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Abstract 
Inadvertent social information (ISI) use, i.e., the exploitation of social cues including the presence and behaviour of others, 
has been predicted to mediate population-level processes even in the absence of cohesive grouping. However, we know little 
about how such effects may arise when the prey population lacks social structure beyond the spatiotemporal autocorrelation 
originating from the random movement of individuals. In this study, we built an individual-based model where predator 
avoidance behaviour could spread among randomly moving prey through the network of nearby observers. We qualitatively 
assessed how ISI use may affect prey population size when cue detection was associated with different probabilities and 
fitness costs, and characterised the structural properties of the emerging detection networks that would provide pathways for 
information spread in prey. We found that ISI use was among the most influential model parameters affecting prey abundance 
and increased equilibrium population sizes in most examined scenarios. Moreover, it could substantially contribute to 
population survival under high predation pressure, but this effect strongly depended on the level of predator detection ability. 
When prey exploited social cues in the presence of high predation risk, the observed detection networks consisted of a large 
number of connected components with small sizes and small ego networks; this resulted in efficient information spread among 
connected individuals in the detection networks. Our study provides hypothetical mechanisms about how temporary local 
densities may allow information diffusion about predation threats among conspecifics and facilitate population stability and 
persistence in non-grouping animals.

Significance statement
The exploitation of inadvertently produced social cues may not only modify individual behaviour but also fundamentally 
influence population dynamics and species interactions. Using an individual-based model, we investigated how the detection 
and spread of adaptive antipredator behaviour may cascade to changes in the demographic performance of randomly moving 
(i.e., non-grouping) prey. We found that social information use contributed to population stability and persistence by reducing 
predation-related per capita mortality and raising equilibrium population sizes when predator detection ability reached a 
sufficient level. We also showed that temporary detection networks had structural properties that allowed efficient information 
spread among prey under high predation pressure. Our work represents a general modelling approach that could be adapted 
to specific predator-prey systems and scrutinise how temporary local densities allow dynamic information diffusion about 
predation threats and facilitate population stability in non-grouping animals.

Keywords  Social information use · Detection networks · Predator–prey relationship · Non-grouping animals · Equilibrium 
population size · Individual-based model

Introduction

Organisms have to gather information about their 
surroundings to overcome challenges such as finding 
resources and avoiding danger (Dall and Johnstone 2002). 
For that, individuals directly interact with the environment 
to gain up-to-date information about its state (‘personal 

Communicated by J. Lindström

 *	 Zoltán Tóth 
	 toth.zoltan@atk.hu

1	 Department of Zoology, Plant Protection Institute, Centre 
for Agricultural Research, ELKH, Budapest, Hungary

2	 University of Debrecen, Debrecen, Hungary

http://orcid.org/0000-0002-2634-8393
http://crossmark.crossref.org/dialog/?doi=10.1007/s00265-022-03215-4&domain=pdf


	 Behavioral Ecology and Sociobiology          (2022) 76:110 

1 3

  110   Page 2 of 14

information’), but they can also complement that knowledge 
by utilising social information for optimal decision-making 
(Galef and Giraldeau 2001; Dall et al. 2005; Bonnie and 
Earley 2007; Hoppitt and Laland 2013). One type of social 
information is associated with inadvertently produced 
social cues that include the presence or the behaviour of 
others, or the product of their behaviour such as scent 
marks, excretions or food remnants, all of which may 
provide relevant information about current environmental 
conditions. Inadvertent social information (ISI) use is 
known to occur in many ecological contexts, including 
predator avoidance, foraging and habitat choice (Danchin 
et al. 2004; Gil et al. 2018). The advantages of living in 
social groups are thought to include the opportunity to 
access social information (Krause and Ruxton 2002; Ward 
and Webster 2016; Goodale et al. 2017), and thus ISI use 
is usually associated with species where social interactions 
promote information transmission among groupmates (King 
and Cowlishaw 2007; Duboscq et al. 2016; Gil et al. 2017).

Under predation risk, dynamic information about threats 
is transmitted from alarmed group members to naïve ones, 
a phenomenon that is commonly called collective detection 
(Lima 1990; Pays et al. 2013). This process often takes place 
through evolved signals such as alarm calls, but social cues 
including sudden movements (Coleman 2008; Hingee and 
Magrath 2009; Boujja-Miljour et al. 2017), fright responses 
(Chivers and Ferrari 2014; Cruz et al. 2020) or changes in 
posture (Brown et al. 1999; Pays et al. 2013) have also been 
found to convey information about the presence of predators 
in animal collectives. Adjustments to the behaviour of oth-
ers (also referred to as ‘behavioural contagion’; Firth 2020) 
do not only affect individual fitness by increasing survival 
probabilities, but can also lead to the emergence of corre-
lated behaviours and space use in many individuals and thus 
influence system-level functions (Goodale et al. 2010; Gil 
et al. 2018; Tóth 2021). Previous theoretical models have 
predicted that ISI use can prevent population collapses under 
high predation pressure (Gil et al. 2017, 2018) and facilitate 
the coexistence of competing species that share common 
predators (Parejo and Avilés 2016; Gil et al. 2019). Empiri-
cal evidence also indicates that the utilisation of social 
information can influence the material flux on the ecosystem 
level (Gil and Hein 2017). By promoting adaptive behav-
ioural responses to environmental uncertainties (e.g., due 
to anthropogenic effects (Greggor et al. 2017), in the distri-
bution of resources (O’Mara et al. 2014) or predation risk 
(Crane et al. 2022)), ISI use has the potential to minimise 
the impact of morphological, physiological or genetic adap-
tations (Laland 1992) or influence genetic change through 
gene–culture coevolution (Whitehead et al. 2019).

