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Abstract

Sex reversal, amismatch betweenphenotypic and genetic sex, can be inducedby chem-

ical and thermal insults in ectotherms. Therefore, climate change and environmental

pollution may increase sex-reversal frequency in wild populations, with wide-ranging

implications for sex ratios, population dynamics, and the evolution of sex determina-

tion.Wepropose that reconsidering the half-century old theory “Witschi’s rule” should

facilitate understanding the differences between species in sex-reversal propensity

and therebypredicting their vulnerability to anthropogenic environmental change. The

idea is that sex reversal should be asymmetrical: more likely to occur in the homoga-

metic sex, assuming that sex-reversed heterogametic individuals would produce new

genotypeswith reduced fitness. A review of the existing evidence shows that while sex

reversal can be induced in both homogametic and heterogametic individuals, the lat-

ter seem to require stronger stimuli in several cases. We provide guidelines for future

studies on sex reversal to facilitate data comparability and reliability.
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INTRODUCTION

Ectothermic vertebrates feature a variety of sex-determination sys-

tems including both genetic and environmental types.[1–3] The

most widespread variants of genetic sex determination are male-

heterogametic (XX/XY) and female-heterogametic (ZW/ZZ) systems,

displaying a variety of, often homomorphic, sex chromosomes. Across

ectotherm vertebrates, certain environmental conditions, including

temperature and the presence of several chemical compounds, can

Abbreviations: DHT, dihydrotestosterone; E2, 17β-estradiol; EE2, 17α-ethynylestradiol.
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favor the development of one phenotypic sex, even in species possess-

ing genetic sex determination. This leads to sex reversal, producing

genetic males with female phenotype or vice versa. Sex reversal has

been documented in wild populations of all major ectothermic verte-

brate taxa.[2,4–8] Theoretical models predict that global climate change

and environmental pollution is expected to increase sex-reversal fre-

quency in these taxa, potentially affecting sex-chromosome evolution,

causing skewed sex ratios and even leading to extinction. [1,9–12] There-

fore, understandingmechanisms behind the evolution of sex reversal is

an important and urgent challenge. Theoretical works have shown that

male- and female-heterogametic systems might respond differently to
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environmental changes via sex reversals,[10,11,13] but there is a signifi-

cant knowledge gap yet to be filled with empirical data.

About 60 years ago, based on experiments applying exogenous sex

hormones to a few amphibian species, Witschi and colleagues [14] rec-

ognized that it was predominantly the homogametic sex (XX or ZZ)

that was susceptible to sex reversal – a concept sometimes referred

to as Witschi’s rule (Box 1). Roughly 20 years later, Adkins–Regan
[15] came to a similar conclusion based on reviewing data from fish,

amphibians, reptiles, and further taxa. However, laboratory experi-

ments across ectothermic vertebrates successfully produced both sex-

reversed XY females and ZW males, and these were even fertile in

some species.[16–20] Therefore, some authors see Witschi’s rule as

disproved,[21,22] while others maintain that sex reversal is restricted

to the homogametic sex, acknowledging that there are counterexam-

ples with no explanation.[2,13] Clarifying this issue empirically would

be important for understanding which species are susceptible to sex

reversal induced by specific environmental stimuli: Witschi’s rule pre-

dicts higher vulnerability to male-to-female sex-reversing effects such

as xenoestrogens in ZW/ZZ compared to XX/XY systems. By contrast,

XX/XY systems should be more inclined to female-to-male sex rever-

sal. Furthermore, whether the heterogametic sex is resistant to sex

reversal or not is important also for our theoretical understanding

of the evolution of sex-determination systems: some models dealing

with transitions between these systems assumed that only certain sex-

chromosome genotypes can undergo sex reversal,[11,13] while others

made no such assumption.[10,23–27]

After knowledge kept gathering on the evolution of sex chromo-

somes and sex-determination systems during the past century, it was

suggested that natural selection could cause the pattern described by

Witschi’s rule.[13] The key seems to be that if sex-reversed individu-

als participate in breeding, new combinations of the sex chromosomes

(YY or WW) can emerge in their progeny (Box 2). These new geno-

types may possess reduced fitness due to degeneration of the genetic

content of the hemizygous chromosome,[13,25] driven by accumulation

of deleterious mutations [28–30] and sex-antagonistic genes [31,32] (but

see [33] and [34]). These new genotypes can only be produced if the sex-

reversed parent is heterogametic (XY female mating with XY male, or

ZW male mating with ZW female). Thus, reduced fitness of the new

genotype may lead to selection against sex reversal in the heteroga-

metic sex (Box 2). As a result, the homogametic sex (XX or ZZ) may be

more susceptible to sex reversal compared to the heterogametic sex.

