
AARMS Vol. 16, No. 1 (2017) 37–52.

37

Processing Intrusion Data with Machine Learning
and MapReduce

Csaba BRUNNER1

These past years, cyber-attacks became a daily issue for enterprises. A possible de-
fence against this kind of threat is intrusion detection. One of the key challenges is
information extraction from this large amount of logged data. My paper aims to
identify cyber-attack types as patterns in log files using advanced parallel computing
approach and machine learning techniques. The MapReduce programming model is
applied to parallel computing, while decision tree algorithms are used from machine
learning.
I discuss two research questions in this paper. First, despite parallelization, are
machine learning algorithms still able to provide results with acceptable accuracy
measured by traditional data mining figures (accuracy, precision, recall, area un-
der receiver operand characteristic [ROC] curve [AUC])? Second, is it possible to
achieve significant performance improvement by measuring runtime execution of the
algorithm by introducing several measurement points?
I proved that the machine learning model with two categories in the target variable
is preferred to the one having five categories. The average performance improve-
ment was 4–5 times faster for the whole algorithm compared to a single core solu-
tion. I achieved most of these improvements during the data transfer phase.
Keywords: intrusion detection, parallel processing, machine learning, network
security

Introduction

With the rapid spread of the internet and related technologies, a new form of crime has
appeared. This form evolved together with the technology it was based on. By today, it has
grown so big, that it endangers business ventures, especially those that rely on the same
technology to deliver value. News of website shutdowns, bank card id thefts and botnet at-
tacks are increasingly common and concerning. What can business ventures do against such
threats?

One solution is to stop these attacks before they enter crucial systems, like the internal
e-mail server. The first initiatives were DMZs (DeMilitarized Zones) between the internet
and the intranet to protect the latter from malicious codes coming from the former. A more
advanced form of protection is to use intelligent Intrusion Detection/Intrusion Prevention
Systems (IDS/IPS-es), systems that detect TCP/IP packets sent with harmful intent, and pre-
vent the arrival of further packets. This detection/prevention is a complicated task, as the
packets are disguised well. They usually follow detectable patterns, which is especially evi-
dent with denial of service attacks.

1 Corvinus University of Budapest, Ph.D. student; e-mail: csaba.brunner@uni-corvinus.hu

10.32565/aarms.2017.1.4

https://doi.org/10.32565/aarms.2017.1.4

38 AARMS (16) 1 (2017)

Csaba BRUNNER: Processing Intrusion Data with Machine Learning and MapReduce

According to source [1], IDS-es have several categories and types:
• Network based IDS: listen to network activity, when an anomaly is detected, send a

warning to the operator. This way they are able to complement the functionality of a
firewall.

• Host based IDS: configured to the system they were installed on, logging information
about resource usage to raise warnings about a potential attack.

The types are the following:
• Signature based: These IDS-es protect against detected intrusion patterns stored in the

form of signatures.
• Statistics based: These systems need a comprehensive definition of the known and

expected behaviour of the system.
• Supported by neural networks: monitors general activity and traffic of the network,

and creates a database. Similar to statistic based IDS-es, but with additional self-learn-
ing capabilities.

With signature based intrusion detection, pattern recognition techniques, such as machine
learning, are used. „The aim of machine learning is to find a hypothesis best fitting initial
observations—with the expectation that the learned pattern or connection could be applied
to new observations as well.” [2: 267] For intrusion detection, common pattern mining and
classification are the most useful options. One example of classification algorithms are de-
cision trees.

First I talked about processing the data, but storing them is just as important. In what
structure is packet data stored on the server, what is the aggregate size of it, and how will this
data be accessed again? Of all the questions, the structure and size causes the most trouble.
In the case of intrusion detection, structure is moderate as packet information is stored in
network logfiles in such a big quantity that it causes problems even to dedicated mainframe
architectures. My suggested solution is cheap commodity hardware set up in a parallel pro-
cessing architecture, and the MapReduce programming model.

In the MapReduce programming model, a function is performed on all observations of
a given dataset, often a key assignment to help observation allocation. The observations are
then distributed between the nodes and intermediate calculations are performed algorithmi-
cally. The final result is generated in the reduce step and is sent to one of the nodes or directly
to the user.

