
Synthesis of artificial bid sets for day-ahead power
exchange models
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Abstract—We consider the scenario, when detailed bid data
of a day-ahead power exchange is not accessible due to privacy
issues, but the statistical extract of the data is available. More
precisely, we assume that in the case of standard bids, the
approximate joint distribution of bid quantity and price is
available, while in the case of block bids we know the average
and standard deviation of the bid parameters. Based on these
statistical features we re-generate the bid set, and analyze,
how much the market outcome differs from the original result,
depending on the detail of the statistics used. In addition, we
analyze how much the description details affect the performance
of the regenerated bid set.

Index Terms—Day-ahead electricity markets, simulation

I. INTRODUCTION

Day-ahead electricity auctions or power exchanges
(DAPXs) accept supply and demand bids from participants
in various formats, and determine the set of accepted
(incl. partially accepted) and rejected bids. Moreover the
auction outcome defines the payoff for every accepted bid
through the market clearing prices (MCPs) [1]. Since the
introduction of this trading format [2], DAPXs have been
the subjects of various scientific studies. On the one hand,
the computationally efficient clearing of such markets is a
challenge because of the fundamentally non-convex nature
of the problem [3]. In addition to exact methods like [3],
there are also heuristic approaches, which aim to utilize the
characteristic properties of the problem in order to reduce
computational time [4]–[6]. On the other hand, from the
perspective of market participants, the question of strategic
bidding arises naturally (for reviews on strategic/optimal
bidding in DAPXs see e.g. [7], [8]).

If one proposes a novel efficient clearing method [9] or a
potential approach for strategic bidding [10], it is a straight-
forward question, how the proposed algorithm performs in the
case of realistic problems. This is the point when some issues
may arise. Although DAPXs usually publish the resulting
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trading quantities and clearing prices (the latter is a necessary
signal for potential investors), there is no publicly available
information about the details of the submitted bids. This is
not surprising, since the nature of the auction is ’sealed bid’,
if a participant is aware of the parameters describing the bid
of its competitor, it may gain advance. Based on this factor
DAPXs usually do not publish bid data, even years after the
auction (when it may be already obsolete for research purposes
in some aspects). In this paper we argue that it would be very
desirable from the research point of view to publish statistical
extracts of bidding data, which ensure anonymity and privacy
but in the same time provide valuable insights into the nature
of the market in question. Such meta-data publishing would
have other benefits as well (considering e.g. portfolio analysis
or deeper market analysis), however in the current paper we
restrain ourselves only to a few aspects.

In the case of market clearing algorithms, testing requires
a data set, which fits the actual market problems in size. In
other words, the resulting MCPs published by the DAPXs
may be the result of 100 or 10000 submitted bids as well,
while the underlying optimization problem sets a very different
challenge. In addition, these numbers may strongly vary with
individual power markets (depending on the actual number,
and bidding strategy of participants).

In the case of strategic bidding methods however, knowing
the number of submitted bids is not enough to have a ’real-
istic’ scenario. While the resulting MCPs are published, if a
generating unit has high enough capacity, it may exert market
power, i.e. its bidding behavior may affect the resulting MCPs.
If there is no data available about the bids of the market at
all, it is impossible to estimate the effect of specific bidding
strategies on the MCP.

In the current paper we introduce two slightly different
statistical descriptions of the DAPX bid sets, based on which a
’realistic’ artificial (or ’in silico’) bid set may be generated, and
analyze how much the description details affect the resulting
market outcomes in the case of the reproduced data.

II. MATERIALS AND METHODS

In this study we consider a multiperiod market with step-
wise bids only, but including also block bids, which define
interdependencies between individual periods. There are two



types of bids in our market model: (1) Standard bids, which
are submitted for single periods and have 2 parameters, namely
quantity and price. The bid price describes the minimal price
(per unit) upon which the bid may be accepted in the case of
supply bids, and the maximal price to be paid in the case of
demand bids. These bids may be partially accepted, and they
must be accepted if the respective MCP is appropriate (if not,
they must be rejected – partial acceptance is allowed if the bid
price equals the MCP). (2) Block bids, which are submitted
by producers (suppliers) potentially for multiple periods have
4 parameters: index of the start period, index of the end
period (may be equal to the start period as well), quantity
and price. Any block bid may be accepted, if the clearing
price is appropriate in each of the included periods (block
bids are not necessary accepted if the prices are appropriate
- see the phenomena of paradoxically rejected block orders
e.g. in [11]). Block bids have the fill or kill property, e.g. they
may be entirely accepted or rejected (no partial acceptance is
allowed). The market clearing algorithm may be implemented
as on optimization problem. Bid acceptance constraints may be
described by big-M conditions using auxiliary variables (see
e.g. [12]) or via the use of the primal-dual framework [1].