This potential evolutionary mechanism has been mentioned in several

reviews on environmental sex reversal [2,35–37]; however, similarly to

earlier attempts,[15,21,38] none of these articles offered a robust expla-

nation why some species conformed toWitschi’s rule while others did

not.

We propose that the apparent contradiction between Witschi’s

rule and empirical findings may be resolved by acknowledging that

the propensity for sex reversal may vary on a gradual scale (Figure 1A)

and may be shaped by various factors. In ectotherm vertebrates,

different sex-determination systems dynamically replace each other

as species evolve,[39] and sex reversal of homogametic individuals

may be an important driver of these transitions.[13] Degeneration

Box 1:Witschi’s rule

More than half a century ago, reviewing experiments that

applied various sex-reversing treatments to amphibians, Emil

Witschi and colleagues [14] came to the conclusion that

species can be classified into one of two reaction types: “In

the first type, androgens produce complete and durablemas-

culinization of genetically female embryos . . . ”. “In the second

reaction type, . . . androgens produce either no major effects

or, in some instances, they feminize genic males.” Based on

the knowledge available at the time, the authors assumed

that the first reaction type was characteristic of anurans

with male-heterogametic (XX/XY) sex-determination (based

on ranid and hylid frogs), while the second type was repre-

sented by “several families of primitive anurans (discoglos-

sids, xenopins) and all urodeles,” that were all assumed to

possess female-heterogametic (ZW/ZZ) sex determination.

With other words, sex-reversal could be induced in homoga-

metic (XX or ZZ) individuals, while the heterogametic sex (XY

or ZW) appeared resistant. They published their observation

in a short article and did not provide detailed explanation

on this pattern. One year later, Witschi published a review
[38] where he concluded that this pattern probably reflected

genealogy across vertebrates, with noticeable exceptions.

Today we know that not all urodeles are female heteroga-

metic, and not only “primitive anurans” possess this type

of sex determination.[46,48] In fact, sex-determination sys-

tems have been replacing each other during the evolu-

tion of amphibians, similarly to fishes and reptiles.[39,48,86]

As seemingly controversial information kept gathering on

the inducibility of sex reversal across ectotherms,[15–21,56]

Witschi’s rule became largely forgotten by the scientific

community. Theoretical and empirical works from the past

decade suggested that deleterious mutations present on the

Y and W chromosomes may restrict sex reversal to the

homogametic sex in reptiles [2,13] (ultimately causing the

same pattern that was observed by Witschi and colleagues

in amphibians). Still, the various counterexamples that were

reported in both taxa remained unexplained to date.

of the Y or W chromosome, and thus the strength of selection for

restricting sex reversal to the homogametic sex, should gradually

increase with the evolutionary age of the sex chromosomes (Box

2). Therefore, heterogamety-based differences might be less promi-

nent in younger sex-determination systems. Furthermore, resilience

to certain external factors may have physiological limits, and con-

sequently, increased exposure to these factors might lead to sex

reversal despite the system’s relative resistance to it (Figure 1A).

Comparison of sex-determination systems is further complicated by

the possibility of phylogenetic inertia in sex-reversal sensitivity to
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F IGURE 1 Sex reversal in XX/XY and ZW/ZZ systems. Panel A: Under “asymmetrical sex reversal,” response curves to the same sex-reversing
(SR) stimuli may be shifted toward the opposite direction in the two systems, that is, the homogametic sex is expected to bemore susceptible to sex
reversal than the heterogametic sex. Three response categories are indicated: no sex reversal (no), intermediate sex-reversal frequency (int.), or all
individuals of the affected genetic sex undergo sex reversal (max). Panel B: Genetically confirmed sex reversal caused by EE2 treatment of tadpoles
is in agreement with the theoretical expectations. On Panel B, correspondence to the theoretical comparison of homogametic and heterogametic
sexes from Panel (A) is shown by the colored stripe under the X axis. Direction of sex reversal in Panel (B) is denoted in the large white circle where
the symbols♂ and ♀ stand for male and female phenotype, respectively. Dot sizes are proportional to the number of animals with unambiguous
sexual phenotype. Displayed anuran genera are: Bufo (B.), Bufotes (Bt.),Hyla (H.), Rana (R.) and Xenopus (X.). For data and references for Panel (B)
see Supplementary Table 1

