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I. INTRODUCTION

Nowadays, owing to the rapid advancement of the core tech-
nologies of data acquisition including the cloud data centers,
cell towers, and personal computers and smartphones, notably
with the emerging of the Internet of Things (IoT) technology
which automates the process of data collecting and storing,
massive amounts of data are being stored continuously for
future data mining tasks,which could contribute to the sustain-
able development goals (including Good Health, Sustainable
Cities, and Economic Growth) [1, 2]. The amount of available
data, either created, consumed, or stored, was estimated at 4.4
zettabytes in 2013, reaching 64.2 zettabytes in 2020, and is
expected to reach more than 180 zettabytes in 2025 [3, 4, 5].
Recently, Wu et al. [6] have studied the relation between green-
ing and big data by introducing the issues of big data from

Mohammad Bawaneh is with the Department of Networked Systems and
Services, Faculty of Electrical Engineering and Informatics, Budapest Uni-
versity of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest,
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the greening point of view. They have identified three main
domains which require greening. First, big data acquisitions
necessitate significant energy consumption for data collecting
as well as data transfer through networks. Second, storing
massive data has called for more advanced technologies that
are inefficient in terms of energy and resources. Third, the
process of analytics of big data is usually computationally ex-
pensive, consuming time, energy, and resources. As a result, a
dimensionality reduction technique can contribute to greening
big data storage and analytics by conserving storage space
while also reducing the computational complexity of the data
analytics process.

A significant amount of the generated data are streaming
data which is also known as time series data. Time series is a
sequence of observations, where each observation is recorded
sequentially with time [7]. Time Series data are used in various
domains including finance and stock market [8, 9], voice
recognition [10], online signature verification [11], failure
prediction in high performance computing and cloud systems
[12], earthquake forecasting[13], weather prediction [14], and
intelligent transportation systems [15]. Consequently, an enor-
mous amount of data are generated daily and requires special
memory management. As previously stated, such massive
data has two major consequences. First, a significant quan-
tity of memory must be provisioned, consuming energy and
resources. Second, because of the inherited high computation
complexity, processing and analyzing high-dimensional data
is challenging, making it difficult to analyze the time series
in its raw form. To achieve that, many researchers have in-
vestigated time series representation approaches, with various
ways offered to minimize time series high dimensionality
by expressing the time series in a new representation form
in a lower dimension space [16]. However, a common key
concept for applying valuable time series representation is
that the new representation of the time series must include
the original characteristic features in order to preserve the
important information of the raw time series (such as local
trends information and basic data distribution). Furthermore,
these features must be acquired while keeping the new rep-
resentation as simple as possible. Moreover, because time
series data comes from various domains and represents distinct
behaviors, the representation approach should be applicable
to numerous types of time series datasets. Therefore, the
time series representation approach should be general and
applicable to any dataset to be used as a preprocessing step.
As a result of these transformation criteria, storage space will
be saved and further processing and analysis of data will be
accelerated. In this paper, we adopt these criteria to propose
an effective offline time series representation approach termed
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Adaptive Simulated Annealing Representation (ASAR). The
proposed approach treats the time series representation as an
optimization problem, with the aim of retaining the time series
shape while lowering dimensionality. Moreover, because it is
focused on tracking the local trends of the time series, the
proposed approach is able to transform any sort of time series
data with diverse characteristics and behavior.

Transforming the time series into a new representation has
several advantages. When it comes to extracting information
from time series data, several data mining tasks, such as
classification and clustering [17, 18], may be used to analyze
the time series data. As a consequence, with the requirement
to measure similarity and examine historical time series data
in order to apply effective classification or clustering tasks,
transforming the time series as a preprocessing step would give
minimal computing complexity and hence speedier results.
Furthermore, certain similarity metrics may get skewed due
to the distortion in the raw time series. As a result, changing
the time series while retaining its fundamental characteristic
features overcome this issue as well [19].

Time series representation methods that have been proposed
in the literature have several flaws; we will discuss them in
detail in the next section. Some of these methods transform
the time series into symbolic form and by this lose the original
structure, which makes it impossible to restore the shape of
the time series. In addition, some methods lose the local
trend information, which is crucial information for similarity
measuring of time series data. Some variants of these have
been proposed to include the trend information; however, this
comes with a cost of insufficient compression ratio, which is
considered one of the main objectives when representing time
series in a new form. In this paper, ASAR is proposed to
overcome the shortcomings of these methods by introducing
a shape-based representation of time series. ASAR keeps
the new form of the time series as simple as possible by
transforming the data into a lower dimension but with the
same shape as the raw time series together with the same
data distribution. This way, it addresses the issue of keeping
the original structure while compressing the data. Moreover,
by preserving the shape of the time series, the local trend
information is preserved, with no cost of including additional
information in the new representation. The proposed approach
ASAR is assessed and compared with some approaches from
the literature in this paper by measuring the Compression Ratio
(CN) to determine which approach saves the most memory.
Furthermore, classification and clustering tasks are used to
assess ASAR’s capacity to maintain time series information
(i.e., such as the local trends) and to demonstrate the process
acceleration feature. The following are the key contributions
of this paper:

• The new representation of time series ASAR can signif-
icantly reduce dimensionality while retaining the shape
of the time series. This conserves storage space without
losing the information required for future data mining
operations. Moreover, the high compression ratio that
can be achieved by ASAR accelerates future data mining
operations.

• The ASAR approach views time series representation as

an optimization issue with the objective of maintaining
the raw time series shape. This is achieved by tracking
local trends in the raw time series and expressing these
trends by the least number of segments. As a result,
ASAR has no restrictions on the type, shape, distribution,
or source domain of time series data.

This paper is organized as follows. Section 2 includes
a review of prior similar studies from the literature. The
proposed approach is explained in detail in Section 3. Section
4 presents the findings of the experimental analysis. Finally,
in section 5, the paper’s conclusion is provided.

II. RELATED WORKS

In the last two decades, the applications domains that apply
time series analysis have grown tremendously. In addition, the
rapid advancement in data acquisition technologies offered an
enormous amount of data which in turn could be mined to
form significant knowledge. As a consequence, numerous time
series representation methods were developed to overcome
the challenges of the data’s high dimensionality [20, 16].
Aghabozorgi et al. [19] classified the time series representation
methods into four main categories: data adaptive, non-data
adaptive, model-based, and data dictated representation meth-
ods. This section provides a brief overview of these categories
and the most significant approaches presented in the previous
two decades.

In data adaptive methods, the segmentation of the time
series is done with varied length segments. Singular Value De-
composition (SVD) was one of the earliest methods proposed
in time series dimensionality reduction [21]. It can be used
to represent multivariate time series data. SVD deals with the
multivariate time series as an (m∗n) matrix. It applies a space
rotation process to the best least-squares fit direction by factor-
izing the matrix into three other matrices (A = UΣV T ). U is
m ∗m unitary matrix, Σ is m ∗n rectangular diagonal matrix
with diagonal non-negative elements called singular values,
and V T is n∗n unitary matrix. The dimension of the matrix is
reduced by removing the least significant singular values in Σ
and the corresponding entries in U and V T . The disadvantage
of SVD is that it has high computation complexity O(mn2).
Years later, the Adaptive Piecewise Constant Approximation
(APCA) was proposed [22]. APCA segments the time series
into constant segments but with varying lengths. The new
representation is simply the records of the endpoints for each
segment with the mean value of the segment in the original raw
time series. With a computation complexity of O(n), APCA is
a faster method than SVD. However, a significant disadvantage
of APCA is that it loses the trend information since two
segments with two different trends may have the same mean
values. Gullo et al. [23] have proposed the Derivative time
series Segment Approximation (DSA) representation model.
DSA model transforms the raw time series into the derivative
estimation by computing the first derivative of each sample.
Then it segments the derivative estimation into variable-length
segments, where the breaking criterion is that the points that
have close slopes (close first derivative values) are in the same
segment. In other words, the segment keeps expanding while
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the absolute difference between the new sample and the mean
value of the previous samples within the segment is less than
a certain threshold. Finally, the new representation is formed
by pairs representing the segments. Each pair consists of the
timestamp of the last point in the segment, and an angle
demonstrates the average slope of this segment.