A. Reference bid set

We assume the existence of a reference bid set, from which
the auctioneer extracts the statistical data. In the case of
this study, this bid set covers 10 time periods, includes 250
standard supply and 250 standard demand bids, and 20 block
bids. The supply bids include price-taker bids (assume e.g.
renewable, non-controllable sources) as well. Standard supply
bids range from 80 MWh to 257 MWh regarding quantity and
from 23 to 367 EUR/MWh regarding price. Standard demand
bids range from 78 MWh to 259 MWh regarding quantity and
from 92 to 377 EUR/MWh regarding price. The quantity of
block bids is between 51 and 90 MWh, while their price is
between 110 and 356 EUR/MWh. The average length of a
block bid is 3.85 periods.

B. Statistics used in the method

Regarding standard bids, we assume that the approximate
joint distribution of bid quantities and prices is accessible. The
levels of detail, denoted by dsq and dsq in the case of quantity
and price respectively, defines the number of bins in the joint
distribution. The width of a bin (wq , wp) may be calculated
as

wq =
qmax − qmin

dsq
, wp =

pmax − pmin

dsp
(1)

where qmax, qmin, pmax and pmin denote the maximal
and minimal price/quantity value among bids. These extreme
values may be calculated either for the whole bid set (in this
case 24 periods) or for each period distinctly. According to
this, we will distinguish two methods: In the case of the first
method (UB), the extreme values, and thus the bins are defined
universally over the periods (universal bins), while in the case
of the PB method, the extreme values, bin limits and bin

widths are calculated for each period individually (periodic
bins).

After the bins along the two dimensions (q and p) have been
defined, the next step is to count the bids relevant for each bin
to obtain an empirical probability density function of the joint
distribution. Strictly speaking, we assume that not only the
distribution (which is normalized by nature), but also the exact
number of bids corresponding to each bin in each period is
available. Let us define ΨS and ΨD as 3-dimensional arrays.
ΨS(t, i, j) (ΨD(t, i, j)) denotes the number of standard supply
(demand) bids corresponding to period t, which fall into the
i-th bin regarding the quantity and into the j-th bin regarding
the bid price.

In the case of block bids, we assume that the average value
and standard deviation of the four bid parameters (start period,
end period, quantity, price) is available in addition to the
number of block bids.

C. Bid generation, based on the statistics

In the case of the standard bids, the approach for data
generation based on the statistics is very simple. Considering
ΨS and ΨD, and the bin limits, for each nonzero entry the
respective number of bids are generated randomly, assuming
uniform distribution in the quantity and price range defined
by the respective bin limit values.

In the case of block bids, we generate the appropriate
number of block bids (the number of block bids is assumed
to be known), with the following parameters. The start time
of the bid (tBB

e ) is determined as described in eq. 2

tBB
s = max

(
min

(
RI([ts − 2σ(ts)], [ts + 2σ(ts)]), T

)
, 1
)

,
(2)

where RI(k,m) stands for the random integer function
regarding the interval [k,m] (k and m ≥ k are integers),
[x] denotes the integer closest ro x ∈ R, ts is the average
value of the start time of block bids, and σ(ts) is the standard
deviation of the start time of block bids. T is the number of
periods considered in the market.

Similarly, the end time of the bid tBB
e is determined as

described in eq. 3

tBB
e = max

(
min

(
RI([te − 2σ(te)], [te + 2σ(te)]), T

)
, 1
)

,
(3)

where te is the average value of the end time of block bids,
and σ(te) is its standard deviation.

The quantity of a block bid (qBB) is determined as a
realization of a random variable with uniform distribution in
the interval

[qBB − σ(qBB) , qBB + σ(qBB) ,

where qBB and σ(qBB) denote the average value and standard
deviation of block bids. The price of block bids is derived
using the same approach.
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Fig. 1. Reference and reproduced bid curves (UB method) of period 1,
omitting block bids.

D. Comparision

After the reproduced bid sets are generated based on the
previously introduced statistics, we perform the market clear-
ing using the reproduced bid sets, and compare the outcome
of the clearing with the outcome of the reference bid set. We
summarize the results in the next section.

III. RESULTS

We analyzed the performance of method UB and PB as-
suming 3 different details of the statistics. In the first case, 4
bins have been used along each dimension (nb = 4), in the
second case 8, while in the third case 12.

To give an impression about the relation and original bid
curves, one reproduction of the resulting bidding curves of
standard bids is depicted in Fig. 1. It is not surprising that the
higher number of bins results in a more accurate reproduction
of the original bid curve.

As the reproduction is random (bids are generated randomly
inside their respective bins), we use multiple instances of the
reproduced bid sets (in this case 10), and perform the market
clearing for the original and all of the reproduced bid sets.