different environmental conditions: for example, high temperature

may cause sex reversal in either genetic females or males depending

on the phylogenetic lineage.[1,9,16,40] Thus, the aim of the present

article is to draw attention to the variation in sex-reversal propensity

across species, and to the importance of unraveling the role of sex-

chromosome systems in driving that variation. We propose that, for

understanding the ecology of sex reversal (i.e., when and where does

it occur and why), a relaxed interpretation of Witschi’s rule should be

considered. By this relaxed interpretation, sex-reversal inducibility in

homogametic and heterogametic individuals is not a matter of “yes

or no,” because a continuum of sex-reversal resistance is expected to

occur in nature, such that in XX/XY systems, milder stimuli are enough

for female-to-male sex reversal and stronger stimuli are required for

male-to-female sex reversal, whereas the opposite should hold for

ZW/ZZ systems. We refer to this idea as “asymmetrical sex reversal”

(borrowing this phrase from an earlier paper [13] which used it for

describing a pattern corresponding withWitschi’s rule).

EMPIRICAL EVIDENCE FOR ‘‘ASYMMETRICAL SEX
REVERSAL’’ IN NATURE

If sex reversal is asymmetrical between sex-chromosome systems, we

should expect that in free-living populations mostly female-to-male

sex reversal should occur in XX/XY systems, while male-to-female sex

reversal should be predominant in ZW/ZZ systems. This is supported

by the currently available, limited data on wild populations: geneti-

cally proven female-to-male sex reversal was frequent in four anu-

ran species with XX/XY systems (and only rare male-to-female sex

reversal occurred in one of them) [4–7], while sex-reversal frequency

was negligible in Bufo bufo, the only ZW/ZZ anuran with such data to

our knowledge.[41] This latter finding is especially interesting because

female-to-male sex reversal was frequent in Rana dalmatina (XX/XY) in

the same habitats, so the lack of sex reversal in these Bufo bufo pop-

ulations are not attributable to lack of female-to-male sex-reversing

stimuli.[41] The pattern is similar in the two reptile species for which

genetically confirmed sex reversal has been studied in the wild: XX

males were found in Bassiana duperreyi ( = Acritoscincus duperreyi;

XX/XY) and ZZ females in Pogona vitticeps (ZW/ZZ) across several free-

living populations.[40,42,43] The picture is less clear in fishes[8]; how-

ever, sex-reversal research in fish has so far focused on its aquacul-

ture aspects, and the genetic sex markers developed for captive popu-

lations (i.e., alteredby artificial selection or genetic drift) are not always

reliable in wild populations.[8,44] For example, because rare mutations

or recombination events may cause mismatches between sexual phe-

notype and the genotype identified by genetic sex markers, individu-

als mismatching based on a single sex marker do not always represent

environmental sex reversal.[45] Therefore, although in situ sex-reversal

frequencies in both amphibians and reptiles with genetic sex determi-

nation conform to the theory of “asymmetrical sex reversal,” the most
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Box 2: Evolution of sex determination via sex reversal

At least 19 turnovers of male- and female-heterogametic sex-determination systems occurred during amphibian evolution,[46] and sex

determination mechanisms are even more variable in fish and reptiles.[39,48,86] These turnovers may or may not be accompanied by

the replacement of old sex chromosomes with new (formerly autosomal) ones, while many sex-chromosome turnovers remain hidden

from the researchers’ eyes behind the same type of heterogamety.[92] There are numerous theorical works concentrating on potential

causes and genetic mechanisms of turnovers between sex-determination systems,[25,31,93] and some of these indicate that environment-

induced sex reversal might play an important role.[10,13,27,36,94] It is a generally accepted rule that after recombination stops between

the different sex chromosomes, the chromosome which never occurs in homozygotic form (Y in XX/XY systems and W in ZW/ZZ sys-

tems) will not be purged from deleterious mutations, which are accumulating over evolutionary time until a theoretical point where the

chromosome cannot fulfill its purpose anymore.[29,31,32] However, recombination appears to occur more frequently in females in various

species, and according to the “fountain of youth” hypothesis, sex reversal may provide an opportunity for the Y chromosome to recom-

bine with the X in sex-reversed XY females, hence slowing its degeneration process.[95] Another important outcome of sex reversal by

heterogametic individuals is the production of offspring with new genotypes: if a sex-reversed XY female mates with a sex-concordant