Non-data adaptive methods segment the time series with
fixed-length segments. One of the widely used time series
representation methods under this category is the symbolic
representation called the Symbolic Aggregate approXimation
(SAX) [24, 25]. SAX normalizes the time series to a zero mean
distribution and standard deviation of 1, keeping the different
time series within the same offset. Then the time series is trans-
formed into the Piecewise Aggregate Approximation (PAA)
representation [26], which in turn reduces the dimensionality.
PAA divides the time series into a number of equal-sized
frames. Then for each frame, the mean value of the points
within the frame is calculated, and finally, the sequence of the
mean values of all frames will be the new PAA representation.
As a result of the normalizing process, the time series follows
a Gaussian distribution. In the next step, the authors divide the
time series into equal-sized areas under the curve of the Gaus-
sian distribution (the same size as the PAA representation’s
frame). Finally, they assign a symbol for each area which will
be later assigned for all samples within this area. Based on the
sequence values obtained by the PAA representation, the time
series is transformed into a sequence of symbols called a word.
Similar to APCA, SAX has a drawback of losing the trend
information since segments have different trends but similar
slope values will be assigned by similar symbols. There are
several variants that have been proposed as SAX extensions.
Lkhagva et al. [27] have proposed to use the minimum and
maximum values within the segment in addition to the mean
value to overcome the drawback of SAX. However, this
will triple the dimension reduced by SAX. Another Variation
is proposed by Sun et al. [28] in their SAX-TD method.
SAX-TD adds the trend information of each segment to the
SAX representation by calculating the distance between the
segment’s ending points which they called the trend distance.
Consequently, the dimension is double that reduced by SAX.
Another extension, SAX with Standard Deviation (SAX SD),
has been proposed [29]. The authors improved SAX by adding
the standard deviation feature in addition to the mean value
in order to study the spread of the values within the segment
and to improve the similarity measure. In [30], Multivariate
Symbolic Aggregate Approximation (MSAX) was proposed
to represent multivariate time series data. Some applications
contain more than one variable explaining the same behavior.
Therefore, MSAX integrates the information of the different
time series in one symbolic representation. MSAX first checks
the dependency between the variables. If they are independent
of each other, the data are normalized. However, in the case of
dependent variables, a linear transformation must be applied.
Then, all the time series in the matrix are represented using
the PAA method. Last, discretization is applied resulting in
a symbol matrix. As a final step, the symbols in the matrix
are transformed into a sequence of symbols with a length
equal to the columns, where each entry is represented by

compressing the symbols in all rows (all the time series) in
the corresponding column.

Model-based representation methods transform the time
series stochastically. Time Series Bitmaps belongs to this
category [31]. Time Series Bitmaps uses the time series
extracted features and their frequencies to color a Bitmap. This
visualization of the similarities between time series offers the
users a fast discovery of the clusters, classes, anomalies, and
other shape-based tasks. This is done by first transforming the
continuous time series into discrete time series by applying
SAX. Then, the frequencies of the sub-words in the SAX
representation are counted, where the desired level of recursion
defines the length of the sub-word. These frequencies are
mapped into the corresponding pixel of the grid, where the
grid contains pixels that represent all possible sub-words
based on the desired level. The frequencies are normalized
by dividing them by the largest value to handle the length
variety between the time series. The final step is the color
mapping of these frequencies into the grid, which offers the
ability to compare the time series. It is not recommended to
use bitmaps representation for a single time series as it does
not offer any information. Another drawback of Bitmaps is
that the structure of the raw time series is hidden and cannot
be captured.

In data dictated methods, the compression ratio is not
defined in advance where it is dependent on the raw time series
behavior. The Clipped representation is an example of this
category [32, 33]. Clipped represents the time series as binary
values. The raw time series’ samples above the population’s
mean will be represented by 1, whereas those below the mean
will be represented by 0. The new binary representation is
compressed to a new sequence that contains the lengths of
the subsequences with the same value. It is unnecessary to
mention the sample value in addition to the length as a pair
because it is a binary representation. Hence, including the
first value is enough where the rest of the values will be
only toggling between 0 and 1. Zhan et al. [34] proposed the
Feature-based Clipped Representation (FCR). FCR divides the
time series into equal-length segments. Then it finds the trends’
turning points within each segment and their corresponding
importance indices using the method presented in [35]. The
turning points are then chosen based on their importance and
converted into binary values using the clipped representation,
which will be compressed to a new sequence that contains the
lengths of the subsequences with the same value. The clipped
representation here compares the values to the segment’s
mean instead of the population’s mean. Another example of
this category is the symbolic representation of the Fragment
Alignment Distance (FAD) method [36]. FAD estimates the
derivative of time series using the DSA method [23]. This
derivative estimation contains the trend information. After
that, FAD converts this derivative sequence into a symbolic
sequence R by setting a threshold and comparing it with the
derivative estimation value of each sample. If the value is less
than the threshold, the point has a small change compared to
the previous point, and they will be assigned with the same
symbol. However, if the value is bigger, the point has a big
change compared to the previous point, and so a different
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symbol will be assigned for this point. Finally, FAD transforms
the resulted symbolic representation series R into feature series
consisting of pairs of values. Each pair represents the symbol
of a similar subsequence and the length of this subsequence.
Another method that belongs to this category was proposed
in the paper [37] which is called Adaptive Particle Swarm
Optimization Segmentation (APSOS). APSOS deals with the
time series segmentation as an optimization problem. The
goal of the optimization is to minimize the error function
between the raw time series and the segmented time series.
To find the samples that best segment the series, they have
adapted the particle swarm optimization algorithm to find
the best segments’ endpoints. APSOS is able to capture the
trend information of the time series; however, it has high
computation complexity O(n2), which makes it difficult to
use with the high daily acquired streaming data.

The proposed approach in this paper is part of the data
dictated methods since it is based on tracking the local trends
in the raw-time series, and consequently, the compression ratio
is dependent on the time series behavior. It is inspired by the
APSOS approach by dealing with the time series segmentation
as an optimization problem. The following section introduces
the proposed approach in detail.

III. ADAPTIVE SIMULATED ANNEALING
REPRESENTATION (ASAR)

A brief summary of the significant approaches proposed in
the literature for representing time series was introduced in
the previous section. These approaches suffer from different
drawbacks. Some approaches are time-consuming due to the
high computational complexity required to create the represen-
tation of the raw time series. On the other hand, some of those
solutions with low computational complexity failed to capture
the local trends information. Furthermore, some approaches
do not offer a high enough compression ratio, where the high
compression ratio is one of the crucial features of a time
series representation; therefore, it became the key objective of
our work. The Adaptive Simulated Annealing Representation
(ASAR) is introduced in this paper to overcome these issues.
ASAR’s objective is to represent the time series in a new
form to achieve a high compression ratio, this way saving
the storage space and at the same time preserving the shape
of the time series, which will keep the essential features and
prevent information loss. Inspiring by the APSOS approach
[37], ASAR deals with the time series representation as an
optimization problem. This optimization aims to find the
instances in the raw time series that can describe the shape in
the possible best way, ignoring the rest of the instances. In the
following subsection, we define the time series representation
as an optimization problem.

A. Formulating Time Series Segmentation as an Optimization
Problem

Each time series contains several local trends, forming a
time series shape. For example, two time series may have
the same shape, which means that they follow the same
local trends. However, the time of occurrence of the local

trends does not have to be the same. As mentioned earlier,
ASAR is proposed to reduce the time series dimensions while
maintaining the time series shape. For this purpose, a heuristic
algorithm can be utilized. Heuristic algorithms are optimiza-
tion algorithms that can find an approximated optimum global
value for a particular function. Accordingly, in order to use
a heuristic algorithm to apply time series representation, the
time series representation must be formulated first as an
optimization problem with the objective of reducing the time
series dimensions while preserving the shape. Let us assume
that X is a time series of length n and is defined as:

X = {X1, X2, ..., Xn}

Our target is to find a new time series R, representing X
time series shape with a reduced dimensionality. The new
representation R can be defined as follows:

R = {R1, R2, ..., Rk} (1)

where k ≪ n. To illustrate, Figure 1 shows the objective
of the proposed approach using a synthetic time series. The
length of the raw time series (depicted by the blue line)
is 1000, whereas it can be reduced to 22 samples while
preserving the shape of the raw time series (the orange line).
It must be noted that this is just an illustrative example
of the approach’s objective, not the result of the ASAR’s
transformation. The segment from the time series R is defined

Fig. (1) An illustration example of the time series segmen-
tation result, note that the blue line represents the raw time
series, while the orange one represents the new time series
representation.

as the line connecting two consecutive points in the new
representation. Hence, R will contain k − 1 segments. This
segment is obtained by recording two timestamps from the
raw time series as endpoints and neglecting the timestamps
between them. However, the segment may still be used to
estimate the value for each timestamp of the raw time series
(even the neglected ones). This estimation can be specified by
the line equation (the line connecting the two endpoints). Let
us assume that RX represents a time series for the estimated
values of the raw time series from the point of view of the new
representation R, Then, the RXi’s approximate corresponding
value of Xi can be computed as follows:

RXi =
1

(e− s)
[(i− s)Xe + (e− i)Xs] (2)

Fig. (1) An illustration example of the time series segmentation result, 
note that the blue line represents the raw time series, while the orange 

one represents the new time series representation.
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prevent information loss. Inspiring by the APSOS approach
[37], ASAR deals with the time series representation as an
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instances in the raw time series that can describe the shape in
the possible best way, ignoring the rest of the instances. In the
following subsection, we define the time series representation
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Each time series contains several local trends, forming a
time series shape. For example, two time series may have
the same shape, which means that they follow the same
local trends. However, the time of occurrence of the local

trends does not have to be the same. As mentioned earlier,
ASAR is proposed to reduce the time series dimensions while
maintaining the time series shape. For this purpose, a heuristic
algorithm can be utilized. Heuristic algorithms are optimiza-
tion algorithms that can find an approximated optimum global
value for a particular function. Accordingly, in order to use
a heuristic algorithm to apply time series representation, the
time series representation must be formulated first as an
optimization problem with the objective of reducing the time
series dimensions while preserving the shape. Let us assume
that X is a time series of length n and is defined as:

