrogenic chemicals might make thermal treatment of Bd-infected
animals potentially suitable also for species with thermally sensitive sex de-
termination (Kitano et al., 2012).

5. Conclusion

Our study demonstrates that species can differ in a multitude of ways in
how they are affected by short periods of elevated temperatures which are
similar in magnitude to those occurring in natural water bodies during heat
waves. Most importantly, we demonstrate that already 28 °C can have sur-
prisingly severe consequences for larvae of a thermosensitive anuran,
where the strength of effects depends largely on the developmental stage
of individuals that become exposed to the heat. At the same time, even 30
°C experienced any time during larval development does little harm to indi-
viduals of another sympatric species. Such species-specific differences
should be examined in a wide range of taxa and considered when evaluat-
ing the impact of climate change on amphibians, and also in the develop-
ment of mitigating methods against chytridiomycosis.
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Figure S1 A schematic illustration of experimental treatments. Each horizontal bar represents
one treatment group. Striped bars represent periods when tadpoles were exposed to thermal
treatments. Orange (28 °C) and red (30 °C) bars symbolize heat treatments, while blue filling
represents maintenance at 19 °C. Treatments were identical in both species.



Measurements validating temperature in heat treatments

We validated the heating setup by repeatedly measuring water temperature (+ 0.1 °C) in tadpole
containers of each position in each tray, as well as water temperature in the trays in which
treatments took place. Before the experiment, we measured these temperatures ten times on two
consecutive days with a Greisinger digital thermometer (GTH175/PT). After termination of the
experiment, we repeated these measurements five times. To detect eventual temperature
fluctuations during each treatment, twice per day we checked water temperature in all trays
using the digital thermometer. Furthermore, data loggers (Onset HOBO Pendant
Temperature/Light 8K Data Logger; one per each tray) recorded temperature in the trays every
30 minutes during the treatments. We did not measure temperature in the tadpole containers
during the treatment periods to avoid stress and injury as a result of stirring the water.

We did not detect considerable temperature fluctuations during the treatments (Fig S1,
Table S1), and temperature readings were very similar before and after the experiment in each
container position. Temperature did vary somewhat among containers in different positions
within trays (maximal temperature difference within a tray at 19 °C: 1.3 °C; at 28 °C: 1.5 °C;
at 30 °C: 1.5 °C), but this variation was highly consistent over time. We calculated the
difference between the actual (experienced by the tadpoles) and nominal temperature of the
given treatment for each tadpole container by subtracting the nominal temperature from the
mean water temperature (measured before and after the treatments in each container with the
digital thermometer). This method minimized the disturbance caused to animals during the
experiment while delivering accurate data on the temperatures experienced by the tadpoles.
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Figure S2 Water temperatures in the trays during treatment periods show minimal temperature

fluctuations. Note that the water temperature in the heated trays was always warmer than the
temperature in the tadpoles’ containers (set to be as close to the nominal temperature as
possible; Table S1).



Table S1 Minimal (Tmin), maximal (Tmax) and mean (Tmean) temperatures in the heated trays
during temperature treatments. Mean diff. represents the average difference in water
temperature between the tadpoles’ containers and the trays, since water temperature in the
heated trays was always warmer than the temperature in the tadpoles’ containers.

Tray Tmin (°C) Tmax(°C)  Tmean (°C) Mean diff. (+ SE)

30°C/1 306 31.6 31.0 1.1 (+0.13)
30°C/2 302 316 30.8 1.1 (0.10)
30°C/3 304 31.6 30.9 0.5 (= 0.09)
30°C/4 305 313 30.8 0.7 (£ 0.09)
28°C/1  28.2 28.9 285 0.4 (= 0.06)
28°C/2 284 29.4 28.8 0.1 (£0.07)
28°C/3  28.0 295 285 0.5 (= 0.06)
28°C /4 281 295 28.6 1.1 (= 0.08)
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Figure S3 Schematic representation (a) and in situ photograph (b) of the heating system used
in the thermal treatments.