XY male, 25% of their offspring will have YY genotype. Similarly, 25%WW offspring will be produced by a sex-reversed ZWmale and a

sex-concordant ZW female. Depending on the progress of Y or W degeneration, offspring with the new genotype might experience no

detectable disadvantage, or may suffer negative fitness consequences on various levels, such as reduced fertility, lower survival rate or

complete lethality.[16,21,96] In these latter cases, selection is expected to favor those XY andZW individuals that are resistant to sex rever-

sal, and therefore, retain the phenotypic sex which is encoded by their sex chromosomes under sex-reversing conditions experienced

by the population. By contrast, sex reversal in homogametic individuals (XX or ZZ) may be neutral or even advantageous: for example,

sex-reversed ZZ femalesmay laymore eggs than ZW females do,[40] and XXmalesmay produce female-biased progenywhen the popula-

tion sex ratio is male-biased due to climate warming.[10] The propensity to develop as phenotypic male or female is underlay by heritable

genetic,[3,8,97–99] and epigenetic variation,[8,100] providing diverse grounds for selection of sex-reversal resistance in natural systems.[43]

In linewith this, sex-reversal propensitywas found to be heritable inmultiple species.[37,40] Consequently, sex-reversal propensitymaybe

reduced to various extents in the heterogametic sex across contemporary species and populations, whichwemay detect as “asymmetrical

sex reversal”.

conclusive comparisonsof sex-reversal propensitybetweenXX/XYand

ZW/ZZ systems may be made by controlled experiments that manipu-

late environmental conditions during sex determination.

EXPERIMENTAL EVIDENCE FOR ‘‘ASYMMETRICAL
SEX REVERSAL’’

Amphibians, the taxon in which Witschi has originally discovered

his rule, offers an ideal group for testing “asymmetrical sex rever-

sal.” Genetic sex determination underlies sexual development in all

amphibian species studied so far, unlike in fishes and reptiles where

many species seem to have temperature-dependent sex determination

with little genetic influence.[46–48] We searched the literature for sex-

reversal and phenotypic sex-ratio data from laboratory experiments

that were carried out on anuran amphibian species with either XX/XY

or ZW/ZZ sex-determination system, focusing on the sex-reversing

effects thatweremostoften studied in this regard: developmental tem-

perature, sex hormones, and anthropogenic chemicals with endocrine-

disrupting effects. From the latter group, we chose the two com-

pounds that havebeen studiedmost frequently: the contraceptive17α-
ethynylestradiol (EE2) and the herbicide atrazine.[12] Detailed search-

ing methods are described in Supplement 1, and the data extracted

in Supplementary Table 1. We found only four experiments in which

anuran species with both male and female heterogamety were studied

for sex-reversal propensity,[22,49–51] althoughheterogametywasnot in

their focus. Other studies were usually restricted to a single species.

Experimental methods differed greatly across studies, including the

applied concentrations of the same compounds as well as water tem-

perature. Because genetic sexmarkers have been established for only a

handful of amphibian species so far (e.g.,[4–7,41]), in the vast majority of

studies sex reversal was inferred based on biased phenotypic sex ratios

produced by specific treatments. Several relevant experimental condi-

tions, such as treatment duration or mortality rates, were unclear in

numerous instances, especially among broadly cited publications from

the previous century.[52–54] For these reasons, we judged that formal

meta-analyses would be unfeasible with the currently available, highly

heterogeneous data.

The only treatment type where sex reversal was confirmed by

genetic sex markers in both male- and female-heterogametic anurans

was the administration of EE2 in the rearing water. Such studies have

been carried out in two species with ZW/ZZ, and three species with

XX/XY system (Figure 1B). The reported sex-reversal frequencies are

in agreement with the theory of “asymmetrical sex reversal”: genetic

males became phenotypic females in ZW/ZZ species at lower EE2

concentrations compared to XX/XY species. In the anuran Glandirana
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rugosa, different populations feature different sex-determination

systems.[55] Using a variety of sex hormones, sex reversal could be

induced only in ZZ individuals in the ZW/ZZ populations, while it was

absent in the population with heteromorphic X and Y chromosomes,

and it occurred in both XX and XY individuals in populations with

homomorphic sex chromosomes.[55] All these data on proven cases of

sex reversals support that the homogametic sex has higher propensity

to undergo sex reversal, especially when the two sex chromosomes

are more diverged. Although a study on reptiles[] concluded that

sex-chromosome heteromorphy does not constrain the sensitivity to

sex reversal, this conclusion was based on the finding that high doses

of 17β-estradiol (E2) injected into the eggs caused 100% female phe-

notype in two turtle species with XX/XY sex determination, regardless

of their sex chromosomes being heteromorphic or homomorphic. Low

sample sizes and the lack of genetic sexing both limit the interpretation

of these results.