X = {X1, X2, ..., Xn}

Our target is to find a new time series R, representing X
time series shape with a reduced dimensionality. The new
representation R can be defined as follows:

R = {R1, R2, ..., Rk} (1)

where k ≪ n. To illustrate, Figure 1 shows the objective
of the proposed approach using a synthetic time series. The
length of the raw time series (depicted by the blue line)
is 1000, whereas it can be reduced to 22 samples while
preserving the shape of the raw time series (the orange line).
It must be noted that this is just an illustrative example
of the approach’s objective, not the result of the ASAR’s
transformation. The segment from the time series R is defined

Fig. (1) An illustration example of the time series segmen-
tation result, note that the blue line represents the raw time
series, while the orange one represents the new time series
representation.

as the line connecting two consecutive points in the new
representation. Hence, R will contain k − 1 segments. This
segment is obtained by recording two timestamps from the
raw time series as endpoints and neglecting the timestamps
between them. However, the segment may still be used to
estimate the value for each timestamp of the raw time series
(even the neglected ones). This estimation can be specified by
the line equation (the line connecting the two endpoints). Let
us assume that RX represents a time series for the estimated
values of the raw time series from the point of view of the new
representation R, Then, the RXi’s approximate corresponding
value of Xi can be computed as follows:

RXi =
1
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[(i− s)Xe + (e− i)Xs] (2)
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symbol will be assigned for this point. Finally, FAD transforms
the resulted symbolic representation series R into feature series
consisting of pairs of values. Each pair represents the symbol
of a similar subsequence and the length of this subsequence.
Another method that belongs to this category was proposed
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To find the samples that best segment the series, they have
adapted the particle swarm optimization algorithm to find
the best segments’ endpoints. APSOS is able to capture the
trend information of the time series; however, it has high
computation complexity O(n2), which makes it difficult to
use with the high daily acquired streaming data.

The proposed approach in this paper is part of the data
dictated methods since it is based on tracking the local trends
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where i is the index of the point that will be estimated, s is
the starting point of the segment where i locate, and e is the
endpoint of this segment (s,i, and e are timestamps from the
raw time series). The proof is as follows:

Based on the straight line equation:

RXi = m× i+ b (3)

where m is the slope of the line, and b is the y-intercept. The
slope m is calculated as follow:

m =
(Xe −Xs)

(e− s)
(4)

now substitute 4 in 3:

RXi =

(
(Xe −Xs)

(e− s)

)
× i+ b (5)

Hence, the y-intercept b can be defined as:

b = RXi −
(
(Xe −Xs)

(e− s)

)
× i (6)

by using the point e:

b = Xe −
(
(Xe −Xs)

(e− s)

)
× e (7)

now substitute 7 in 5:

RXi =

(
(Xe −Xs)

(e− s)

)
× i+Xe −

(
(Xe −Xs)

(e− s)

)
× e (8)

by expanding out the brackets we get equation 2:

RXi =
1

(e− s)
[(i− s)×Xe + (e− i)×Xs]

The approximating values (Ri ∀ s < i < e) will be
used to calculate the Mean of Squared Errors (MSE) for each
segment between the raw time series and the corresponding
approximate values in the new representation. MSE is the
average of the squared errors and is defined as:

MSE(s, e) =
1

e− s+ 1
×

e∑
i=s

(Xi −RXi)
2 (9)

MSE serves as an indicator of how much the segment that has
a starting point s and an endpoint e aligns the samples in the
range (s, e) from the raw time series. The MSE values then
will be compared to indicate the superiority between different
possible segments to represent the data. In other words, ASAR
computes the MSE for different segments (same starting point
but different endpoints) to find the best segment that has
the minimum MSE among them, which points to the best
alignment between the new segment and the corresponding
samples from the raw time series. For simplifying the imple-
mentation and for the purpose of direct calculations, equation
2 is substituted to equation 9, which gives us the following
formula:

MSE(s, e) =
1

e− s+ 1
×

e∑
i=s

(
Xi−

(i− s)Xe

(e− s)
+
(e− i)Xs

(e− s)

)2

(10)
The proposed ASAR algorithm aims to segment the raw

time series based on the local trends so that the points

that follow the same trend will be covered by one segment.
However, once the trend changes significantly, a new segment
should be used to cover the next points in the raw time series.
Moreover, since different segments can represent a trend, the
selected segment should be the best-aligned one with the
points that follows the same trend. From this point of view, we
have defined our objective function to find the best segment’s
endpoint as follows:

e = argmin
state

MSE(s, state) (11)

In the first segment, the starting point will be the first point
in the raw time series. So basically, this objective function
searches for the endpoint of the segment. Once the optimal
endpoint is found and recorded, our method starts to search
for the next endpoint, considering the previous endpoint as the
new segment’s starting point.

B. Simulated Annealing for ASAR

The Simulated Annealing (SA) heuristic algorithm [38] is
utilized in our method to find the new representation of the
time series which can maintain its shape. SA is chosen as the
heuristic algorithm in this paper due to its ability to overcome
the issue of being stuck at some local optima during the
global optimum solution search process. In addition, SA is a
robust and general algorithm as it makes no constraints on the
type of data. This allows for proposing a general time series
representation algorithm that can be applied for streaming data
coming from various domains. Moreover, in case the time
for the searching process is due to end, SA returns the best-
known solution. In other words, there is always a best-known
solution even if the time was not enough to complete the search
process.

The general principle of SA and its use in this paper can be
clarified as follows: the computational optimization by SA is a
probabilistic technique with the objective of finding the global
optimum value for a particular function within a solution
search space. The algorithm starts searching for the optimum
value by moving between the possible solutions randomly.
However, each transition is evaluated, and only those who
have a high transition probability will be considered. The
probability is controlled by two parameters, a change in the
system Energy ∆E, and a system temperature T . The solutions
resulting in smaller system energy are better than those solu-
tions with greater energy. Therefore, SA accepts the solutions
that result in smaller system energy. However, worse solutions
may still get accepted with a certain probability controlled by
the change in the system energy and temperature. The system
temperature is used to reduce the likelihood of accepting
worse solutions as the solution search space is investigated.
Accepting a worse solution provides a more thorough search
for the ideal global solution. Simulated Annealing operates
in the following manner. The temperature gradually declines
from a positive starting point to zero. At each time step, the
Simulated Annealing randomly picks a solution similar to the
current one, evaluates its quality, and progresses to it based
on the probability of picking better or worse solutions.
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by expanding out the brackets we get equation 2:
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The approximating values (Ri ∀ s < i < e) will be
used to calculate the Mean of Squared Errors (MSE) for each
segment between the raw time series and the corresponding
approximate values in the new representation. MSE is the
average of the squared errors and is defined as:

MSE(s, e) =
1

e− s+ 1
×

e∑
i=s

(Xi −RXi)
2 (9)

MSE serves as an indicator of how much the segment that has
a starting point s and an endpoint e aligns the samples in the
range (s, e) from the raw time series. The MSE values then
will be compared to indicate the superiority between different
possible segments to represent the data. In other words, ASAR
computes the MSE for different segments (same starting point
but different endpoints) to find the best segment that has
the minimum MSE among them, which points to the best
alignment between the new segment and the corresponding
samples from the raw time series. For simplifying the imple-
mentation and for the purpose of direct calculations, equation
2 is substituted to equation 9, which gives us the following
formula:

MSE(s, e) =
1
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The proposed ASAR algorithm aims to segment the raw

time series based on the local trends so that the points

that follow the same trend will be covered by one segment.
However, once the trend changes significantly, a new segment
should be used to cover the next points in the raw time series.
Moreover, since different segments can represent a trend, the
selected segment should be the best-aligned one with the
points that follows the same trend. From this point of view, we
have defined our objective function to find the best segment’s
endpoint as follows:

e = argmin
state

MSE(s, state) (11)

In the first segment, the starting point will be the first point
in the raw time series. So basically, this objective function
searches for the endpoint of the segment. Once the optimal
endpoint is found and recorded, our method starts to search
for the next endpoint, considering the previous endpoint as the
new segment’s starting point.

B. Simulated Annealing for ASAR

The Simulated Annealing (SA) heuristic algorithm [38] is
utilized in our method to find the new representation of the
time series which can maintain its shape. SA is chosen as the
heuristic algorithm in this paper due to its ability to overcome
the issue of being stuck at some local optima during the
global optimum solution search process. In addition, SA is a
robust and general algorithm as it makes no constraints on the
type of data. This allows for proposing a general time series
representation algorithm that can be applied for streaming data
coming from various domains. Moreover, in case the time
for the searching process is due to end, SA returns the best-
known solution. In other words, there is always a best-known
solution even if the time was not enough to complete the search
process.