There are animal species that do not exhibit social 
attraction toward conspecifics and therefore do not form 
permanent or periodical cohesive groups. We refer to these 

organisms as non-grouping animals (for more details about 
to this definition, see Tóth et al. 2020). Lacking motivation 
for social cohesion, non-grouping animals do not maintain 
spatial proximity with others, and thus direct interactions 
between conspecifics can be infrequent. Nevertheless, 
such individuals may also exploit social cues (e.g., visual, 
acoustic, chemical or vibrational cues) when these are 
within the range of relevant sensory perception. Moreo-
ver, social information may also diffuse among nearby 
observers via ‘detection networks’ (reviewed in Tóth et al. 
2020). If so, spatial changes in social cues over time (e.g., 
relative differences in activity and associated conspicu-
ousness; Chivers and Ferrari 2014) can provide dynamic 
information about predation threats in many terrestrial 
and aquatic systems (Gil et al. 2017). In accordance with 
this idea, wood crickets (Nemobius sylvestris) adaptively 
change their behaviour after having observed the preda-
tor avoidance behaviour of knowledgeable conspecifics, 
and this information is transmitted to and utilised by other 
naïve individuals as well (Coolen et al. 2005). In tempo-
rary aggregations, escape responses of Iberian green frogs 
(Rana perezi) are also influenced by the behaviour of adja-
cent conspecifics (Martín et al. 2006). In mixed-species 
aggregations of non-schooling fish, the density (number 
of fish in the foraging area) and behaviour (when to feed in 
and when to flee from the foraging area) of nearby individ-
uals are being used as inadvertent social information (Gil 
and Hein 2017). The resulting behavioural coupling among 
individuals, in turn, affects both species abundance and 
the amount of algae consumed and as a result, determines 
the total material flow in the coral reef ecosystem. While 
such observations prove that threat-related social cues can 
be exploited by non-grouping animals in some instances, 
the general conditions under which ISI use exerts a posi-
tive effect on population stability and persistence in such 
species have remained largely unexplored. For example, 
thresholds associated with the cost of antipredator behav-
iour and probabilities of cue detection (i.e., the detection 
of predators or conspecifics’ behaviour) may set bounda-
ries for social information-modulated population-level 
effects under different predation pressure regimes. Simi-
larly, detection networks may have only a limited capacity 
to provide efficient information pathways for the emer-
gence of such effects. In a previous work, Tóth (2021) used 
an individual-based model to test specifically how ISI use 
may alter the relationship between fluctuating predator and 
non-grouping prey populations. The author found that ISI 
use can disrupt population cycles and decrease the strength 
of second-order density dependence between predator and 
prey (i.e., negative feedback of the second order that would 
imply an interaction between predator and prey popula-
tions in either direction), thus stabilize their dynamics and 
facilitate their long-term coexistence.
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In this study, we investigated how the detection and 
spread of predator avoidance behaviour among conspecif-
ics affected demographic performance in non-grouping 
prey. We constructed an individual-based model of prey 
and generalist predator populations where individuals (both 
prey and predators) moved randomly on the landscape, and 
social information could diffuse through the observation of 
antipredator behaviour in prey. This model, an extension of 
our earlier model presented by Tóth (2021), allowed us to 
assess qualitatively how ISI use may cascade to population-
level changes in noncyclic prey populations that experi-
ence relatively constant predation pressures and lack social 
structure. We could also examine the structural properties 
of detection networks that might facilitate the emergence 
of such effects. Thus, predictions from the presented model 
may be applied more generally to non-grouping organisms 
compared to those from our previous work.