Lacking data on genetically confirmed sex reversals in most species,

tentative speculations can be made based on phenotypic sex ratios

(Figure 2 and 3). Out of 18 anuran species for which we found sex-

ratio data from water-temperature, sex-hormone, or atrazine treat-

ments, only four featured ZW/ZZ sex-determination system. Treat-

ments with testosterone, dihydrotestosterone (DHT) and high tem-

perature caused sex-ratio bias toward males, but complete or near-

complete elimination of phenotypic females (≥ 98% males) at higher

treatment values was achieved only in XX/XY species (Figure 2). Treat-

ments with E2 and atrazine tended to cause sex-ratio bias toward

females, and ZW/ZZ species produced the strongest responses: only

ZW/ZZ species reached 100% female sex ratios for E2 (excepting a sin-

gle XX/XY species, Pseudacris triseriata) and high female bias (< 30%

males) for atrazine (Figure 3). Majority of the studies we overviewed

accounted for the presence of intersex individuals, although the defini-

tion of intersexuality differed between articles: in general, it included

individuals with one ovary and one testis, or gonads with mixed-sex

tissue based on either gross morphology or histology. The proportion

of intersex individuals can vary greatly between and within species

(Figure 1B, 2, and 3), sometimes even exceeding 50% of the treated

individuals;manyof these cases are likely signsof incomplete sex rever-

sal and might indicate limited sex-reversal ability in the genetic sex

affected by the applied treatment. However, intersex and sex reversal

may also occur independently of each other,[5,57] as intersex may be a

natural phase of gonad development in some species of amphibians as

well as fish [12,58] and reptiles.[59]

Sex-ratio data suggest that some species might be less susceptible

to sex reversal compared to others with the same sex-determination

system. For example, while phenotypic sex ratio in two other XX/XY

species (Pseudacris triseriata and Hyperolius viridiflavus) was strongly

affected by exogenous testosterone treatment, it was not distorted in

Hyla arborea, the third such species, by 100 000 ng/l, twice the concen-

tration that already caused 100% male phenotype in Pseudacris triseri-

ata (see Figure 2B). However, this outlying lack of sex-ratio bias inHyla

arboreamight be a treatment-specific outcome, since testosterone can

bemodified into estrogen byα-aromatase in the endocrine system; and

testosterone treatmentsmay even cause “paradoxical” male-to-female

sex reversal in some species,while nonaromatizable androgens, such as

DHT, cause female-to-male sex reversal in them.[60,61] Similar hetero-

geneity was found for fishes where methodological differences across

studies accounted for much more interspecific variation in sexreversal

inducibility than biological differences.[44] Furthermore, even within-

species differences can occur in apparent sex-reversal inducibility: for

the best-studied species, Xenopus laevis, sex ratios observed after simi-

lar treatments greatly differed between studies (e.g., [62] vs. [63]). Such

differences may stem from discrepancies in the experimental set-up,

sample size, or other methodological details (see below). Thus, while

the patterns in Figures 1B, 2, and 3 are largely in agreement with the

idea that the homogametic sex is more susceptible to sex reversal,

there is also noise in these patterns, and understanding the sources of

this variation would be important for understanding what makes cer-

tain animals more susceptible to sex reversal than others.

THE DEVIL IN THE DETAILS: HOW TO CHOOSE
SUITABLE METHODS?

In order to enable systematic comparison of the responsiveness of

different sex-determination systems to sex-reversing effects, future

studies should apply the same experimental design in both XX/XY and

ZW/ZZ species concurrently. This will minimize the risk that differ-

ences between species are confounded by uncontrolled differences in

the circumstances (such as varying relationships between nominal and

actual treatment concentrations; Supplementary Table 1). Ideally, such

experiments should include multiple treatments within the range of

ecologically relevant concentrations or temperatures, to facilitate the

recognition of ranges where sex-reversal inducibility differs between

the two sex-determination systems (see Figure 1). Pairwise compari-

son of closely related XX/XY and ZW/ZZ species (or populations of the

samespecies [55])wouldbebest fitting for this purpose; seeFigure4 for

a nonexhaustive collection of such candidate species across ectotherm

vertebrates. Once we have enough data from such experiments, quan-

titative meta-analyses of the within-experiment differences will be

executable to ascertain whether the type of heterogamety is a consis-

tent determinant of sex-reversal propensity.