The general principle of SA and its use in this paper can be
clarified as follows: the computational optimization by SA is a
probabilistic technique with the objective of finding the global
optimum value for a particular function within a solution
search space. The algorithm starts searching for the optimum
value by moving between the possible solutions randomly.
However, each transition is evaluated, and only those who
have a high transition probability will be considered. The
probability is controlled by two parameters, a change in the
system Energy ∆E, and a system temperature T . The solutions
resulting in smaller system energy are better than those solu-
tions with greater energy. Therefore, SA accepts the solutions
that result in smaller system energy. However, worse solutions
may still get accepted with a certain probability controlled by
the change in the system energy and temperature. The system
temperature is used to reduce the likelihood of accepting
worse solutions as the solution search space is investigated.
Accepting a worse solution provides a more thorough search
for the ideal global solution. Simulated Annealing operates
in the following manner. The temperature gradually declines
from a positive starting point to zero. At each time step, the
Simulated Annealing randomly picks a solution similar to the
current one, evaluates its quality, and progresses to it based
on the probability of picking better or worse solutions.
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However, once the trend changes significantly, a new segment
should be used to cover the next points in the raw time series.
Moreover, since different segments can represent a trend, the
selected segment should be the best-aligned one with the
points that follows the same trend. From this point of view, we
have defined our objective function to find the best segment’s
endpoint as follows:

e = argmin
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In the first segment, the starting point will be the first point
in the raw time series. So basically, this objective function
searches for the endpoint of the segment. Once the optimal
endpoint is found and recorded, our method starts to search
for the next endpoint, considering the previous endpoint as the
new segment’s starting point.

B. Simulated Annealing for ASAR

The Simulated Annealing (SA) heuristic algorithm [38] is
utilized in our method to find the new representation of the
time series which can maintain its shape. SA is chosen as the
heuristic algorithm in this paper due to its ability to overcome
the issue of being stuck at some local optima during the
global optimum solution search process. In addition, SA is a
robust and general algorithm as it makes no constraints on the
type of data. This allows for proposing a general time series
representation algorithm that can be applied for streaming data
coming from various domains. Moreover, in case the time
for the searching process is due to end, SA returns the best-
known solution. In other words, there is always a best-known
solution even if the time was not enough to complete the search
process.

The general principle of SA and its use in this paper can be
clarified as follows: the computational optimization by SA is a
probabilistic technique with the objective of finding the global
optimum value for a particular function within a solution
search space. The algorithm starts searching for the optimum
value by moving between the possible solutions randomly.
However, each transition is evaluated, and only those who
have a high transition probability will be considered. The
probability is controlled by two parameters, a change in the
system Energy ∆E, and a system temperature T . The solutions
resulting in smaller system energy are better than those solu-
tions with greater energy. Therefore, SA accepts the solutions
that result in smaller system energy. However, worse solutions
may still get accepted with a certain probability controlled by
the change in the system energy and temperature. The system
temperature is used to reduce the likelihood of accepting
worse solutions as the solution search space is investigated.
Accepting a worse solution provides a more thorough search
for the ideal global solution. Simulated Annealing operates
in the following manner. The temperature gradually declines
from a positive starting point to zero. At each time step, the
Simulated Annealing randomly picks a solution similar to the
current one, evaluates its quality, and progresses to it based
on the probability of picking better or worse solutions.
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The time series representation has been formulated as an
optimization problem in order to apply the Simulated Anneal-
ing algorithm (see equation 11). The solution search space
has been adapted in this study to cover only a part of the
raw time series rather than the entire space. In other words,
because the time series contains several local trends, only a
window of the raw time series is inspected each time in order
to locate the best segment. As a result, the window of the
raw time series is investigated each time to locate the optimal
endpoint that depicts a local trend. The discovered endpoint is
then utilized as the starting point for the next segment search,
with the same window size serving as the search space. As
the entire solution space (the entire raw time series) is not
required in each segment inquiry, this reduces the computing
complexity of ASAR. In addition, for the reason that any local
trend consists of consecutive samples, the transition between
states in the Simulated Annealing is made incremental rather
than random in this paper. It should be emphasized that the
window size does not determine the size of the segments but
rather the size of the solution search space (i.e., the search
space for the segment endpoint). As a result, ASAR is not
sensitive to this window size setting because it is utilized to
reduce calculation complexity. We recommend setting a large
enough window size that can suit the majority of the local
trends (i.e., the window size is larger than the length of the
majority of the local trends). Nonetheless, not having a large
enough window size does not cause a problem in preserving
the shape of the time series; however, local trends with lengths
greater than the window size will be represented by more than
one segment.

1) Energy Function: The Mean of Squared Errors defined
in equation 10 is used as the energy function in this paper.
The change in the energy function when moving from a state
(state) to a state (state+ 1) is defined as follows:

∆Estate = MSE(s, state− 1)−MSE(s, state) (12)

2) Cooling Schedule: The other parameter which controls
the acceptance probability of the new state is the temperature.
The temperature should decline gradually, which is controlled
by the cooling schedule. In this paper, the cooling schedule is
defined linearly as follows:

Tstate = α× Tstate−1 (13)

where T is the system temperature, and α is cooling parameter.
In this paper, we adopt the definition provided in the paper [39]
to calculate the α value.

α =


Tinitial

Tfinal

� 1
w


(14)

where w is the window size used for the search space. The
final temperature is typically set close to 0. However, the initial
temperature is problem-dependent and has to be studied and
set based on the use case. This definition of α ensures that the
temperature starts with a high value and decreases gradually
towards the low final value. In other words, at the beginning
of the process, the temperature is set to be high, resulting in a
high probability of accepting states. However, as the process

gets through, the temperature value decreases, resulting in a
lower probability of accepting solutions.

3) Acceptance Probability: The probability function used
in this paper is defined as:

Prstate =


1 ∆Estate > 0

e
∆Estate
Tstate ∆Estate < 0

(15)

Prstate contains two different factors; the system temperature
Tstate, and the change in energy function ∆Estate. The
probability is directly proportional to the system temperature
and the change in energy. Table I explain the effects of these
factors.

TABLE (I) The effects that each factor can cause on the
probability value.

Factor Magnitude Effect on probability

T
High High
Low Low

∆E
High High
Low Low

4) Acceptance Criteria: SA searches for the segment that
will keep the change in the energy positive as it indicates that
the new MSE is better than the previous one, meaning that
it is a good move. However, in case of a bad move, i.e., the
energy is negative, the SA may still make the move but with a
certain probability to ensure finding the global minima where
the segment’s MSE reflects the best segment alignment with
the raw data. Once the state is rejected, the previous state will
be used to record a new value in the new representation R
as it indicates the best endpoint that makes the best segment
alignment. This is expressed as follows:

state =




Accepted ∆Estate > 0
Accepted Prstate > rand(0, 1)
Rejected (Rc = Xstate−1) Prstate < rand(0, 1)

(16)

where c is the timestamp of the new record in the new
representation, starting from 1 and increasing by 1 with each
new record until it reaches the new representation length k. To
summarize, the ASAR approach searches for the points that
can explain the local trends and neglects the rest to reduce the
data dimensions while preserving the shape of the time series.
Table II shows the ASAR algorithm’s pseudocode.

IV. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION

In this section, the proposed approach is compared to three
significant approaches from the literature, the PAA, the SAX,
and the FAD approaches. Since representation approaches
are not direct methods to extract information, a validation
experiment is designed in this paper to test the ability of
ASAR to preserve the information of the raw time series by
applying similarity search and detection tasks using time series
classification and time series clustering methods. In addition,
to test the effectiveness of ASAR, it is compared with the
competing approaches in terms of the compression ratio in
order to test the storage space saving supremacy. Moreover, the
time performance of each approach for applying classification
or clustering tasks is compared to demonstrate which approach
accelerates the data mining process the most.
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The time series representation has been formulated as an
optimization problem in order to apply the Simulated Anneal-
ing algorithm (see equation 11). The solution search space
has been adapted in this study to cover only a part of the
raw time series rather than the entire space. In other words,
because the time series contains several local trends, only a
window of the raw time series is inspected each time in order
to locate the best segment. As a result, the window of the
raw time series is investigated each time to locate the optimal
endpoint that depicts a local trend. The discovered endpoint is
then utilized as the starting point for the next segment search,
with the same window size serving as the search space. As
the entire solution space (the entire raw time series) is not
required in each segment inquiry, this reduces the computing
complexity of ASAR. In addition, for the reason that any local
trend consists of consecutive samples, the transition between
states in the Simulated Annealing is made incremental rather
than random in this paper. It should be emphasized that the
window size does not determine the size of the segments but
rather the size of the solution search space (i.e., the search
space for the segment endpoint). As a result, ASAR is not
sensitive to this window size setting because it is utilized to
reduce calculation complexity. We recommend setting a large
enough window size that can suit the majority of the local
trends (i.e., the window size is larger than the length of the
majority of the local trends). Nonetheless, not having a large
enough window size does not cause a problem in preserving
the shape of the time series; however, local trends with lengths
greater than the window size will be represented by more than
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1) Energy Function: The Mean of Squared Errors defined
in equation 10 is used as the energy function in this paper.
The change in the energy function when moving from a state
(state) to a state (state+ 1) is defined as follows:

∆Estate = MSE(s, state− 1)−MSE(s, state) (12)

2) Cooling Schedule: The other parameter which controls
the acceptance probability of the new state is the temperature.
The temperature should decline gradually, which is controlled
by the cooling schedule. In this paper, the cooling schedule is
defined linearly as follows:

Tstate = α× Tstate−1 (13)

where T is the system temperature, and α is cooling parameter.
In this paper, we adopt the definition provided in the paper [39]
to calculate the α value.
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Tinitial
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w


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where w is the window size used for the search space. The
final temperature is typically set close to 0. However, the initial
temperature is problem-dependent and has to be studied and
set based on the use case. This definition of α ensures that the
temperature starts with a high value and decreases gradually
towards the low final value. In other words, at the beginning
of the process, the temperature is set to be high, resulting in a
high probability of accepting states. However, as the process

gets through, the temperature value decreases, resulting in a
lower probability of accepting solutions.