Figures 2 and 3 depicts the resulting MCPs in the case of
the UB and PB method respectively, compared to the original,
reference bid set.

If one aims to numerically characterise the performance of
the methods in the context of the resulting MCP, a very simple
norm may be introduced.

ADMCP =

∑
i

∑
t ||MCPi(t)−MCPref ||

nr
(4)

The averaged deviation of the MCP (ADMCP ) defined
by eq. 4 calculates the 2-norm of the MCP deviation for
each period and sums these values over the periods for
each reproduced bid set. Following this, the resulting values
are averaged. The numerical results of the simulations are
summarized in table I.
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Fig. 2. MCP values resulting from the original bid set (continuous curve),
and from statistics-based reproduced bid sets (box plots) in the case of the
UB method.
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Fig. 3. MCP values resulting from the original bid set (continuous curve),
and from statistics-based reproduced bid sets (box plots) in the case of the
PB method.

UB PB
nb = 4 40.80 32.15
nb = 8 27.95 25.55
nb = 12 24.94 17.37

TABLE I
VALUES OF ADMCP IN THE CASE OF THE UB AND PB METHOD,

ASSUMING DIFFERENT DETAIL LEVELS (nb)

ID q p ID q p
D1 11 11 S1 11 11
D2 8.9 8.9 S2 7.1 7.1
D3 6.9 6.9 S3 5.1 5.1
D4 4.9 4.9 S4 3.1 3.1
D5 1 1 S5 1 1

TABLE II
EXAMPLE BID SET

IV. DISCUSSION

A. UB vs PB

In table I, on the one hand we may see that the MCP-
deviance norm introduced in equation 4, decreases as the num-
ber of bins is increased, i.e. more detailed statistics provide
more accurate results compared to the original MCP values.
On the other hand, table I also shows, that the nature of the
representation also significantly matters. If the bins are defined
to each period individually (PB), a 33% lower level of detail
(nb = 8 vs 12) implies almost the same resulting AD value
compared to the UB case (25.55 vs 24.94). This highlights
the importance of the methodology details, namely that if
appropriate data is available, it is advisable to adjust bin limits
to maximum and minimum bid prices of individual periods.
These maximum and minimum bid prices may significantly
vary with e.g. the appearance/disappearance of price-taker bids
of renewable-based generating units over different periods.

B. Bias of the reproduced MCPs

Figures 2 and 3 show that in some of the periods, the
MCPs resulting from the reproduced bid sets may be different
from the original MCP values (see e.g. period 3 or 10 in
the UB case when nb = 8). At first sight this phenomena
is not straightforward. The explanation lies in the fact that
the relations of the original bid values and the bin limits
strongly determine the properties of the reproduced bid sets.
To highlight the underlying origins of the bias, let us consider
a simple 1-period example and take e.g. the reference bid set
summarized in Table II (no block bids are present this time).

If we suppose 5 bins along each dimension, the minimum
and maximum values define the following bin limits for both
q and p: [1, 3, 5, 7, 9, 11]. The ΨS and ΨD matrices
will be diagonal, and since in the reproduction process we
assume uniform distribution of bid parameters in each bin,
the expected value of the parameters of the reproduced bid set
will be in the middle of the bins (i.e. equal to 2, 4, 6, 8 and
10 respectively).
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Fig. 4. Reference and reproduced bid curves, based on table II.

Figure 4 depicts the resulting bid curves of the original bid
set and the reproduced one (assuming that the reproduced bid
set is the realisation corresponding to the expected values).

We can see, the intersections of the curves do not coincide
(regarding neither quantity or price), thus the expected value of
the MCP resulting from the reproduction is different compared
to the original MCP. This example shows the limitations of this
approach. Unless the detail of the statistics is very high, there
is no guarantee for the precise reproduction of the original
MCPs in the case of using a statistic-based artificial bid set.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have considered a scenario when statistical
details of DAPX bid data is available, and analyzed the
A. Future work

The joint distribution-type representation may be also used
in the case of block bids. In this case however, the respective
Ψ arrays will be 4 dimensional (since a block bid has 4
parameters). If such data is not available, heuristics may be
used to generate a set of block bids, which result in the same
statistical features as block bids of the original bid set (the
method described in this article for block bids does not ensure
the exact match of the known statistical values, but gives an
acceptable approximation).

performance of the reproduced bid set, regarding the market
outcomes (more precisely MCPs). We found that the detail of
the statistics naturally affects the precision of the reproduction,
but also found that the methodical details of the statistics (i.e.
the global or period-wise determination of bin limits) has also
significant effect. The study shows that assuming any detail
of the statistics, if on wishes to create an artificial data set
matching the original MCPs as good as possible, it is advisable
to use period-dependent definition of bins, and use this data
in the reproduction process.
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