Even when it is not possible to include more than one species in an

experiment on sex reversal, there is much researchers can do to make

future findingsmoredirectly comparable amongeachother andclearer

to interpret. We should endeavor to identify sex reversal correctly.

When the conclusions are drawn solely from phenotypic sex ratios, it

should be born in mind that such conclusions can be strongly affected

by sex-biased mortality [57,64] and stochasticity stemming from low

sample sizes. Therefore, mortalities and sample sizes should always be

clearly reported. Preferably, sex-reversed individuals should be identi-

fied by genetic sexing,[49,57,64] and for this, development of genetic sex

markers for those many thousands of species where such markers are

not yet available is an inevitable challenge.

When designing sex-reversal experiments and reporting the data,

several methodological aspects should be considered explicitly. Differ-

ent species can have very different pace of ontogeny and the sensitive
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F IGURE 2 Phenotypic sex ratios (i.e., proportion of males among individuals with unambiguous sexual phenotype) reported from anurans
exposed to different temperatures (A), or different concentrations of testosterone (B), or DHT (C) as tadpoles.Within each panel, dot sizes are
proportional to the number of animals with unambiguous sexual phenotype; dot colors indicate the proportion of intersex individuals among all
animals examined for intersexuality. Supposed direction of sex reversal across all panels is denoted in the large white circle in Panel (A), where the
symbols♂ and ♀ stand for male and female phenotype, respectively. Displayed anuran genera are: Bufo (B.), Euphlyctis (E.),Hyla (H.),Hyperolius
(Hyp.), Pelophylax (P.), Pseudacris (Ps.), Rana (R.) and Xenopus (X.). Two overlapping data points aremarked by an asterisk: the proportion of intersex
individuals at 30◦Cwas 0 in Rana dalmatina and 0.56 in Rana catesbeiana (A). For data and references see Supplementary Table 1

period to sex-reversing effects can also vary between them.[22,55,57,65]

Therefore, treatment periods should include the time frame when sex

reversalmay be induced in each species to be compared. To ensure this,

we need data on the timing of the sensitive window of each species.

When such information is lacking, exposure to the sex-reversing

treatment should either last for a long period during embryonic/larval

development or applied in several different, shorter periods. How-

ever, we should also keep in mind that shorter treatments may be

more environmentally relevant when applying some sex-reversing

stimuli such as heat waves,[66,67] while longer treatments may better

simulate natural conditions with others such as persistent chemical

pollutants. Another issue of timing is the diagnosis of phenotypic sex.

In sex-reversal experiments, phenotypic sex is usually identified based

on gonad morphology of dissected young animals, for example, at or
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F IGURE 3 Phenotypic sex ratios reported from anurans exposed to different concentrations of E2 (A) or atrazine (B) as tadpoles.Within each
panel, dot sizes are proportional to the number of animals with unambiguous sexual phenotype; dot colors indicate the proportion of intersex
individuals among all animals examined for intersexuality. Supposed direction of sex reversal across both panels is denoted in the large white circle
in Panel (A), where the symbols♂ and ♀ stand for male and female phenotype, respectively. Displayed anuran genera are: Bombina (Bo.), Bufo (B.),
Euphlyctis (E.),Hyla (H.),Hyperolius (Hyp.), Pseudacris (Ps.), Rana (R.) and Xenopus (X.). For better visualization, data of X. laevis is connected with a
dotted line. For data and references see Supplementary Table 1

shortly after metamorphosis in amphibians. The timing of dissection

may significantly influence the results of sexing, because gonads in

several amphibian and fish species undergo an ovary-like phase before

differentiating into ovaries or testes, and the pace of this process also

differs between species [3,60,68,69] or even within the same species.[70]

Furthermore, the relative pace of gonadal and somatic development

may vary between species and treatments [71,72]; thus, treatment

effects on somatic development (e.g., earlier metamorphosis at high

temperatures) may lead to premature dissection and thereby sex

assignment may be false [12] or impossible (undifferentiated gonads:

Supplementary Table 1). Apparently the same methodological issues

led to earlier conclusions that sex reversal was only temporary in some

amphibians.[53,73] Therefore, for phenotypic sexing to be reliable, it

should be performed at a sufficiently late age, which is usually well

after metamorphosis in amphibians.[71]

Because temperature can affect sexual development,[7,16,57] exper-

iments on chemically induced sex reversal should also pay attention to

rearing temperatures. On the one hand, different species may adapt

to different temperatures [74]; thus, keeping the animals within their

range of optimal temperatures is favored to prevent unexpected sex

reversals or the above-mentioned methodological problems of sex-

biased mortality and premature dissection. On the other hand, tem-

perature may affect the solubility, uptake and degradation rate of the

administered chemicals and ultimately their effects on sex.[57,75,76]