Materials and methods

Model construction

We simulated a homogeneous, continuous 2D landscape 
(80 × 80 spatial units) where both prey and predators moved 
randomly by exhibiting correlated random walks (CRW). 
CRW considers short-term correlations between successive 
step orientations and has been successfully used to model 
animals’ non-orientated search paths for a long time (Ben-
hamou 2006; Codling et al. 2008; Reynolds 2014). In CRW 
models, habitat must be rather homogeneous; examples of 
such natural habitats include beaches and deserts, grasslands, 
agricultural crops or those where resource patch distribution 
at the large scale is uniform or random (Byers 2001). At 
the start of a simulation cycle, 500 prey and 150 predators 
were randomly placed on the landscape, and then individuals 
performed a given set of behaviours (Fig. 1, Table 1). Dur-
ing movement, each individual’s movement distance was 
randomly selected between zero and a maximum value given 
by the parameters dprey and dP for prey and predators, respec-
tively. Turning angles were determined by random deviates 
drawn from wrapped Cauchy circular distribution with μ = 0 
and ρ = 0.8. At the landscape edge, individuals moved to the 
opposite side of the landscape when crossing a boundary 
and continued moving (i.e., torus landscape with no edge). 
Both prey and predator could also detect other individuals 
through the landscape edge. We assumed that only one indi-
vidual could survive within the range of one spatial unit 
due to competition in both prey and predators (after move-
ment and dispersion of offspring; see Fig. 1), introducing 
density-dependent mortality in their populations. In this 
system, we assumed non-dynamic predators that can exert 
high predation pressure on the prey population, thus predator 

population size was determined only by their reproductive 
rate and density-dependent mortality, but was unaffected by 
the success of hunting (as if switching to alternative prey 
when necessary). Consequently, predator and prey popula-
tions were noncyclic and demographically decoupled (for a 
similar approach, see Gil et al. 2019), and prey populations 
experienced predation pressures that were directly propor-
tional to the given value of predators’ reproduction-related 
parameter (Table 1).

In the absence of predators, prey moved, competed, fed 
and reproduced in the simulated landscape. Prey population 
size resulted in this scenario was regarded as being in equi-
librium at the carrying capacity of the environment. When 
present, each predator could consume a maximum of five 
prey individuals in a cycle within its hunting range, which 
was defined as an rP distance from the predator’s position 
in any direction. Prey could detect predators that were rprey 
distance with a probability given by Pdetect (determined by 
individual Bernoulli trials). Thus, the detection of other 
individuals (either predators, prey or conspecifics) depended 
on individual sensory ranges that also crossed through the 
torus landscape edges, bringing more reality to the simula-
tion compared to the model presented in Tóth (2021). Upon 
successfully detecting a predator within rprey distance, prey 
became alarmed and hid, and thus were undetectable to 
predators. However, these individuals did not feed either 
and consequently could have a reduced reproduction rate. 
Thus, prey animals were capable of behaviourally adjust-
ing their exposure to predators (with the probability rang-
ing between 0.1 and 0.9; see Table 1), but this antipredator 
behaviour potentially incurred a fitness cost. Lima and Dill 
(1990) summarized supporting evidence for costly behav-
ioural responses to predation risk in multiple taxa, including 
a reduction in feeding, growth or reproduction. Predators 
hunted on visible, feeding prey with a 50% success (deter-
mined by individual Bernoulli trials). Similarly high suc-
cess rates against some prey species have been observed 
in generalist predators such as red foxes (Vulpes vulpes; 
Červený et al. 2011), Drassodes lapidosus spiders (Michálek 
et al. 2017) or American kestrels (Falco sparverius; Toland 
1987). Prey could also detect predators indirectly by observ-
ing alarmed conspecifics within rprey distance with a prob-
ability given by Pisi (determined by individual Bernoulli 
trials). Being alarmed had the same consequences (i.e., 
immune to predation, reduced reproduction rate) irrespective 
of the detection mode. Wide ranges of possible values for 
both Pdetect and Pisi (see in Table 1) were used to cover most 
scenarios in which ISI use may occur under natural condi-
tions. We did not manipulate cue reliability in the model, 
we simply considered that ISI use had a higher cost when 
social cues could also be false and individuals responded 
to those indiscriminately. Prey feeding occurred once in a 
cycle in prey that was not hiding. The number of offspring 
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Fig. 1   Model flowchart for 
a single simulation cycle. 
Sequential prey and predator 
behaviours are listed together 
with the model parameter(s) 
associated with the given steps. 
Behavioural steps resulting in a 
decrease in population size, i.e., 
mortality due to intraspecific 
competition (in rounded rectan-
gles) or predation (in diamond) 
are shown in light and dark 
grey, respectively
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for each individual was sampled from a Poisson distribution 
with the shape parameter given by λreduced for alarmed prey, 
λmax for fed prey and λP for predators in each cycle. Offspring 
dispersed in the same cycle 8, 9 or 10 spatial units away 
(randomly chosen) from the parent in both prey and preda-
tors. These higher step values (10 spatial units is the double 
of maximum dprey and dP) were chosen to reflect that juvenile 
dispersion distances can far exceed adult movement ranges.