The focus of my research consists of machine learning and parallel computing using
MapReduce. Intrusion detection is a practical example where the results are used. Research
questions which I deal with in this paper are the following:

1. Will the accuracy of models created by machine learning algorithms deteriorate due to
parallel computing?

2. Will runtime performance improve by parallelizing the task?
I used a publicly available dataset in the research, and then I have written a customized com-
puter algorithm to test my research questions. Model accuracy was tested with standard data
mining figures, such as accuracy, precision, recall, F-score and wherever applicable, AUC.
I evaluated performance improvement by inserting several measurement points during the
execution of the algorithm.

I structured the article in the following way: first I will give a literature overview.
Then, I will elaborate on the theoretical background and research methodology, from Map-

Csaba BRUNNER: Processing Intrusion Data with Machine Learning and MapReduce

AARMS (16) 1 (2017) 39

Reduce and the custom-coded program to the sampling of the selected dataset. Next, I will
discuss the results of the test runs for both my research questions (accuracy and performance).
Finally, I will discuss the findings and propose a trajectory to conduct further research on.

Literature Review

The argument for selecting source [3] was that they had written about the dataset of the
SIGKDD ’99 data mining competition, the dataset contained data for solving and testing
intrusion detection problems, the problem I selected for my research as well. Source [3]
introduced the reader to the goals and methods of IDS-es, and provided the most important
conclusions of IDS research, such as accuracy, extensibility and adaptability. According to
them, several categories of data mining exist that can help in performing intrusion detection:
categorization, link and sequential analyses. In their research, they used all three. They called
attention to the shortcomings of IDS-es too. In their final model the authors designed basic
classifiers for detecting connections between features, then the linked features were grouped
and assessed in a final model by an aggregate classifier.

The key conclusion of source [3] was that different intrusion types are better described by
different indicators, and are detected by different models:

• The traffic model: for defence against Denial of Service (DOS) and fast probing at-
tacks.

• The host-based traffic model: for defence against slow probing.
• The content model: to detect R2L and U2R attacks.

Next, the authors evaluated the accuracy of the aggregate classifier. The models found fea-
tures describing probing and U2R attacks well. On the other hand DOS and R2L attacks
had a significant standard deviation, feature generation and machine learning provided less
convincing results.

Source [3] were the first who took a dataset of intrusions and attempted to analyse it by
using machine learning. They proposed a model, which was able to identify attacks on the
network. Their article was the first where the dataset from the KDDCup ’99 competition was
mentioned. Processing this dataset on a parallel architecture is where I attempt to provide
new findings.

One potential machine learning algorithm family supporting IDS-es are decision trees.
The idea behind them is that they translate complicated connections to a set of simple de-
cisions. They are capable of detecting both linear and nonlinear connections, they can be
considered as universal approximators in that regard. Decision tree algorithms start from a
root node, select an appropriate variable from the dataset (based on calculations, the most
common measure is information gain based on entropy), then split the dataset in two along
a selected variable, so that the two parts are more homogenous, than the whole dataset was
before. Repeat these steps until stopping criteria is met. This way, every observation can be
assigned one single leaf of the tree. The category that has the most observations on a leaf
becomes the prediction for future observations. Further readings on decision trees are found
in sources [4] [5] [6] [7] [8].

Decision tree algorithms have many advantages:
• they automatically recognize variables with weak predictive power and omit them

from the model. This is why decision trees are often used for preliminary variable
selection as well;

40 AARMS (16) 1 (2017)

Csaba BRUNNER: Processing Intrusion Data with Machine Learning and MapReduce

• their scalability is good, can be used on large datasets;
• an easy to understand set of decisions could be generated from a path leading from the

root to a selected leaf;
• decision tree algorithms perform comparably to many other classification models.

Their notable disadvantages:
• they have a tendency to overlearn, meaning they learn not general trends in the dataset,

but specific observations of it. This causes poor accuracy when presented with new
observations. This is avoided by combining two techniques: testing the model with
new observations that were not part of the training, and by pruning the decision tree
(by removing partial trees from the model);

• as a classification algorithm, decision trees perform worse on datasets with unequally
distributed target variable. To fix this, stratified sampling could be used in a way that
overrepresented values in the target variable are under sampled and underrepresented
values are oversampled. This is important, because the problem of intrusion detection
also involves unequally distributed datasets.

Taking all the advantages and disadvantages into consideration, I chose decision tree algo-
rithms for pattern recognition on the KDD dataset.