Therefore, rearing temperatures should be monitored, taken into

account, and reported even when temperature effects are not the

focus of the experiment. Different species and even populations within

species might differ in their sex-reversal propensity regardless of their

sex-determination system. Local or species-specific adaptations in var-

ious traits may be developed to better survive and exploit condi-

tions that vary across habitats, such as temperature [74] or anthro-

pogenic chemical pollution [77]; similar adaptationsmight also increase

or decrease the likelihood of sex reversal.[41] Therefore, the source of

the experimental animals, such as the climatic and land-use conditions

of the collection sites or the specificities of the used breeding stocks

(e.g., in Xenopus), should be clearly described in sex-reversal studies.

When the experiments include both ZW/ZZ and XX/XY species, ideally

these should be collected from the same sources or from similar habi-

tats in order to improve the comparability of the two systems’ response

to specific sex-reversing conditions.

Also, earlier information may need revisiting and updating. For

example,we recently found that sex ratio in the toadBufo bufo (ZW/ZZ)

was not affected by exposure to 30◦C, a temperature high enough

to cause up to 100% female-to-male sex reversal in the frog Rana

dalmatina (XX/XY) in the same experiment.[51] This contradicted the

broadly cited study by Piquet,[53] where 25◦C produced male excess

in Bufo vulgaris (a synonym for Bufo bufo). The contradiction can be

resolved by realizing that Piquet captured her animals near Geneva,

in a hybrid zone of Bufo bufo and Bufo spinosus,[78] two species that

were thought to be one at the time.[79,80] Notably, Bufo spinosus fea-

tures XX/XY system.[81] Thus, it is likely that the study of Piquet [53]

is incorrectly cited in several reviews (e.g., [3,21,35]) as evidence for
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F IGURE 4 Examples of closely relatedmale-heterogametic (XY) and female-heterogametic (ZW) species that occur in the same or relatively
close geographical regions. Species in each oval belong to a single family, representing altogether nine orders of fish, amphibians and reptiles
(denoted by different black icons). Data on sex determination was collected from [46,48,81,85–89], and data on taxonomy and indicative geographical
distribution were obtained from [90,91]

temperature-induced sex reversal in Bufo bufo, and her findings poten-

tially reflect female-to-male sex reversal induced in homogametic XX

instead of heterogametic ZW individuals.With recent developments in

molecular methods and resulting increase in the quantity and quality

of data on taxonomy, sex chromosomes, and genetic sex markers, the

time is now ripe for clarifying the role of heterogamety in sex-reversal

susceptibility across ectothermic vertebrates.

CONCLUSIONS

Heterogamety is a fundamental aspect of organismal biology that,

according to recent research, has far-ranging consequences on life

histories and population dynamics, including sex ratios, sex-specific

aging rates, and life spans.[82–84] Here we have highlighted that het-

erogamety may further influence the fate of ectothermic vertebrates

by affecting their propensity to undergo environmental sex reversal.

By considering “asymmetrical sex reversal,” a relaxed interpretation

of Witschi’s rule, we can generate testable predictions regarding the

differences in sex-reversal propensity between populations with dif-

ferent sex-chromosome systems induced by different environmental

conditions. Empirical tests of these predictions are promising but so far

scanty and difficult to integrate due to methodological heterogeneity

behind the currently available results. Still, multiple findings suggest

that in taxa like anurans and fish where high temperatures usually

cause female-to-male sex reversal,[1,3,9] climate change and urban heat

islandsmaypotentially pose greater risk toXX/XYcompared toZW/ZZ

systems. By contrast, ZW/ZZ species may be more vulnerable to sev-
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eral chemical pollutants that can induce male-to-female sex reversal.

Furthermore, in species where temperature elevation induces male-

to-female sex reversal (e.g., some reptiles[2] and caudate amphibians
[16]), ZW/ZZ systems may be more threatened by heat waves. There-

fore, more research on sex reversal is needed in order to assess the

vulnerability of ectotherms to both climate change and environmental

pollution. We hope that, by considering the methodological guidelines

that we have provided in the present article, future studies will enable

a systematic comparison of sex-reversal propensities in different

sex-chromosome systems, and help to better understand the evolution

of sex determination and its consequences in the Anthropocene.