3) Acceptance Probability: The probability function used
in this paper is defined as:

Prstate =


1 ∆Estate > 0

e
∆Estate
Tstate ∆Estate < 0

(15)

Prstate contains two different factors; the system temperature
Tstate, and the change in energy function ∆Estate. The
probability is directly proportional to the system temperature
and the change in energy. Table I explain the effects of these
factors.

TABLE (I) The effects that each factor can cause on the
probability value.

Factor Magnitude Effect on probability

T High High
Low Low

∆E High High
Low Low
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where c is the timestamp of the new record in the new
representation, starting from 1 and increasing by 1 with each
new record until it reaches the new representation length k. To
summarize, the ASAR approach searches for the points that
can explain the local trends and neglects the rest to reduce the
data dimensions while preserving the shape of the time series.
Table II shows the ASAR algorithm’s pseudocode.

IV. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION

In this section, the proposed approach is compared to three
significant approaches from the literature, the PAA, the SAX,
and the FAD approaches. Since representation approaches
are not direct methods to extract information, a validation
experiment is designed in this paper to test the ability of
ASAR to preserve the information of the raw time series by
applying similarity search and detection tasks using time series
classification and time series clustering methods. In addition,
to test the effectiveness of ASAR, it is compared with the
competing approaches in terms of the compression ratio in
order to test the storage space saving supremacy. Moreover, the
time performance of each approach for applying classification
or clustering tasks is compared to demonstrate which approach
accelerates the data mining process the most.
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The effects that each factor can cause on the probability value.
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TABLE (II) The pseudo code implementation of the pro-
posed ASAR algorithm.

Algorithm: Adaptive Simulated Annealing Representation (ASAR)
Input: Time Series X = (X1, X2, ..., Xn)
Output: Time Series R = (R1, R2, ..., Rk)

1. k = 1, s = 1, state = s+ 3,Rk = X1

2. For T = Tmax:Tmin do:
If (∆Estate > 0):

state = state+ 1
Else if (Prstate > rand(0, 1))

state = state+ 1
Else

Break
End if

End for
3. k = k + 1

Rk = Xstate−1

s = state− 1
Go to 2

A. Assessment algorithms

In order to evaluate the ability of ASAR to maintain the
time series information, it is tested and compared with other
approaches based on similarity search tasks. Standard classi-
fication and clustering algorithms are applied as the paper’s
objective is not the similarity search tasks themselves but the
dimensionality reduction. Therefore, we chose to apply the
well-known algorithms, One Nearest Neighbor (1-NN) for the
classification and K-means for the clustering.

1) One Nearest Neighbor classification (1-NN): In K Near-
est Neighbor (K-NN) classification [40], the tested instance
is classified based on the classes of the closest k instances.
In other words, the algorithm checks the class of closest
k instances (using a similarity metric) and applies majority
voting to predict the tested instance class. Since the classifi-
cation task is not the main objective of this paper, the One
Nearest Neighbor (1-NN) has been chosen in this paper as the
most basic, straightforward, and standard method to check the
similarity between time series. Moreover, it provides a fairer
comparison as it does not require parameter tuning, leading to
unbiased results. We use 50% of the dataset under study as a
training dataset and 50% as a testing dataset.

2) K-means Clustering: One of the well-known and most
used clustering algorithms is the K-means algorithm [19]. It
is a partitioning clustering approach that separates the data
into k clusters, intending to minimize the distance between
the instances and the cluster center and maximize the distance
between the instances from different clusters. In this paper,
K-means is used to provide a more thorough analysis of the
ability of ASAR to preserve the shape of the time series by
testing its accuracy of clustering the data based on the time
series shape. Since K-means requires setting the number of
clusters k in advance, we use the actual number of the classes
of the labeled dataset under study.

B. Assessment Criteria

To assess the classification and clustering results of the
competing approaches, the F-measure (or F-score) [41] is used
in this paper. It is an accuracy measure determined using
the test’s precision and recall. The precision is the number

of the true predicted positives divided by the number of
all predicted positives. The recall is the number of the true
predicted positives divided by the number of actual positives.
The F-measure is defined as follows:

F -measure = 2×Precision×Recall
Precision+Recall = TP

TP+ 1
2 (FP+FN)

(17)

The compression ratio (CR) in the new representation of
the time series is computed to assess the degree of dimen-
sionality reduction achieved by the competing approaches and
demonstrate the superiority in storage space savings. The
compression ratio explains the proportion of the reduction in
the length of the time series to the original length and can be
calculated as follows:

CR =
n− k

n
× 100% (18)

where n is the raw time series length, and k is the length of
the time series in the new representation form.

C. Dataset Description

The UCR Time Series Classification Archive [42] is em-
ployed in this paper to evaluate the proposed approach. The
data in the archive is z-normalized and originates from several
domains, providing variety for the time series form. The
experiment in this study has been applied to eight datasets. The
datasets are chosen to have varying lengths and to exhibit a
variety of characteristics to evaluate ASAR’s ability to handle
diverse types of time series. The data in the UCR repository is
divided into two sets: training and testing. In this experiment,
we choose the testing set since its bigger size provides for
more robust results. Table III shows the dataset information
used in the experiment.

TABLE (III) The information of the selected datasets from
the UCR archive.

Name Dataset Size Time Series Length Number of Classes
HandOutlines 1000 2709 2
StarLightCurves 1000 1024 3
Lightning-2 60 637 2
OSU Leaf 200 427 6
ShapeletSim 180 500 2
WormsTwoClass 180 900 2
Yoga 1000 426 2
Trace 100 275 4

D. Parameters Tuning

One or more parameters must be tuned for the competing so-
lutions. We used the parameter sweeping technique to tune the
parameters as in the original articles [36, 26, 25]. FAD requires
adjusting two parameters: the threshold used to determine
symbol changes and the number of symbols. The threshold
is changed by 0.01 increments between 0 and 0.2, whereas
the number of symbols is adjusted by one increment between
3 and 7. A threshold of 0.02 with a number of symbols of 5
has shown the best performance for the classification and the
clustering tasks.

Since the time series is divided into equal-sized frames, PAA
requires tuning the frame size. The frame size is adjusted by
one increment between 2 and 100. A frame size of 8 has shown
the best classification and clustering results.
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In SAX, two parameters must be tuned: the frame size and
the alphabet size (the number of symbols to represent the
data). As in PAA, the frame size is adjusted by one increment
between 2 and 100, while the alphabet size is adjusted by one
increment between 2 and 10. The best performance has been
shown using a frame size of 4 with an alphabet size of 8.

For the proposed approach ASAR, two parameters need to
be tuned. The first parameter is w, the window size used
for the search space. The second parameter is the initial
temperature (we use 0.1 for the final temperature as it must
be close to 0). We adjust w by one increment between 10 and
150. We must note that this window size does not generate
equal-sized frames but rather a search space for the segment’s
endpoint. Regarding the initial temperature, it is adjusted by
0.5 increments between 0.5 and 5. A window size of 25 with
an initial temperature of 2.5 has shown the best performance
in the experiment.

E. Time Series Representation Using ASAR

As previously stated, ASAR is intended to track time series
local trends. Its objective is to reduce the time series’ dimen-
sions while preserving its shape. This was accomplished by
retaining the data points that best explain the time series and its
trends and eliminating the others. We show an example from
each dataset to demonstrate the ASAR’s ability to represent
time series with this objective. Figure 2 shows the raw time
series of each sample on the left and its ASAR representation
on the right. It can be seen that ASAR representations are
totally following the raw time series shapes with much lower
lengths, which confirms the fulfillment of the paper’s objective.

F. Effectiveness Evaluation

The proposed approach is compared to FAD, PAA, and
SAX. In this research, four distinct assessments are used. To
assess ASAR’s efficiency in preserving the shape and time
series information, we use 1-NN classification and k-means
clustering. The compression ratio (CR) is used to measure
the efficiency of decreasing dimensions to conserve storage
space (see equation 18). Furthermore, the efficacy of ASAR
in facilitating accelerated data mining processes is presented
by comparing the time required to execute classification and
clustering tasks using raw time series and the competing
representation techniques. To guarantee a robust outcome,
the F-measure (equation 17) for 1-NN classification and k-
means clustering is calculated by averaging 50 experimental
runs. Likewise, the time necessary to complete these activities
is averaged across 50 attempts. As mentioned in section II,
ASAR belongs to the data dictated methods, which means
that the compression ratio is not previously defined and fixed
for all time series but is dependent on the time series behavior.
Therefore, CR here indicates the dataset’s average compres-
sion ratio (the average of the compression ratio for all time
series in the dataset). Since the classification and the clustering
tasks are not the main objectives of this paper, we calculate
the relative results of the F-measure for the representation
approaches and the raw time series. This allows us to see
how effective is a representation method compared to the case

when the time series is used in its raw form. Table IV shows
the F-measure relative results for the 1-NN classification. The
table shows that ASAR comes in third place after PAA and
SAX and performs better than FAD.