Source [9] developed an IDS/IPS equipped with a machine learning algorithm to protect
802.11 Wi-Fi networks against DOS attacks. The two types of DOS attacks against Wi-Fi
networks are authentication and authorization attacks. In the former, the attacker sends a lot
of authentication messages, thus overloading the Wi-Fi AP (access point). The latter works
similarly, except here the goal is to overload the MAC address table. The authors select-
ed several machine learning algorithms: Bayesian networks, AdaBoost, alternating decision
trees, SVM and RIDOR algorithm. The focus of the research was on the performance of the
machine learning algorithms, with more emphasis on their precision and recall. From all
the algorithms, RIDOR, alternating decision trees and AdaBoost performed best, surpassing
90% for both measures. Taking runtime performance into consideration, AdaBoost turned out
to be the best choice.

The article shown several examples for supporting IDS-es with machine learning algo-
rithms. A criticism towards it is that it dealt with network issues more, while potential for
parallel machine learning remained mostly unexplored.

Source [10] developed a new decision tree algorithm for processing large datasets in a
fast and memory efficient way. Several decision tree algorithms were developed before, but
these had two issues: the entire training dataset had to be loaded in memory and parameter-
izing them was a complicated task. The improvement of source’s [10] decision tree over the
previous ones was that it did not store every training observation in memory, instead, loaded
them one by one, and updated the leaves accordingly. If more than a set number of observa-
tions were assigned to a leaf, then a cut and reassignment was performed. The authors com-
pared their new algorithm with the already existing ones. The new decision tree algorithm
provided comparable or better results. Memory use was evaluated in separate tests. The new
algorithm was very efficient in this regard as well.

Source [10] provided a new memory-efficient algorithm for use on commodity comput-
ers. Re-using the primary outcome of their research in a parallel environment is potentially
beneficial, but the frequency of read cycles on the slow HDD storage remains a question.

Csaba BRUNNER: Processing Intrusion Data with Machine Learning and MapReduce

AARMS (16) 1 (2017) 41

Source [11] took a different approach. The article was about a decision tree algorithm im-
plemented in a parallel architecture based on the Message Passing Interface (MPI) standard
and the MapReduce programming model. The tree was built up on a central node, while the
worker nodes were responsible for calculating the next cut variable. The algorithm collected
(reduced) the information gains on the master node which chose the next cut variable. Both
the decision tree and the worker nodes were updated according to this decision. The author
used the first 15 observations of the iris dataset. Two tests were performed: the first on one
multicore computer, the next involved several.

Source’s [11] research brought up more questions than it answered. The usability of
the results was reduced by the fact that observation count was too low in the tests. Unlike
source’s [11] research, I assigned the construction of decision trees to the worker nodes as
well, simulating a decision forest algorithm. The selected dataset for my research was far
bigger than what the author selected: I decided to test my assumptions on the KDD dataset.

Source [12] introduces and calls attention to the hardships during the evolution of par-
allel computing in his article. It starts with a historical introduction, and then three logically
sounding yet bad ideas were introduced: Amdahl’s law, “dusty deck” and attached acceler-
ators.

Amdahl’s Law: “If half of a computation cannot use even a second processor working in
parallel with the first, then, no matter how many processors one employs, the work will take
at least half the uniprocessor compute time. If the fraction of work that must be sequential,
the Amdahl fraction, is f, then the speedup from parallelism cannot be more than 1/f.” [12: 2]
The main driving force behind parallelization is not the speed improvement, but the possi-
bility and capacity of it. As complexity increases so decreases the importance of the Amdahl
fraction.

Dusty deck: from time to time in order to improve performance, programs have to be
changed as their execution model changes. Automated reprogramming is not possible, as too
many physical, mathematical and other theories and ideas lie behind the codes that are not
referenced by the code.

The third bad idea was the use of attached accelerators. They indeed were capable of
boosting the performance of general use computer hardware, but most attempts did not find
a wide enough audience. There were several efforts at developing hybrid solutions, but then
the programmer had to harmonize two low-level architectures, compared to clusters created
from commodity PCs.

At the end of his article [12] introduced some ideas that were not wrong fundamentally,
but for some reason did not become widespread enough. Examples are vector computers and
shared memory computers. These two ideas live on in modern multicore processors.