Detection networks

From the spatial distribution of prey, we defined detection 
networks based on the range within which individuals could 
observe the behaviour of others (i.e., exploit social cues if 
present) in each simulation cycle (Fig. 2). In such networks, 
nodes represent individuals, and edges denote the possibility 
of mutual observation. If a prey individual became alarmed 
because it successfully detected a predator, information 
could spread from this individual to other conspecifics in the 
network under the following rules. The probability of infor-
mation acquisition from one node to another is given by wk, 
where w is the edge weight (corresponding to the probability 
of information spread from one node to another through the 
edge between them and specified by the parameter Pisi in 
the model) and k is the number of steps on the shortest path 
between the two nodes. Only shortest paths were used to 
minimise the “travel time” of information between nodes in 
the network. During simulations, the maximum number of 
steps between the focal and the observed nodes was set to 
two and the total number of observed neighbours to ten (i.e., 
kmax = 2 and ∑(n)max = 5 in each k step). Thus, an individual 
could receive information from a maximum of ten of its 

neighbours that were a maximum of two steps away in the 
detection network. With such restrictions, ISI use did not 
facilitate the emergence of large aggregations in prey and 
did not occur far outside the hunting range of predators. If 
there were more than five nodes at k step to a focal node, we 
randomly selected five. For any individual, the total prob-
ability of receiving information from its neighbours was 
calculated using the inclusion–exclusion principle (Allenby 
and Slomson 2010).

Analysis of simulation outputs

All simulations and calculations were performed in R 4.0.4 
(R Core Team 2021). Instead of frequentist hypothesis test-
ing, we focused on evaluating the magnitude of differences 
between simulation runs with different parameter settings 
(White et al. 2014). We ran the population simulations for 
200 cycles (this interval was sufficient to reach equilibrium 
prey population size in the studied scenarios; see in Fig. 3a) 
and used the data from the last cycle in all calculations.

We characterised prey population sizes by calculating the 
mean, standard deviation, maximum and minimum values 
in four settings: in the absence of predators, with minimal 
Pdetect, with nominal Pdetect, and with nominal Pdetect and Pisi 
parameter values, respectively. All other parameters were set 
to their initial values; for each model type, simulations were 
iterated 50 times. When the predator detection probability 
was set to its minimal value, the prey population died out in 
a single iteration; prey extinction was not observed in other 
settings.

We examined how predator abundance affected mortal-
ity rate due to predation in prey in the presence of minimal 

Table 1   Model parameters and their range for sensitivity analysis 
(SA). Maximum movement distances indicate the maximum num-
ber of spatial units that an individual could travel on the landscape 

in a simulation cycle; the actual integer value was randomly selected 
between zero and this maximum value

Symbol Description Nominal value Unit/scale Range for SA

dprey Prey maximum movement distance 5 1 3–8
dP Predator maximum movement distance 5 1 3–8
rprey Prey detection range 2.5 (constant) - -
rP Predator hunting range 3.5 (constant) - -
rc Competition range within which only one individual could survive 1 (constant) - -
Pdetect Probability of prey detecting a nearby predator; determined by individual Ber-

noulli trials
0.5 0.1 0.1–0.9

Pisi Probability of prey ISI use (i.e., copying the defensive behaviour of others); deter-
mined by individual Bernoulli trials

0.5 0.1 0–0.9

λmax Prey reproduction-related shape parameter when prey feed; used to draw a random 
number of offspring for each individual from a Poisson distribution

0.75 (constant) - -

λreduced Prey reproduction-related shape parameter when prey is alarmed (i.e., does not 
feed); used to draw a random number of offspring for each individual from a 
Poisson distribution

0.75 5 × 10−2 0.5–0.75

λP Predator reproduction-related shape parameter; used to draw a random number of 
offspring for each individual from a Poisson distribution

5 × 10−2 5 × 10−3 2.5 × 10−2–7.5 × 10−2
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Pdetect, nominal Pdetect, and nominal Pdetect and Pisi parameter 
values, respectively. All other parameters were set to their 
initial values. In each setting, simulation runs were iterated 
50 times. If the prey population died out before the 200th 
simulation cycle, the given run was omitted from the dataset 
(n = 209; only in the ‘minimal predator detection’ setting).

Sensitivity analysis

We used Morris’s “OAT” elementary effects screening 
method (Morris 1991) with the extension introduced by 
Campolongo et al. (2007) as a global sensitivity analy-
sis (SA) to rank the model parameters according to their 
impact on prey population size. We chose this SA because 
it produces results comparable to the more complex meth-
ods (Confalonieri et al. 2010) and is applicable to uncover 
the mechanisms and patterns produced by individual-based 
models (Imron et al. 2012; Beaudouin et al. 2015; ten Broeke 
et al. 2016). The mean of the absolute value of the elemen-
tary effect ( �∗

i ) provides a measure for the overall influ-
ence of each input variable on the model output, whereas 
the standard deviation of the elementary effect ( �i) indicates 
possible non-linear effects or interactions among variables 
(Campolongo et al. 2007; Iooss and Lemaître 2015). We also 

ranked the model parameters using a global index (GI) (Ciric 
et al. 2012) calculated as:

For the space-filling sampling strategy proposed by Cam-
polongo et al. (2007), we generated r2 = 1000 Morris trajec-
tories and then retained r1 = 50 with the highest ‘spread’ in 
the input space to calculate the elementary effect for each 
model parameter.