On the other hand, Table V shows the F-measure relative re-
sults for the K-means clustering task. ASAR achieved the best
performance among the competing methods. It has increased
the clustering accuracy by 8%.

When it comes to the main objective of this paper, ASAR
has achieved the maximum compression ratio (equation 18)
among the competing representation approaches. Table VI
shows the compression ratios and the average compression
ratio for each representation approach as a percentage (%).

This high compression ratio accelerates the data mining
process since the training dataset dimension is reduced. To
show and compare the efficiency of the dimensionality re-
duction, we have calculated the time needed to perform the
1-NN classification and the K-means clustering tasks using
the data representation provided by the various methods. The
experiments in this paper have been conducted on a platform
with an Intel(R) Xeon(R) Silver 4215 CPU with clock speed
of 2.50GHz and 2.49 GHz (2 processors) with 8 GB RAM,
running Windows 10 (64-bit). Python programming language
was used to implement all the approaches. Table VII shows
the performance time in seconds. It can be seen that by
using ASAR, the data mining process can be accelerated the
most, which proves its advantage in fast information extraction
besides the storage space saving.

G. Results Discussion

According to Figure 2, it is pretty clear that ASAR is
able to fulfill the objective of this paper by significantly
reducing the dimensionality while preserving the time series
shape. This confirms that ASAR is an applicable and reliable
dimensionality reduction approach for the data mining tasks
(such as time series classification, clustering, and anomaly
detection) that considers the original shape of the time series
as a crucial feature . All examples show clearly that the ASAR
representation follows the local trends of the raw time series
except for the ShapeletSim dataset due to the high frequency
of trends reversal. However, tables IV and V show that using
ASAR has resulted in no significant information loss in the
ShapeletSim dataset by achieving an accuracy of 94% and
100% in the classification and clustering tasks, respectively.

To test the information preservation capability of the rep-
resentation methods, the 1-NN classification and the K-means
clustering were employed in this paper. The results for the 1-
NN classification (table IV) locate ASAR in the third place
among the competing approaches. The average F-measure
of ASAR is 96% of the accuracy obtained by using the
raw time series. This shows that ASAR preserves the time
series information. On the other hand, Table V shows that
ASAR has achieved the highest accuracy among the competing
approaches. It outperformed the results by 8% when compared
to the raw time series used for K-means clustering. While
the main objective of this paper is dimensionality reduction,
Table VI shows the compression ratio obtained using each
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Fig. (2) ASAR representation examples compared to the raw ones.
Fig. 2.: ASAR representation examples compared to the raw ones.
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TABLE (IV) F-measure relative results for 1-NN classifica-
tion.

Method Raw Time Series FAD PAA SAX ASAR
HandOutlines 1.00 0.64 1.00 1.00 0.99
StarLightCurves 1.00 0.97 1.00 1.00 1.00
Lightning-2 1.00 0.74 1.15 0.97 0.99
OSU Leaf 1.00 0.75 1.00 0.98 0.80
ShapeletSim 1.00 1.12 1.16 1.20 0.94
WormsTwoClass 1.00 0.92 1.00 1.02 0.98
Yoga 1.00 0.97 1.00 0.99 0.82
Trace 1.00 0.83 1.06 1.02 1.19
Average 1.00 0.87 1.05 1.02 0.96

TABLE (V) F-measure relative results for K-means cluster-
ing.

Method Raw Time Series FAD PAA SAX ASAR
HandOutlines 1.00 0.86 1.14 1.29 1.21
StarLightCurves 1.00 1.33 1.08 1.25 1.33
Lightning-2 1.00 0.93 0.96 0.85 0.89
OSU Leaf 1.00 0.94 0.88 0.94 1.00
ShapeletSim 1.00 1.02 1.02 0.98 1.00
WormsTwoClass 1.00 0.91 1.00 1.05 1.00
Yoga 1.00 0.93 0.82 0.93 1.04
Trace 1.00 0.90 1.15 0.90 1.15
Average 1.00 0.98 1.01 1.02 1.08

TABLE (VI) The compression ratio as a percentage (%).
Method FAD PAA SAX ASAR
HandOutlines 99.8 87.5 75 96.3
StarLightCurves 98.1 87.5 75 96.2
Lightning-2 4.9 87.4 74.9 94.8
OSU Leaf 56 87.4 74.9 95.5
ShapeletSim 0 87.4 75 88.2
WormsTwoClass 17.5 87.5 75 95.5
Yoga 52.7 87.3 74.9 95.8
Trace 10 87.3 74.9 95.4
Average 42.4 87.4 75 94.7

TABLE (VII) The time needed (in seconds) to perform
1-NN classification and K-means clustering using the data
represented by FAD, PAA, SAX, and ASAR.

Method Raw Time Series FAD PAA SAX ASAR
1-NN Classification 11.7 11.5 3.3 4.3 2.3
K-means Clustering 11.9 11.2 3.5 4.4 2.5

representation approach. With an average compression ratio of
94.7%, ASAR surpasses the competing approaches in reducing
the dimensionality of the time series. PAA and SAX come in
second and third places, respectively. However, FAD shows
an unstable compression ratio among the datasets due to its
high reliance on the data behavior, resulting in not guaranteed
dimensionality reduction. Furthermore, the data mining tasks
acceleration feature was demonstrated by measuring the time
needed to apply the 1-NN classification and the K-means clus-
tering. Table VII shows that these tasks have been performed
the fastest by using the ASAR representation. ASAR took
around 70% of the time needed to perform the tasks when
compared to the PAA representation, which comes in second
place. It is even less for others. Furthermore, it took around
20% of the time needed to perform these tasks using the time
series in its raw form.

In summary, ASAR has achieved the best results in terms
of the compression ratio. In addition, it has achieved the best
results in terms of the data mining process acceleration and
the K-means clustering. Moreover, even though it comes in

third place in terms of the 1-NN classification, it has achieved
a pretty good result, which shows the ability to preserve
the time series information. This is also proved by ASAR’s
superiority in the K-means clustering results. These results
were accomplished independently of the data behavior and
domain, which provides extra advantage for ASAR as it can
be used without any constraints on the type of data. The latter
feature was proved by employing data from different domains
with a diversity of behaviors and time series lengths (see Table
III and Figure 2).

V. CONCLUSION AND FUTURE WORKS

In this paper, a novel time series representation approach has
been proposed. The Adaptive Simulated Annealing Represen-
tation (ASAR) approach treats the time series representation as
an optimization problem. Its objective is to segment the time
series based on the tendencies by recording the instances that
best explain the tendencies and neglecting the rest. By tracking
the tendencies in the time series, ASAR was able to trans-
form the time series into new dimensions while preserving
the shape and the information. An experiment was designed
to test its ability of maintaining the information, reducing
dimensionality, and accelerating the data mining process. The
experimental results have shown that ASAR outperforms FAD,
PAA, and SAX approaches in terms of the compression ratio,
the time needed to perform 1-NN classification and K-means
clustering, and in the K-means clustering accuracy. It has
also achieved high accuracy results in the 1-NN classification.
These results assure that ASAR is able to conserve storage
space and accelerate the data mining process while preserving
the shape and the information of the time series. In addition,
the experimental results have shown that ASAR is independent
of the data type, behavior, domain, or length.

Some domains provide multivariate time series data (such
as speed, flow, and occupancy in the intelligent transportation
systems domain), which usually describe the same process.
A possible future work is to extend ASAR to represent
these multivariate time series data in a unified representation.
Another possible future work is to define a new similarity
measure based on the ASAR representation by utilizing the
shape-preserving feature. Since this similarity measure will
be tailored to the ASAR representation, this extension could
achieve better results for the data mining tasks than using other
similarity measures such as Euclidean distance or Dynamic
Time Warping.
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TABLE (IV) F-measure relative results for 1-NN classifica-
tion.

Method Raw Time Series FAD PAA SAX ASAR
HandOutlines 1.00 0.64 1.00 1.00 0.99
StarLightCurves 1.00 0.97 1.00 1.00 1.00
Lightning-2 1.00 0.74 1.15 0.97 0.99
OSU Leaf 1.00 0.75 1.00 0.98 0.80
ShapeletSim 1.00 1.12 1.16 1.20 0.94
WormsTwoClass 1.00 0.92 1.00 1.02 0.98
Yoga 1.00 0.97 1.00 0.99 0.82
Trace 1.00 0.83 1.06 1.02 1.19
Average 1.00 0.87 1.05 1.02 0.96

TABLE (V) F-measure relative results for K-means cluster-
ing.