Then he proposed some good ideas that are followed even today:
• it is always better to abandon old code and re-think algorithms if it results in better

parallelization;
• data should be distributed to minimize communication and data transfer;
• there is no need for shared memory, only for a standard portable messaging layer;
• cheap commodity hardware is preferable;
• memory is the bottleneck, acquiring more computing capacity is cheaper. being harder

to access, after a threshold, memory becomes more important in a parallel architecture;
• internal network should be well established with high bandwidth.

42 AARMS (16) 1 (2017)

Csaba BRUNNER: Processing Intrusion Data with Machine Learning and MapReduce

The article helped identify the pitfalls that need to be paid attention to when developing a
parallel architecture, which are the proposals that look logical, but misleading, and which
ideas work in practice.

Research Methodology

In this section I will detail the MapReduce programming model followed by the selected
decision tree machine learning algorithm. After this, I will introduce the flow of the custom
test program. Then I will elaborate on the dataset, its specifics and sampling together with the
introduction of a conceptual hierarchy and my reasoning behind it.

MapReduce

MapReduce is a programming model first invented and used by Google. It is used to perform
operations on large datasets as it allows programs to run on parallel clusters of commodity
hardware. The following paragraph is based on the work of J. Dean and S. Ghemawat. [13]

The general parallel architecture based on MapReduce has one or more computer called
masters which are responsible for resource management on the rest of the architecture.
The remaining computers are called workers, and as the name implies, they do most of the
calculations. First, a map function is carried out, which performs a function on all the ob-
servations of the dataset, most commonly a key assignment, to provide intermediate results.
There might be additional calculations with these intermediate results, or the next step fol-
lows immediately. This step is the reduce step which calculates the final result using the inter-
mediate result on the master computer. If more master computers are involved, then a second
reduce might be performed, ending the MapReduce cycle.

Parallel Architecture

Parallelism took the number of processor cores of the computers connected as a basis; they
are the execution threads of the program and the computing nodes of the parallel architecture.
I have set up three configurations. The first involved one processor with two cores. I did this
to create a basis for comparison; I carried out four runs in this configuration. I expected that
the program would take the most time to run in this configuration. The second and third were
the real research executions of the program, one single CPU with 4 cores, and two CPUs with
8 cores together. I changed two key factors, one at a time during the test runs: target variable
class count (5 or 2 classes) and sample size (small or large). I repeated each run three times
to reduce the chance of error. Altogether, the program executed 24 + 4 times, comparison
bases included.

Bagging Algorithm

The MapReduce model is not present in my program in a pure state. Reduction is performed
separately in a code snippet reminiscent of a bagging algorithm. Bagging has ties with ma-
chine learning; the dataset is separated into sections for training on several machine learning
models. The models each then generate predictions on new observations, send these predic-

Csaba BRUNNER: Processing Intrusion Data with Machine Learning and MapReduce

AARMS (16) 1 (2017) 43

tions to a master node, then a simple voting is performed to generate the final prediction.
It was confirmed that bagging can improve the accuracy of unstable machine learning mod-
els, such as decision trees. For additional material, check sources [5] and [7].

The Program

I created my test program in Java using a Java implementation of the MPI standard, called
MPJ Express and the Waikato Environment for Knowledge Analysis Application Program-
ming Interface (WEKA API). MPI is a general interface that allows programming of com-
munication between different computers. I used MPI in my program, because it has method
support for the MapReduce model. WEKA is an open source Java API for data mining,
supporting, among others, decision tree algorithms. More information can be found on MPJ
Express in source [14], and on the WEKA API in source [15].

The program executes a standard data mining process, but has some additions to it to
make it run on a parallel architecture. First, the master loads a pre-sampled dataset, splits
it, and distributes the splits between the workers. The workers then train their own decision
trees using the samples they received and send a description of their models back to the
master. The test phase is next, similar to training; the master sends slices of the test dataset
to the workers to test their models. The workers in turn send back the confusion matrices.
Next, as a form of validation, 10 observations are sent to every worker. They each make their
own predictions on the observations and send them back to the master, where they will go
through a simple voting to determine the composite prediction of the architecture, similar to
a bagging algorithm. Finally, as the program ran, performance was measured and collected
on the workers, and now is sent back in the final step to the master.