SUPPORTING INFORMATION

Detailed searching methods are described in Supplement 1. Detailed

references and the collected data on sex reversal, sex bias and sex

determination are shown in Supplementary Table 1.
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1 Detailed methods of literature search 

We searched the literature to find articles that met the following criteria: i) anuran species with either 

XX/XY or ZW/ZZ sex-determination system were studied, and ii) sex-reversal or phenotypic sex-ratio 

data were produced in laboratory experiments by one of the following treatments: increased or 

decreased developmental temperature, testosterone, dihydrotestosterone (DHT), 17β-estradiol (E2), 

17α-ethynylestradiol (EE2), and atrazine. We checked articles listed in previously published reviews 

(Hayes, 1998; Eggert, 2004; Rohr and McCoy, 2010; Van Der Kraak et al., 2014; Orton and Tyler, 

2015; Hanson et al., 2019; Ruiz-García et al., 2021) and also applied directional search in Web of 

Science and Google Scholar (e.g. (Anura OR Amphibia) AND [treatment] AND "sex ratio"). 

Availability of information on the sex-determination system for each species was checked in the 

TreeOfSex database (Ashman et al., 2014) as well as by additional literature search. 

We excluded studies, or parts of studies where i) chemicals were injected into the animals' body (rather 

than administered into the rearing water), ii) multiple treatments were applied to the same individuals, 

iii) description of the fundamental experimental methodology was unclear, iv) 25% or more of the 

individuals had undifferentiated gonads (i.e. indicating unsuitably early dissection), v) progeny of sex-

reversed individuals was studied, vi) individuals were surgically modified, or vii) hybrids were studied. 

We also excluded some further articles for different reasons (see below). Because we found data on 

genetically proven sex-reversal frequency induced by EE2 treatment in both XX/XY and ZW/ZZ 

species, for EE2 we decided to concentrate on sex-reversal frequency instead of sex ratios, because the 

latter would only provide a less reliable estimation of the former. We systematically read the full text 

of each article and collected relevant data from them. Where important numbers were only shown on 

figures, we measured the respective data in WebPlotDigitizer 4.5 (Rohatgi, 2021). 
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2 Studies excluded for particular reasons 

Reason 1: A chemical mixture was used instead of pure atrazine. 

- Langlois et al. (2010) https://doi.org/10.1289/ehp.0901418 

Reason 2: Exposure lasted only for 48 hours. 

- Tavera-Mendoza et al. (2002) https://doi.org/10.1002/etc.5620210621 

- Tavera‐Mendoza et al. (2002) https://doi.org/10.1897/1551-

5028(2002)021<0527:rotatx>2.0.co;2 

Reason 3: Low sample sizes, high mortality rates and high proportion of undifferentiated gonads. 

- Petrini (1998) https://doi.org/10.1002/(SICI)1097-010X(19980215)280:3<245::AID-

JEZ6>3.0.CO;2-N 

Reason 4: Temperature conditions were not controlled. 

- Jooste et al. (2005) https://doi.org/10.1021/es048134q 

- Hsü CY, Liang HM (1970): Sex races of Rana catesbeiana in Taiwan. Herpetologica 26(2): 

214–221. https://www.jstor.org/stable/3890741 

Reason 5: Sex ratios were not (unambiguously) provided. 

- Coady et al. (2005) https://doi.org/10.1016/j.ecoenv.2004.10.010 

- Hayes et al. (2002) https://doi.org/10.1073/pnas.082121499 

- Hayes et al. (2003) https://doi.org/10.1289/ehp.5932 

- Zaya et al. (2011) https://doi.org/10.1016/j.aquatox.2011.04.021 

- Sai et al. (2016) https://doi.org/10.1016/j.chemosphere.2016.05.008 

Reason 6: The number of individuals sexed and the proportion of undifferentiated gonads are not 

described; however, it is indicated that undifferentiated gonads occurred. 

- Brande-Lavridsen (2008) https://doi.org/10.1002/jez.462 

Reason 7: The article is not written in English. 

- Hertwig R: Untersuchungen über das Sexualitätsproblem. III. Verh Deutsch Zool Gesellsch 

(1907). 

- Hertwig R: Über das Problem der sexuellen Differenzierung. Verh Deutsch Zool Ges 15:186–

214 (1905). 

- Hertwig R: Weitere Untersuchungen über das Sexualitätsproblem. Verh Deutsch Zool 

Gesellsch 186–213 

- Witschi E. Experimentelle Untersuchungen über die Entwicklungsgeschichte der Keimdrüsen 

von Rana temporaria. Arch Mikr Nat Entw 1914, 85: 9–113. 

Reason 8: We could not aquire the full text. 
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