Method Raw Time Series FAD PAA SAX ASAR
HandOutlines 1.00 0.86 1.14 1.29 1.21
StarLightCurves 1.00 1.33 1.08 1.25 1.33
Lightning-2 1.00 0.93 0.96 0.85 0.89
OSU Leaf 1.00 0.94 0.88 0.94 1.00
ShapeletSim 1.00 1.02 1.02 0.98 1.00
WormsTwoClass 1.00 0.91 1.00 1.05 1.00
Yoga 1.00 0.93 0.82 0.93 1.04
Trace 1.00 0.90 1.15 0.90 1.15
Average 1.00 0.98 1.01 1.02 1.08

TABLE (VI) The compression ratio as a percentage (%).
Method FAD PAA SAX ASAR
HandOutlines 99.8 87.5 75 96.3
StarLightCurves 98.1 87.5 75 96.2
Lightning-2 4.9 87.4 74.9 94.8
OSU Leaf 56 87.4 74.9 95.5
ShapeletSim 0 87.4 75 88.2
WormsTwoClass 17.5 87.5 75 95.5
Yoga 52.7 87.3 74.9 95.8
Trace 10 87.3 74.9 95.4
Average 42.4 87.4 75 94.7

TABLE (VII) The time needed (in seconds) to perform
1-NN classification and K-means clustering using the data
represented by FAD, PAA, SAX, and ASAR.

Method Raw Time Series FAD PAA SAX ASAR
1-NN Classification 11.7 11.5 3.3 4.3 2.3
K-means Clustering 11.9 11.2 3.5 4.4 2.5

representation approach. With an average compression ratio of
94.7%, ASAR surpasses the competing approaches in reducing
the dimensionality of the time series. PAA and SAX come in
second and third places, respectively. However, FAD shows
an unstable compression ratio among the datasets due to its
high reliance on the data behavior, resulting in not guaranteed
dimensionality reduction. Furthermore, the data mining tasks
acceleration feature was demonstrated by measuring the time
needed to apply the 1-NN classification and the K-means clus-
tering. Table VII shows that these tasks have been performed
the fastest by using the ASAR representation. ASAR took
around 70% of the time needed to perform the tasks when
compared to the PAA representation, which comes in second
place. It is even less for others. Furthermore, it took around
20% of the time needed to perform these tasks using the time
series in its raw form.

In summary, ASAR has achieved the best results in terms
of the compression ratio. In addition, it has achieved the best
results in terms of the data mining process acceleration and
the K-means clustering. Moreover, even though it comes in

third place in terms of the 1-NN classification, it has achieved
a pretty good result, which shows the ability to preserve
the time series information. This is also proved by ASAR’s
superiority in the K-means clustering results. These results
were accomplished independently of the data behavior and
domain, which provides extra advantage for ASAR as it can
be used without any constraints on the type of data. The latter
feature was proved by employing data from different domains
with a diversity of behaviors and time series lengths (see Table
III and Figure 2).

V. CONCLUSION AND FUTURE WORKS

In this paper, a novel time series representation approach has
been proposed. The Adaptive Simulated Annealing Represen-
tation (ASAR) approach treats the time series representation as
an optimization problem. Its objective is to segment the time
series based on the tendencies by recording the instances that
best explain the tendencies and neglecting the rest. By tracking
the tendencies in the time series, ASAR was able to trans-
form the time series into new dimensions while preserving
the shape and the information. An experiment was designed
to test its ability of maintaining the information, reducing
dimensionality, and accelerating the data mining process. The
experimental results have shown that ASAR outperforms FAD,
PAA, and SAX approaches in terms of the compression ratio,
the time needed to perform 1-NN classification and K-means
clustering, and in the K-means clustering accuracy. It has
also achieved high accuracy results in the 1-NN classification.
These results assure that ASAR is able to conserve storage
space and accelerate the data mining process while preserving
the shape and the information of the time series. In addition,
the experimental results have shown that ASAR is independent
of the data type, behavior, domain, or length.

Some domains provide multivariate time series data (such
as speed, flow, and occupancy in the intelligent transportation
systems domain), which usually describe the same process.
A possible future work is to extend ASAR to represent
these multivariate time series data in a unified representation.
Another possible future work is to define a new similarity
measure based on the ASAR representation by utilizing the
shape-preserving feature. Since this similarity measure will
be tailored to the ASAR representation, this extension could
achieve better results for the data mining tasks than using other
similarity measures such as Euclidean distance or Dynamic
Time Warping.
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TABLE (IV) F-measure relative results for 1-NN classifica-
tion.

Method Raw Time Series FAD PAA SAX ASAR
HandOutlines 1.00 0.64 1.00 1.00 0.99
StarLightCurves 1.00 0.97 1.00 1.00 1.00
Lightning-2 1.00 0.74 1.15 0.97 0.99
OSU Leaf 1.00 0.75 1.00 0.98 0.80
ShapeletSim 1.00 1.12 1.16 1.20 0.94
WormsTwoClass 1.00 0.92 1.00 1.02 0.98
Yoga 1.00 0.97 1.00 0.99 0.82
Trace 1.00 0.83 1.06 1.02 1.19
Average 1.00 0.87 1.05 1.02 0.96

TABLE (V) F-measure relative results for K-means cluster-
ing.

Method Raw Time Series FAD PAA SAX ASAR
HandOutlines 1.00 0.86 1.14 1.29 1.21
StarLightCurves 1.00 1.33 1.08 1.25 1.33
Lightning-2 1.00 0.93 0.96 0.85 0.89
OSU Leaf 1.00 0.94 0.88 0.94 1.00
ShapeletSim 1.00 1.02 1.02 0.98 1.00
WormsTwoClass 1.00 0.91 1.00 1.05 1.00
Yoga 1.00 0.93 0.82 0.93 1.04
Trace 1.00 0.90 1.15 0.90 1.15
Average 1.00 0.98 1.01 1.02 1.08

TABLE (VI) The compression ratio as a percentage (%).
Method FAD PAA SAX ASAR
HandOutlines 99.8 87.5 75 96.3
StarLightCurves 98.1 87.5 75 96.2
Lightning-2 4.9 87.4 74.9 94.8
OSU Leaf 56 87.4 74.9 95.5
ShapeletSim 0 87.4 75 88.2
WormsTwoClass 17.5 87.5 75 95.5
Yoga 52.7 87.3 74.9 95.8
Trace 10 87.3 74.9 95.4
Average 42.4 87.4 75 94.7

TABLE (VII) The time needed (in seconds) to perform
1-NN classification and K-means clustering using the data
represented by FAD, PAA, SAX, and ASAR.

Method Raw Time Series FAD PAA SAX ASAR
1-NN Classification 11.7 11.5 3.3 4.3 2.3
K-means Clustering 11.9 11.2 3.5 4.4 2.5

representation approach. With an average compression ratio of
94.7%, ASAR surpasses the competing approaches in reducing
the dimensionality of the time series. PAA and SAX come in
second and third places, respectively. However, FAD shows
an unstable compression ratio among the datasets due to its
high reliance on the data behavior, resulting in not guaranteed
dimensionality reduction. Furthermore, the data mining tasks
acceleration feature was demonstrated by measuring the time
needed to apply the 1-NN classification and the K-means clus-
tering. Table VII shows that these tasks have been performed
the fastest by using the ASAR representation. ASAR took
around 70% of the time needed to perform the tasks when
compared to the PAA representation, which comes in second
place. It is even less for others. Furthermore, it took around
20% of the time needed to perform these tasks using the time
series in its raw form.

In summary, ASAR has achieved the best results in terms
of the compression ratio. In addition, it has achieved the best
results in terms of the data mining process acceleration and
the K-means clustering. Moreover, even though it comes in

third place in terms of the 1-NN classification, it has achieved
a pretty good result, which shows the ability to preserve
the time series information. This is also proved by ASAR’s
superiority in the K-means clustering results. These results
were accomplished independently of the data behavior and
domain, which provides extra advantage for ASAR as it can
be used without any constraints on the type of data. The latter
feature was proved by employing data from different domains
with a diversity of behaviors and time series lengths (see Table
III and Figure 2).

V. CONCLUSION AND FUTURE WORKS

In this paper, a novel time series representation approach has
been proposed. The Adaptive Simulated Annealing Represen-
tation (ASAR) approach treats the time series representation as
an optimization problem. Its objective is to segment the time
series based on the tendencies by recording the instances that
best explain the tendencies and neglecting the rest. By tracking
the tendencies in the time series, ASAR was able to trans-
form the time series into new dimensions while preserving
the shape and the information. An experiment was designed
to test its ability of maintaining the information, reducing
dimensionality, and accelerating the data mining process. The
experimental results have shown that ASAR outperforms FAD,
PAA, and SAX approaches in terms of the compression ratio,
the time needed to perform 1-NN classification and K-means
clustering, and in the K-means clustering accuracy. It has
also achieved high accuracy results in the 1-NN classification.
These results assure that ASAR is able to conserve storage
space and accelerate the data mining process while preserving
the shape and the information of the time series. In addition,
the experimental results have shown that ASAR is independent
of the data type, behavior, domain, or length.

Some domains provide multivariate time series data (such
as speed, flow, and occupancy in the intelligent transportation
systems domain), which usually describe the same process.
A possible future work is to extend ASAR to represent
these multivariate time series data in a unified representation.
Another possible future work is to define a new similarity
measure based on the ASAR representation by utilizing the
shape-preserving feature. Since this similarity measure will
be tailored to the ASAR representation, this extension could
achieve better results for the data mining tasks than using other
similarity measures such as Euclidean distance or Dynamic
Time Warping.
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TABLE (IV) F-measure relative results for 1-NN classifica-
tion.