Sampling: Observations

To perform a machine learning task, like intrusion detection, data is needed first. The data-
set of the KDDCup ’99 data mining competition was chosen, being the most common for
solving IDS problems with data mining. The dataset contained ~7 million observations of
41 variables divided into a training set (~5 million observations) and a test set (~2 million
observations). This amount of data was more than what the program could handle. For this,
first, I tried to use 10% samples, instead of the full datasets. These 10% samples were also
provided for the competition. [16]

The 10% samples were still too much, in order to reduce memory load, I used a stratified
split. This stratified split was done four times to provide a small and a large sample for both
testing and training purposes. Another defining characteristic of sample usage was the num-
ber of categories in the target variable (5 or 2 categories). For a short summary, see Table 1.

44 AARMS (16) 1 (2017)

Csaba BRUNNER: Processing Intrusion Data with Machine Learning and MapReduce

Table 1. Sampling overview. Sampling was determined by two
 factors: their intended purpose and their size. [Edited by the author.]

Target variable Training Test Sample size
5 class 3,000 5,000

S
2 class 5,000 3,000
5 class 6,000 10,000

L
2 class 10,000 6,000

Sampling: Target variables

Another, smaller issue was with the target variable, it had too many categories. To reduce
the number of them, I used a conceptual hierarchy. This way, I could reduce complexity first
to a 5 class variable, then to a 2 class variable. Table 2 shows the conceptual hierarchy I
constructed.

Table 2. Conceptual Hierarchy. [Edited by the author.]

2 class 5 class original
NO DOS back

land
neptune
pod
smurf
teardrop

norm normal
YES probe ipsweep

nmap
portsweep
satan

r2l ftp write
guess passwd
imap
multihop
phf
spy
warez-client
warez-master

u2r buffer overflow
loadmodule
perl
rootkit

Csaba BRUNNER: Processing Intrusion Data with Machine Learning and MapReduce

AARMS (16) 1 (2017) 45

There is one aspect of the conceptual hierarchy that needs explanation: DOS was chosen to
be a “NO” category. What I wanted to achieve with the machine learning model, was to find
the rarer attack types first, such as probe, R2L and U2R. Later, by creating a different con-
ceptual hierarchy for the 5 class to 2 class cases, the machine learning model can be altered
to detect DOS attacks specifically.

Results

Model Accuracy

The results were evaluated to answer the two hypotheses. My presuppositions were that the
number of additional cores does not decrease model accuracy, and that sample size played
no role either. The results confirm these, for details, see Table 3 and 4. The comparison basis
is included for each set of tests. There are some abbreviations, for example 1p4c means the
table is about the 1 processor, 4 cores architecture setup.

Table 3. Data mining model performance with 5 classed target variable, 4 processor cores.
[Edited by the author.]

1p4c

Small sample (3–5,000 obs.) Large sample (6–10,000 obs.)
1. run 2. run 3. run 1p2c 1. run 2. run 3. run 1p2c

Accuracy 0.978 0.964 0.981 0.984 0.985 0.985 0.980 0.987
Precision 0.477 0.449 0.513 0.511 0.532 0.558 0.489 0.576

Recall 0.438 N/A N/A N/A N/A N/A N/A N/A
F-score 0.456 N/A N/A N/A N/A N/A N/A N/A

Table 4. Data mining model performance with 5 classed target variable, 8 processor cores.
[Edited by the author.]

2p8c Small sample (3–5,000 obs.) Large sample (6–10,000 obs.)
1. run 2. run 3. run 1p2c 1. run 2. run 3. run 1p2c

Accuracy 0.970 0.977 0.976 0.984 0.981 0.981 0.980 0.987
Precision 0.397 0.467 0.476 0.511 0.513 0.445 0.470 0.576

Recall N/A N/A N/A N/A N/A N/A N/A N/A
F-score N/A N/A N/A N/A N/A N/A N/A N/A

Table 3 and 4 show a good fit of the model based on accuracy. The number of cores or the
sample size did not alter the outcome. Intrusion detection works better if the number of false
positives remains low, as well as the number of correctly identified attacks remains high.
This requirement is best described in the precision and recall (and F-score) of a selected
model. With the target variable having 5 classes, the model was showing a mediocre preci-
sion (~0.5 or less) and recall, apart from one exceptional case, remained incalculable. The
reason behind this was the low representation of some categories in the original dataset, R2L
and U2R attacks were highly under-represented.