Parameter space exploration

We explored a specific part of the parameter space by visu-
alising the combined effect of the parameters Pdetect, Pisi, λP 
and λreduced on prey population size. Specifically, we inves-
tigated the effect of ISI use at low, intermediate and high 
levels of predator detection probabilities. In each scenario, 
predator avoidance behaviour had either no cost or incurred 
moderate fitness cost (i.e., decreased by one third compared 
to the maximum) and predation pressure was either low 
(0.025), intermediate (0.05) or high (0.075). In each set-
ting, we used the complete range of parameter values for 
Pisi (Table 1). Simulations were iterated 30 times. In the 
low predator detection probability scenario coupled with 

GI =

√

(

�∗
i

)2

+
(

�i

)2

Fig. 2   Schematic figure of a detection network (a) and segment of 
an individual ego network embedded within that network (b). Nodes 
represent individuals and edges denote the possibility of mutual 
observation. The probability of information acquisition from one 
node to another is given by w.k, where w is the edge weight and k 
is the number of steps on the shortest path between the two nodes. 

For any individual, the total probability of receiving information from 
neighbours is calculated using the inclusion–exclusion principle. In 
our model, we used the settings kmax = 2 and ∑nmax = 5 in each k step, 
so the focal individual (black circle) could receive social informa-
tion from a maximum of ten neighbours that were a maximum of two 
steps away in the detection network (orange circles)
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high predation pressure, the prey population died out in the 
majority of simulation runs (n = 581); these simulation out-
puts were omitted from the assembled dataset.

Network characterisation

We generated network data by running the model with 
λP = 0.075 (i.e., under a high level of predation pressure), 
while all other parameters were set to their nominal val-
ues. We compared emerging detection networks that were 
generated with the presence of ISI use (Pisi = 0.5) to those 
that were obtained when Pisi = 0. We calculated the number 
of components, component size, average ego network and 
average global efficiency as structural network properties 
for network characterisation. Simulations were repeated 50 
times in each parameter setting. Additionally, we calculated 
the same characteristics for randomised detection networks 

as well (Farine 2017; Hobson et al. 2021). These were con-
structed from both type of the observed detection networks 
by randomly reshuffling the edges between nodes while also 
retaining the original degree distributions. Thus, randomised 
networks represented a hypothetical scenario where interac-
tions are equally likely between any pair of nodes (Croft 
et al. 2011). While the main purpose here was to explore 
the global structure of the observed detection networks, the 
randomised networks helped us to assess whether ISI use 
could similarly affect the structural properties of networks 
that were based on this simplifying assumption. The number 
of components represents the number of connected parts in 
the detection networks (isolated nodes excluded). We com-
puted component size as the number of components divided 
by the number of connected nodes; this measure denotes 
the average number of nodes embedded within components. 
We calculated the average size of ego networks as the mean 

Fig. 3   Effects of the Pdetect and 
Pisi model parameters on the 
prey population. a Temporal 
fluctuations in prey abundance 
(means with range) without 
predators (grey) and under 
nominal parameter settings 
(with nominal Pdetect and Pisi 
– orange, with nominal Pdetect – 
dark blue, with minimal Pdetect 
– light blue). When the predator 
detection probability was set 
to its minimal value, the prey 
population died out in a single 
iteration; in all other cases, the 
number of iterations was set 
to 50. b Results of the global 
sensitivity analysis (SA) depict-
ing the impact of each model 
parameter on the mean (x-axis) 
and standard deviation (y-axis) 
of prey abundance; mean ± SD 
values for each parameter were 
calculated from five independ-
ent SA runs. Inset shows the 
model parameters ordered 
according to their overall influ-
ence on the model output
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number of reachable nodes within two steps in the compo-
nents. To estimate transmissibility within components, we 
used the measure ‘global efficiency’ (Latora and Marchiori 
2001; Pasquaretta et al. 2014; Romano et al. 2018). Global 
efficiency for a graph with N vertices is:

where dij is the shortest path length between nodes i and j. 
The value of this measure ranges from 0 to 1, and repre-
sents how fast information may spread from the source to 
the most peripheral network positions with the least number 
of connections (Romano et al. 2018). We computed global 
efficiency for the largest components in the networks. For 
the calculation of the above network properties, we used the 
‘igraph’ and ‘brainGraph’ R packages (Csardi and Nepusz 
2006; Watson 2020).