Table S2 Phenotypic sex ratio (% males) in each treatment group. In case of agile frogs, genetic
sex ratio and female-to-male sex-reversal rate (% of phenotypic males in genetic females) are
also shown.

Phenotypic Genetic sex Female-to-

Species Treatment group (Dl\:isected sex ratio ratio (% male sex
(% male)”  male)* reversal (%)
Agile frog Period 1
Control 40 55.0 55.0 0.0
28°C 39 52.9 324 30.4
30°C 19 89.5* 63.2 71.4
Period 2
Control 45 48.9 48.9 0.0
28 °C 46 63.4 46.3 31.8
30°C 32 83.3* 56.6 61.5
Period 3
Control 41 48.8 46.3 45
28°C 43 97.5* 60.9 93.8
30°C 37 100.0* 58.3 100.0
Common Period 1
toad Control 36 58.3
28 °C 35 429
30°C 37 48.6
Period 2
Control 42 54.8
28°C 39 43.6
30°C 34 52.9
Period 3
Control 38 39.5
28 °C 41 58.5
30°C 36 55.6
*Sex ratios that differ significantly from 1:1 according to Fisher's

exact tests

tExcluding those individuals whose gonads were not unambiguously
categorizable either as male or female (3 agile frogs: 2 individuals at 28 °C in the
2" Jarval period and 1 individual at 30 °C in the 2" larval period; 2 common
toads: 1 individual at 28 °C in the 2" larval period and 1 individual at 30 °C in
the 3 larval period)

tExcluding those individuals whose genetic sex was unknown due to
contradiction between the Rds1 and Rds3 markers' results (at 28 °C 1 individual
in the 1%, and 2 individuals in the 3" larval period; at 30 °C 1 individual each in
the 2" and 3" larval periods)



Table S3 Type-2 analysis-of-deviance tables of the statistical models. Significant effects (P <
0.05) are highlighted in bold. The covariate "T.diff" is the difference between mean
temperatures in each tadpole container and the nominal temperature of the given treatment.

Dependent _ Agile frog Common toad
variable Predictors ,
X df P v df P
Survival
Heat 40.90 2 <0.001 2.15 2 0.340
Period 28.71 2 <0.001 471 2 0.095
T.diff 0.36 1 0551 0.08 1 0.783
HeatxPeriod 5.48 4 0241 5.93 4 0.204
Length of larval development
Heat 195.34 2 <0.001 208.73 2 <0.001
Period 9.04 2 0011 7.19 2 0.028
T.diff 0.05 1 0817 0.36 1 0548
HeatxPeriod 12.03 4 0.017 23.78 4 <0.001
Body mass at metamorphosis
Heat 17.44 2 <0.001 250.50 2 <0.001
Period 6.88 2 <0.001 145.80 2 <0.001
T.diff 0.02 1 0.988 2.66 1 0.103
HeatxPeriod 8.67 4 0.070 7.18 4 0.127
Net body mass at dissection
Heat 7.84 2 0.020 1.83 2 0.399
Period 1.43 2 0488 4.08 2 0.130
T.diff 0.23 1 0631 0.75 1 0.386
Age at dissection 80.86 1 <0.001 11.38 1 <0.001
HeatxPeriod 14.71 4 <0.001 8.29 4 0.081
Size of fat bodies
Heat 7.20 2 0.027 2.18 2 0337
Period 7.03 2 0.030 1.13 2 0.567
T.diff 0.07 1 0.790 2.46 1 0117
Age at dissection 2.56 1 0.109 6.87 1 0.009
HeatxPeriod 17.87 4 0.001 2.60 4 0.627
Phenotypic sex
ratio
Heat 22.53 2 <0.001 0.18 2 00916
Period 2.17 2 0.338 0.10 2 0.953
T.diff 0.02 1 0.964 3.32 1 0.068
HeatxPeriod 15.18 4 0.004 5.92 4 0.205