46 AARMS (16) 1 (2017)

Csaba BRUNNER: Processing Intrusion Data with Machine Learning and MapReduce

This required a second program execution, this time with stratified samples and a tar-
get variable having only 2 classes. The results of these runs are shown on Table 5 and 6.
With only 2 categories in the target variable, recall and F-score became calculable, and a new
measure, the area under the Receiver Operand Characteristic (ROC) curve was added.

Table 5. Data mining model performance with 2 classed target variable, 4 processor cores.
[Edited by the author.]

1p4c

Small sample (3–5,000 obs.) Large sample (6–10,000 obs.)
1. run 2. run 3. run 1p2c 1. run 2. run 3. run 1p2c

Accuracy 0.785 0.791 0.772 0.796 0.795 0.792 0.809 0.799
Precision 0.959 0.975 0.866 0.967 0.965 0.902 0.903 0.969

Recall 0.483 0.490 0.508 0.506 0.507 0.539 0.585 0.513
F-score 0.642 0.652 0.641 0.664 0.664 0.675 0.710 0.671
AUC 0.735 0.766 0.783 0.793 0.811 0.789 0.776 0.777

Table 6. Data mining model performance with 2 classed target variable, 8 processor cores.
[Edited by the author.]

2p8c

Small sample (3–5,000 obs.) Large sample (6–10,000 obs.)
1. run 2. run 3. run 1p2c 1. run 2. run 3. run 1p2c

Accuracy 0.793 0.782 0.788 0.796 0.797 0.756 0.777 0.799
Precision 0.893 0.931 0.903 0.967 0.936 0.895 0.881 0.969

Recall 0.546 0.493 0.525 0.506 0.529 0.442 0.512 0.513
F-score 0.678 0.644 0.664 0.664 0.676 0.592 0.648 0.671
AUC 0.789 0.719 0.784 0.793 0.772 0.771 0.757 0.777

By going from 2 classes to 5 classes, accuracy decreased by approximately 0.15, while pre-
cision increased to ~0.9. Recall and F scores became available, showing worse, but still ac-
ceptable results. The built model had a very low false positive rate, so it did not detect “NO”
activities as rare attacks. However, it had more trouble detecting actual rare attacks as attacks
and not as “not a rare attack” behaviour. Finally, AUC shown a good fit of the model, values
were around 0.75.

Runtime Performance

The number of cores and sample size played a key role in determining runtime performance.
My presumption here was that the bigger the sample size was, the longer it took the algorithm
to handle the observations. Conversely, as the number of processor cores increased, the al-
gorithm became faster, as more and more parallel threads could run. This is what the overall
performance shows on Figure 1.

Csaba BRUNNER: Processing Intrusion Data with Machine Learning and MapReduce

AARMS (16) 1 (2017) 47

0

500

1000

1500

2000

2500

3000

1p2c 1p4c 2p8c

R
un

ti
m

e

sdnocesilli
m dnasuoh

T

Small sample

Large sample

Figure 1. Change of overall performance. [Edited by the author.]

The overall performance shows the runtime of the entire algorithm from start to finish.
The speed increase from 2 to 4 cores, as well as from 4 to 8 cores was as high as 4–5 times.

This is not the only result; a detailed picture can be acquired by looking at the different
parts of the algorithm. Two received special attention, one dealt with data transfer, the other
with the execution time of the decision tree algorithm. Results for data transfer are shown on
Figure 2, 3, 4 and 5.

0

50

100

150

200

250

300

350

400

450

1p2c 1p4c 2p8c

R
un

ti
m

e

sdnocesilli
m

dnasuoh
T

Receive data on small sample

Small training set, 5 classes

Small training set, 2 classes

Small test set 5 classes

Small test set 2 classes

Figure 2. Data transfer measurements over number of cores per sample size (small sample).
[Edited by the author.]

48 AARMS (16) 1 (2017)

Csaba BRUNNER: Processing Intrusion Data with Machine Learning and MapReduce

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1p2c 1p4c 2p8c

R
un

tim
e

sdnocesilli
m

dnasuohT

Receive data on large sample

Large training set 5 classes

Large training set 2 classes

Large test set 5 classes

Large test set 2 classes

Figure 3. Data transfer measurements over number of cores per sample size (large sample).
[Edited by the author.]