Results

We found that nominal predation pressure coupled with 
minimal predator detection probability (Pdetect = 0.1) led to 
small prey population size with high variation among runs 
compared to the null model when predators were absent 
and prey population existed at the carrying capacity of the 
environment (Fig. 3a, Table 2). Nominal predator detection 
probability (Pdetect = 0.5) increased mean prey population 
size and stabilised the prey population at higher abundance 
values, while in the presence of nominal probability of ISI 
use in prey (Pdetect = 0.5, Pisi = 0.5), prey population size 
increased further by approx. 53%. The sensitivity analysis 
also confirmed that Pisi was an influential model input in the 
constructed model (Fig. 3b). As expected, the parameters 
driving antipredator behaviour, i.e. the level of predation 
pressure, the probability of predator detection directly or 
via conspecifics, and the cost associated with performing 
antipredator behaviour, were all important and character-
ised by non-linear effects on prey abundance and/or strong 
interactions with other parameters. The parameters dprey and 
dP had considerably less influence on the dispersion of the 
model output, and were fixed to their nominal values in the 
subsequent analyses. The mechanism behind the effect of 

Eglobal(G) =
1

N(N − 1)

∑

i≠j

1

dij

Pisi was that the presence of ISI use could decrease the per 
capita mortality due to predation across the whole range of 
the examined predation pressure regime and substantially 
mitigate the positive relationship between predation-related 
mortality rate and predator population size (Fig. 4, Fig. S1).

Consistent with expectations, Pisi affected prey number in 
all examined Pdetect scenarios in interaction with the effect 
of cost and predator pressure (Fig. 5). This relationship was 
positive and non-linear in most cases. When the predation 
pressure was low, Pisi positively influenced prey abundance 
to a limited extent, while the effect of the associated cost, 
especially at lower Pisi values, depended on the value of 
Pdetect. When the predation pressure was intermediate or 
high, Pisi exerted a more substantial influence on prey abun-
dance and had the capacity to double the number of prey 
individuals irrespective of the presence or absence of associ-
ated cost (Table S1). Importantly, ISI use could counteract 
high predation pressure only when Pdetect had a sufficient 
value (directly dependent on the degree of predation pres-
sure), and did not compensate for low predator detection 
ability as indicated by the high prevalence of population 
extinctions in prey when high predation pressure was cou-
pled with low predator detection ability. The presence of 
associated fitness cost in the high predation pressure set-
tings greatly reduced the magnitude of the effect of ISI use 
on prey population size, but Pisi could still increase prey 
population size even at intermediate values if Pdetect > 0.25.

The observed detection networks were characterized 
by high numbers of components that consisted of few 
connected individuals and small ego networks (Fig. 6, 
Table S2). The number of connected individuals more 
than tripled when social information could spread among 
individuals, while the number of isolates did not change 
with ISI use. Twice as much components were found in 
the observed detection networks in the presence of ISI use 
compared to the setting when it was absent; this effect, 
however, was not detectable in the randomised counter-
parts. Mean component size was unaffected by the pres-
ence of ISI use in the observed networks, but increased 
substantially in the randomised ones. Ego network sizes 
were similarly influenced by ISI use in both network types. 
Global efficiency within the largest components was high 
in the absence of ISI use in both observed and randomised 
networks; however, it was also high in the presence of ISI 

Table 2   Descriptive statistics of 
the simulated prey populations 
calculated from 50 replicates at 
the 200th simulation cycle (49 
in the case of the second model 
type as prey population died out 
in a single iteration)

Models Parameters Prey population size

Pdetect Pisi Mean ± SD Range
No predators (n = 50) - - 1198.16 ± 24.37 1115–1251
Minimal predator detection (n = 49) 0.1 0 154.45 ± 56.49 24–257
Nominal predator detection (n = 50) 0.5 0 516.18 ± 50.36 408–637
Nominal predator detection and ISI use (n = 50) 0.5 0.5 789.52 ± 48.05 632–891
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use in the observed detection networks, indicating efficient 
information transmission among individuals whenever 
connected prey was able to detect nearby predators. These 
attributes of functioning detection networks were unlikely 
to be the direct consequence of higher prey population 
size in the presence of ISI use, because the corresponding 
randomised networks did not show the same degree of 
structural changes compared to the Pisi = 0 setting.

Discussion

Social information use has been assumed both to increase 
individual fitness and to affect population- and commu-
nity-level processes (Dall et al. 2005; Gil et al. 2018). 
We expected that such effects could emerge in randomly 
moving non-grouping prey if behavioural contagion can 

Fig. 4   The relationship between 
per capita mortality due to 
predation and the number 
of predators using the same 
parameter settings as in Fig. 3a 
(but without the ‘No predators’ 
group). Trend lines were fitted 
using second-order polynomial 
approximation. Simulation 
results from incomplete runs 
(i.e., simulation cycles were less 
than 200) were omitted from 
the dataset (n = 204; only in the 
‘minimal predator detection’ 
model type)