Data transfer charts show a similar tendency to the overall runtime, except the scale is small-
er. The charts also indicate a workaround of an error caused by the WEKA API, one that
involved sample sizes. As a workaround, the training and test sets between the 2 class and
5 class executions have been switched around. Figure 4 and 5 provides a better insight into
this. The charts also show that the data transfer took the most time to complete of all activi-
ties, more than 90% of total runtime.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1p2c 1p4c 2p8c

R
un

tim
e

sdnocesilli
m

dnasuohT

Receive data, 5 classes

Small training set, 5 classes

Small test set 5 classes

Large training set 5 classes

Large test set 5 classes

Figure 4. Data transfer measurements over number of cores per target variable classes (5 classes).
[Edited by the author.]

Csaba BRUNNER: Processing Intrusion Data with Machine Learning and MapReduce

AARMS (16) 1 (2017) 49

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1p2c 1p4c 2p8c

R
un

tim
e

sdnocesilli
m

dnasuohT

Receive data, 2 classes

Small training set, 2 classes

Small test set 2 classes

Large training set 2 classes

Large test set 2 classes

Figure 5. Data transfer measurements over number of cores per target variable classes (2 classes).
[Edited by the author.]

The performance measurement of the machine learning algorithm involved the training and
testing of the model. The results of model training are shown on Figure 6 and 7 and for model
testing on Figure 8 and 9.

0

100

200

300

400

500

600

700

800

900

1000

1p2c 1p4c 2p8c

R
un

tim
e

(m
s)

Training on small sample

Training 5 classes

Training 2 classes

Figure 6. Training performance (small sample). [Edited by the author.]

50 AARMS (16) 1 (2017)

Csaba BRUNNER: Processing Intrusion Data with Machine Learning and MapReduce

0

500

1000

1500

2000

2500

3000

3500

4000

1p2c 1p4c 2p8c

R
un

tim
e

(m
s)

Training on large sample

Training 5 classes

Training 2 classes

Figure 7. Training performance (large sample). [Edited by the author.]

Training using a 2 class target variable has taken more time, than for a 5 class target variable.
The fact that training and test sets were switched around played a key role here as well. Train-
ing sets on 5 classes contained 3 and 6 thousand observations, while on 2 classes it contained
5 and 10 thousand. This suggests that the opposite is true for testing performance, where
5 classes will take longer, and 2 classes will be faster.

0

50

100

150

200

250

300

350

1p2c 1p4c 2p8c

R
un

tim
e

(m
s)

Testing on small sample

Testing 5 classes

Testing 2 classes

Figure 8. Test performance (small sample). [Edited by the author.]

Csaba BRUNNER: Processing Intrusion Data with Machine Learning and MapReduce

AARMS (16) 1 (2017) 51

0

20

40

60

80

100

120

1p2c 1p4c 2p8c

R
un

tim
e

(m
s)

Testing on large sample

Testing 5 classes

Testing 2 classes

Figure 9. Test performance (large sample). [Edited by the author.]

This assumption is quickly disproven by looking at Figure 8 and 9. In fact, no tendency could
be detected during model tests.

Discussion

With my research, I have tried to consider parallel processing and the application of machine
learning on parallel processing architectures, asking two main questions, which could be
interpreted as hypothesis:

1. Will the accuracy of models created by the decision tree algorithm deteriorate due to
parallel computing?

2. Will runtime performance improve by parallelizing the task?
Looking from a strictly top-down perspective, both hypotheses were confirmed. On average,
model accuracy did not decrease, not to parallelization. Looking at model accuracy from a
closer perspective, one must choose how many classes their target variable should have. With
5 classes, accuracy reached high levels, but two more important measurements, precision
and recall, shown sub-par results: one was dangerously low, and the other incalculable. With
2 classes, precision reached high levels and recall became calculable. A requirement towards
an intrusion detection system is to have a low false positive and a low false negative rate,
which is best described by high precision and recall values, therefore choosing a 2 class vari-
able with the right stratified sampling may be preferable.

A potential topic to continue my research on would be a comparison between the different
machine learning algorithms to see which performs best on the selected intrusion dataset.
The idea is to take several algorithms, run them on several cores and then compare their
performance either with the measures used in this research, or by using a different method.
A different idea comes from a drawback of the program developed: individual machine learn-
ing model accuracy was easily determined, but a combined accuracy remained largely unex-
plored, my research only estimated it based on the individual results.

52 AARMS (16) 1 (2017)

Csaba BRUNNER: Processing Intrusion Data with Machine Learning and MapReduce

Runtime performance improved by 4–5 times on average. Taking a look at the detailed
picture again, we can find where the majority of improvements came from. The time it takes
to transfer data between processor cores improved the most, almost exclusively. Machine
learning parts also indicated change, but compared to data transfer, it remained negligible.
This confirms source’s [12] statement about the importance of a high bandwidth network and
the need for large amounts of memory to keep data on a storage with fast response times.
This is an area worthy of further research.

References

[1] ISACA: CISA Review Manual 2010. Rolling Meadows: ISACA, 2010.
[2] SÁNTÁNÉ-TÓTH E., BÍRÓ M., GÁBOR A., KŐ A., LOVRICS L.: Döntéstámogató

Rendszerek. Budapest: Panem Gazdaságinformatika, 2008.
[3] LEE, W., STOLFO S. J., MOK, K. W.: A data mining framework for building intrusion

detection models. Security and Privacy, 1999. Proceedings of the 1999 IEEE Symposium on
IEEE. 120–132. 1999. DOI: https://doi.org/10.1109/SECPRI.1999.766909

[4] BODON F., BUZA K.: Adatbányászat. Budapest: BME, 2013. www.cs.bme.hu/nagyadat/
bodon.pdf (Downloaded: 29 12 2015)

[5] OMITAOMU, O. A.: Decision Trees. In. BERRY, M. W., BROWNE, M. (Eds.), Lecture
Notes in Data Mining. 39–51. Singapore: World Scientific Publishing, 2006.

[6] SHAHNAZ, F.: Decision Trees. In. BERRY, M. W., BROWNE, M. (Eds.), Lecture Notes in
Data Mining. 79–85. Singapore: World Scientific Publishing, 2006.

[7] LIU, B.: Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. Berlin:
Springer Science & Business Media, 2007.

[8] HAN, J., JIAN, P., KAMBER, M.: Data mining: concepts and techniques. Amsterdam:
Elsevier, 2004.

[9] AGARWAL, M., PASUMARTHI, D., BISWAS, S., NANDI, S.: Machine learning approach
for detection of flooding DoS attacks in 802.11 networks and attacker localization.
International Journal of Machine learning and Cybernetics, 7 6 (2014), 1–17. DOI: https://
doi.org/10.1007/s13042-014-0309-2

[10] FRANCO-ARCEGA, A., CARRASCO-OCHOA, J. A., SÁNCHEZ-DÍAZ, G., MARTÍNEZ-
TRINIDAD, J.: Building fast decision trees from large training sets. Intelligent Data
Analysis, 16 4 (2012), 649–664. DOI: https://doi.org/10.3233/IDA-2012-0542

[11] NINAMA, H.: Distributed data mining using message passing interface. Review of Research,
2 9 (2013). http://ror.isrj.org/UploadedData/361.pdf (Downloaded: 23 11 2015)

[12] ROBERT, S.: A few bad ideas on the way to the triumph of parallel computing. Journal of
Parallel and Distributed Computing, 74 7 (2014), 2544–2547.

[13] DEAN, J., GHEMAWAT, S.: MapReduce: simplified data processing on large clusters. San
Francisco: Google, Inc., 2004. www.usenix.org/legacy/event/osdi04/tech/full_papers/dean/
dean.pdf (Downloaded: 23 11 2015) DOI: https://doi.org/10.1145/1327452.1327492

[14] SHAFI, A., AKTAR, A., JAMEEL, M., CARPENTER, B., ANSAR, J. M., QAMAR, B.:
MPJ Express Project. 2015. www.mpj-express.org (Downloaded: 27 2 2016)

[15] HALL, M., FRANK, E., HOLMES, G., PFARINGER, B., REUTEMANN, P., WITTEN, I. H.:
The WEKA Data Mining Software: An Update. SIGKDD Explorations, 11 1 (2009), 10–18.

[16] HETTICH, S., BAY, S. D.: The UCI KDD Archive. 1999. http://kdd.ics.uci.edu
(Downloaded: 23 11 2015)

https://doi.org/10.1109/SECPRI.1999.766909
https://doi.org/10.1007/s13042-014-0309-2
https://doi.org/10.3233/IDA-2012-0542
https://doi.org/10.1016/j.jpdc.2013.10.006
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1656274.1656278