Fig. 5   Interactive effects of the probability of ISI use (Pisi), preda-
tion pressure (λP), and the presence of fitness cost (associated with 
the defensive behaviour; λreduced) on prey population size in three 
Pdetect scenarios. The colour of the boxplots indicates the level of pre-
dation pressure (purple: high, blue: intermediate, green: low), while 
the colour tone is associated with the presence of cost (dark: costly 

defensive behaviour, light: no cost). Trend lines were fitted using the 
‘LOESS’ regression method for smoothing with the default value 
of span (0.75), presented only for illustration purposes. Simulation 
results from incomplete runs were omitted from the dataset (n = 581; 
only in the ‘Pdetect = 0.25’ setting)
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occur through detection networks, i.e., a dynamic system 
of temporary observation-based connections between 
conspecifics. Correlated random walk has successfully 
been used to describe non-oriented movement trajectory 
in a number of non-grouping animals, e.g. insects (e.g., 
Kareiva and Shigesada 1983; McCulloch and Cain 1989; 
Byers 2001), zooplankton (e.g., Komin et al. 2004; Uttieri 
et  al. 2004, 2008), echinoderms (e.g., Lohmann et  al. 
2016) or mammals (e.g., Johnson et al. 2008). We found 
that irrespective of the apparent stochasticity in our model, 
the sharing of adaptive antipredator behaviour could con-
tribute to population stability and persistence in prey by 
mitigating predation-related per capita mortality and rais-
ing equilibrium population sizes. We also showed that 
temporary detection networks had structural properties 
that allowed the efficient spread of adaptive antipredator 
behaviour among prey under high predation pressure. In 
group-living animals, information spreads via social con-
nections among individuals and social network positions 
strongly interact with individual spatial behaviour (Firth 
and Sheldon 2016; Spiegel et al. 2016; Webber and Vander 
Wal 2018; Albery et al. 2021), thus movement character-
istics and space use are shaping information transmission 
by affecting social connections. Our findings indicate that 
non-grouping animals, by being embedded in detection 
networks based on their perception attributes and spatial 
locations, can benefit from similar information transmis-
sion processes as well. As inadvertent social information 

use in non-grouping animals is largely understudied (see 
in Tóth et al. 2020), in the following paragraphs we con-
trasted our simulation results on non-grouping prey with 
previous (empirical) findings on group-living species in 
several instances.

Our results corroborate with previous studies on group-
living organisms indicating that social information may act 
as a stabilising mechanism in systems where predators can 
exert high pressure on prey populations (Gil et al. 2017, 
2018, 2019). While in those models social information 
directly reduced (following a specific function) the per 
capita mortality (e.g., Gil et al. 2018), the presented work 
offers a more mechanistic understanding of how inadvert-
ent social information could propagate through a popula-
tion of randomly moving individuals. Our findings indicate 
that predator detection ability had to reach a sufficient level, 
strongly dependent on the actual level of predation pressure, 
for ISI use to facilitate prey population persistence. Notably, 
when this condition was met, ISI use exerted a detectable 
positive influence on prey population size by relaxing preda-
tion pressure even at low probabilities and even if the adap-
tive antipredator behaviour incurred a fitness cost. Although 
the depth of our understanding of the detected non-linear 
relationships and potential thresholds is limited by their 
coarse-grained variation in these parameters examined here, 
simulations nonetheless prove that in a substantial part of 
the parameter space social information use can be expected 
to raise non-grouping prey population size and facilitate its 

Fig. 6   Four structural net-
work properties (a number of 
components, b component size, 
c average size of ego networks, 
d average global network 
efficiency) calculated for the 
observed detection networks 
(circles) and corresponding 
randomised networks (dia-
monds). Predation pressure was 
set to ‘high’ (i.e., λP = 0.075). 
Boxplots show the median and 
interquartile range, whiskers 
denote values within 1.5-fold 
of the interquartile range, and 
dots are individual values. The 
colour of the boxplots indicates 
the absence (grey; Pisi = 0) or 
presence of ISI use (orange; 
Pisi = 0.5)
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persistence. These findings may have crucial implications 
in many theoretical and applied ecological contexts, rang-
ing from the invasive dynamics of predator–prey systems to 
the efficiency of biological control practices. For instance, 
the recognition of novel predators by naïve prey has been 
associated with social information use via different per-
ception modalities in group-living fish (Ferrari et al. 2005; 
Manassa et al. 2013), and similar utilisation of social cues 
in social birds has been shown to facilitate the spread of 
novel aposematic prey (Thorogood et al. 2018; Hämäläinen 
et al. 2021a, b). Such social information-mediated interac-
tions between prey and predators might be more prevalent 
in natural ecosystems that include non-grouping species as 
well, contributing to deviations from the predictions of theo-
retical models in the dynamics of trophic interactions (Polis 
et al. 2000). When natural enemies are used as biological 
control agents for pest management, diffusion of antipredator 
responses among prey may substantially reduce predation 
rates rendering these practices less effective and profitable. 
Besides, it may also mitigate the expected positive impact 
of the non-consumptive effects of predators (NCEs; Preisser 
et al. 2007; Sih et al. 2009) such as decreased crop damage 
due to reduced feeding rate in pests (Beleznai et al. 2017; 
Tholt et al. 2018). This inflation of NCEs due to information 
spread can generate discrepancies in the findings of large-
scale field studies and laboratory experiments (see in Weiss-
burg et al. 2014), and should be taken into consideration in 
investigations that aim to evaluate how NCEs may trigger 
trophic cascades in different ecosystems (Hermann and Lan-
dis 2017; Haggerty et al. 2018; Pessarrodona et al. 2019).

Detection networks had distinct structural characteristics 
when prey experienced high predation pressure and exploited 
social cues to avoid predators. These networks typically con-
sisted of many components with few connected individu-
als and small average ego networks, and within these small 
components, social information could spread with relatively 
high efficiency. The key to understanding the differences 
in structural properties of detection networks in the pres-
ence and absence of ISI use lies in identifying the process 
that generates more and smaller components. One plausible 
explanation is that prey distribution in the simulated land-
scape could remain more homogeneous due to a decreased 
susceptibility to predation in the vicinity of predators as 
the diffusion of social information greatly enhances the 
probability of predator detection even among a few nearby 
individuals. While high network efficiency has previously 
been identified in small animal groups, cognitive abilities 
and strong social affiliations have usually been involved in 
explaining this emergent property (Waters and Fewell 2012; 
Pasquaretta et al. 2014). Our findings indicate that incidental 
connections among non-grouping animals may generate net-
works that have similar favourable attributes. In addition to 
differences in the sizes of connected components, there may 

be other key differences in how information spreads through 
detection or sensory networks among group-living (Strand-
burg-Peshkin et al. 2013; Rosenthal et al. 2015; Davidson 
et al. 2021) and non-grouping individuals, however. First, 
behavioural contagion can be complex, and the number of 
non-alarmed individuals within the detection range influ-
ences the likelihood of adopting a specific behaviour (Firth 
2020). Previous works on social species have provided 
mounting evidence for such complex contagion (Hoppitt 
and Laland 2013; Grüter and Leadbeater 2014; Kendal 
et al. 2018). Second, imperfect copying might decrease the 
intensity of behavioural responses with each transmission 
step, and under a given threshold intensity, social cues exert 
no response from nearby observers. In this case, individu-
als’ ability to convey information about predation hazards 
is related to the extent of behavioural change compared to a 
baseline level (Chivers and Ferrari 2014). Third, phenotypic 
heterogeneity among individuals may influence information 
diffusion if individual traits (e.g., related to hunger, age or 
developmental stage) or functional traits that transcend spe-
cies (e.g., similarity in body size that may lead to shared 
predators) affects the individual capacity to produce social 
information (Farine et al. 2015).

To describe how ISI use may affect population dynam-
ics in non-grouping prey, we constructed a tentative model 
with naturalistic predator-to-prey ratios (1:1.03 [when 
predator detection probabilities was set to minimal]–1:4.23 
[with nominal predator detection and ISI use probabili-
ties]; see in Donald and Anderson 2003). Previous obser-
vations indicate that predator detection probability, which 
has been found to play a crucial role in the emergence of 
social information-mediated effects in our study, can have 
a value within the upper half of the range examined here 
(i.e., > 0.5) under relevant conditions (e.g., Tisdale and 
Fernández-Juricic 2009; Manzur et al. 2018). However, 
being strongly dependent on the neuronal pathways under-
lying detection mode and the processing capacity of the 
brain (Clark and Dukas 2003; Pereira and Moita 2016), it 
can differ significantly between species and even within 
the same species as it may also depend on the forager’s 
state of energy reserves (Clark and Mangel 2000). There-
fore, to construct a more realistic model, both species-
specific and context-specific information (e.g., movement 
distances, detection ranges and reproduction rates) for 
existing predator–prey relationships need to be incorpo-
rated, which can be done only at the expense of generality. 
Model precision may be further enhanced by incorporating 
additional variables including the functional response of 
specific predator species (Dunn and Hovel 2020), different 
non-consumptive effects (other than reduced feeding rate) 
(Peckarsky et al. 2008), a measure of social cue reliability 
(Dunlap et al. 2016), social information use in predators 
(Hämäläinen et al. 2021a, b) or landscape heterogeneity 
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that could alter the space use of individuals (Albery et al. 
2021). The effects of different transmission modes can also 
be tested, for instance, by weighting the probability of 
information diffusion among conspecifics by the propor-
tion of alarmed and non-alarmed individuals within the 
detection zone or incorporating heterogeneity among indi-
viduals in attributes that affect their propensity to act as 
social cue producers. Our work, thus, represents a general 
modelling approach that could be applied to predator–prey 
systems in which populations are demographically decou-
pled and non-grouping prey may mitigate predation haz-
ards through the exploitation of incidentally produced 
social information.
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