Method Raw Time Series FAD PAA SAX ASAR
HandOutlines 1.00 0.64 1.00 1.00 0.99
StarLightCurves 1.00 0.97 1.00 1.00 1.00
Lightning-2 1.00 0.74 1.15 0.97 0.99
OSU Leaf 1.00 0.75 1.00 0.98 0.80
ShapeletSim 1.00 1.12 1.16 1.20 0.94
WormsTwoClass 1.00 0.92 1.00 1.02 0.98
Yoga 1.00 0.97 1.00 0.99 0.82
Trace 1.00 0.83 1.06 1.02 1.19
Average 1.00 0.87 1.05 1.02 0.96

TABLE (V) F-measure relative results for K-means cluster-
ing.

Method Raw Time Series FAD PAA SAX ASAR
HandOutlines 1.00 0.86 1.14 1.29 1.21
StarLightCurves 1.00 1.33 1.08 1.25 1.33
Lightning-2 1.00 0.93 0.96 0.85 0.89
OSU Leaf 1.00 0.94 0.88 0.94 1.00
ShapeletSim 1.00 1.02 1.02 0.98 1.00
WormsTwoClass 1.00 0.91 1.00 1.05 1.00
Yoga 1.00 0.93 0.82 0.93 1.04
Trace 1.00 0.90 1.15 0.90 1.15
Average 1.00 0.98 1.01 1.02 1.08

TABLE (VI) The compression ratio as a percentage (%).
Method FAD PAA SAX ASAR
HandOutlines 99.8 87.5 75 96.3
StarLightCurves 98.1 87.5 75 96.2
Lightning-2 4.9 87.4 74.9 94.8
OSU Leaf 56 87.4 74.9 95.5
ShapeletSim 0 87.4 75 88.2
WormsTwoClass 17.5 87.5 75 95.5
Yoga 52.7 87.3 74.9 95.8
Trace 10 87.3 74.9 95.4
Average 42.4 87.4 75 94.7

TABLE (VII) The time needed (in seconds) to perform
1-NN classification and K-means clustering using the data
represented by FAD, PAA, SAX, and ASAR.

Method Raw Time Series FAD PAA SAX ASAR
1-NN Classification 11.7 11.5 3.3 4.3 2.3
K-means Clustering 11.9 11.2 3.5 4.4 2.5

representation approach. With an average compression ratio of
94.7%, ASAR surpasses the competing approaches in reducing
the dimensionality of the time series. PAA and SAX come in
second and third places, respectively. However, FAD shows
an unstable compression ratio among the datasets due to its
high reliance on the data behavior, resulting in not guaranteed
dimensionality reduction. Furthermore, the data mining tasks
acceleration feature was demonstrated by measuring the time
needed to apply the 1-NN classification and the K-means clus-
tering. Table VII shows that these tasks have been performed
the fastest by using the ASAR representation. ASAR took
around 70% of the time needed to perform the tasks when
compared to the PAA representation, which comes in second
place. It is even less for others. Furthermore, it took around
20% of the time needed to perform these tasks using the time
series in its raw form.

In summary, ASAR has achieved the best results in terms
of the compression ratio. In addition, it has achieved the best
results in terms of the data mining process acceleration and
the K-means clustering. Moreover, even though it comes in

third place in terms of the 1-NN classification, it has achieved
a pretty good result, which shows the ability to preserve
the time series information. This is also proved by ASAR’s
superiority in the K-means clustering results. These results
were accomplished independently of the data behavior and
domain, which provides extra advantage for ASAR as it can
be used without any constraints on the type of data. The latter
feature was proved by employing data from different domains
with a diversity of behaviors and time series lengths (see Table
III and Figure 2).

V. CONCLUSION AND FUTURE WORKS

In this paper, a novel time series representation approach has
been proposed. The Adaptive Simulated Annealing Represen-
tation (ASAR) approach treats the time series representation as
an optimization problem. Its objective is to segment the time
series based on the tendencies by recording the instances that
best explain the tendencies and neglecting the rest. By tracking
the tendencies in the time series, ASAR was able to trans-
form the time series into new dimensions while preserving
the shape and the information. An experiment was designed
to test its ability of maintaining the information, reducing
dimensionality, and accelerating the data mining process. The
experimental results have shown that ASAR outperforms FAD,
PAA, and SAX approaches in terms of the compression ratio,
the time needed to perform 1-NN classification and K-means
clustering, and in the K-means clustering accuracy. It has
also achieved high accuracy results in the 1-NN classification.
These results assure that ASAR is able to conserve storage
space and accelerate the data mining process while preserving
the shape and the information of the time series. In addition,
the experimental results have shown that ASAR is independent
of the data type, behavior, domain, or length.

Some domains provide multivariate time series data (such
as speed, flow, and occupancy in the intelligent transportation
systems domain), which usually describe the same process.
A possible future work is to extend ASAR to represent
these multivariate time series data in a unified representation.
Another possible future work is to define a new similarity
measure based on the ASAR representation by utilizing the
shape-preserving feature. Since this similarity measure will
be tailored to the ASAR representation, this extension could
achieve better results for the data mining tasks than using other
similarity measures such as Euclidean distance or Dynamic
Time Warping.
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TABLE (IV) F-measure relative results for 1-NN classifica-
tion.

Method Raw Time Series FAD PAA SAX ASAR
HandOutlines 1.00 0.64 1.00 1.00 0.99
StarLightCurves 1.00 0.97 1.00 1.00 1.00
Lightning-2 1.00 0.74 1.15 0.97 0.99
OSU Leaf 1.00 0.75 1.00 0.98 0.80
ShapeletSim 1.00 1.12 1.16 1.20 0.94
WormsTwoClass 1.00 0.92 1.00 1.02 0.98
Yoga 1.00 0.97 1.00 0.99 0.82
Trace 1.00 0.83 1.06 1.02 1.19
Average 1.00 0.87 1.05 1.02 0.96

TABLE (V) F-measure relative results for K-means cluster-
ing.

Method Raw Time Series FAD PAA SAX ASAR
HandOutlines 1.00 0.86 1.14 1.29 1.21
StarLightCurves 1.00 1.33 1.08 1.25 1.33
Lightning-2 1.00 0.93 0.96 0.85 0.89
OSU Leaf 1.00 0.94 0.88 0.94 1.00
ShapeletSim 1.00 1.02 1.02 0.98 1.00
WormsTwoClass 1.00 0.91 1.00 1.05 1.00
Yoga 1.00 0.93 0.82 0.93 1.04
Trace 1.00 0.90 1.15 0.90 1.15
Average 1.00 0.98 1.01 1.02 1.08

TABLE (VI) The compression ratio as a percentage (%).
Method FAD PAA SAX ASAR
HandOutlines 99.8 87.5 75 96.3
StarLightCurves 98.1 87.5 75 96.2
Lightning-2 4.9 87.4 74.9 94.8
OSU Leaf 56 87.4 74.9 95.5
ShapeletSim 0 87.4 75 88.2
WormsTwoClass 17.5 87.5 75 95.5
Yoga 52.7 87.3 74.9 95.8
Trace 10 87.3 74.9 95.4
Average 42.4 87.4 75 94.7

TABLE (VII) The time needed (in seconds) to perform
1-NN classification and K-means clustering using the data
represented by FAD, PAA, SAX, and ASAR.

Method Raw Time Series FAD PAA SAX ASAR
1-NN Classification 11.7 11.5 3.3 4.3 2.3
K-means Clustering 11.9 11.2 3.5 4.4 2.5

representation approach. With an average compression ratio of
94.7%, ASAR surpasses the competing approaches in reducing
the dimensionality of the time series. PAA and SAX come in
second and third places, respectively. However, FAD shows
an unstable compression ratio among the datasets due to its
high reliance on the data behavior, resulting in not guaranteed
dimensionality reduction. Furthermore, the data mining tasks
acceleration feature was demonstrated by measuring the time
needed to apply the 1-NN classification and the K-means clus-
tering. Table VII shows that these tasks have been performed
the fastest by using the ASAR representation. ASAR took
around 70% of the time needed to perform the tasks when
compared to the PAA representation, which comes in second
place. It is even less for others. Furthermore, it took around
20% of the time needed to perform these tasks using the time
series in its raw form.

In summary, ASAR has achieved the best results in terms
of the compression ratio. In addition, it has achieved the best
results in terms of the data mining process acceleration and
the K-means clustering. Moreover, even though it comes in

third place in terms of the 1-NN classification, it has achieved
a pretty good result, which shows the ability to preserve
the time series information. This is also proved by ASAR’s
superiority in the K-means clustering results. These results
were accomplished independently of the data behavior and
domain, which provides extra advantage for ASAR as it can
be used without any constraints on the type of data. The latter
feature was proved by employing data from different domains
with a diversity of behaviors and time series lengths (see Table
III and Figure 2).

V. CONCLUSION AND FUTURE WORKS

In this paper, a novel time series representation approach has
been proposed. The Adaptive Simulated Annealing Represen-
tation (ASAR) approach treats the time series representation as
an optimization problem. Its objective is to segment the time
series based on the tendencies by recording the instances that
best explain the tendencies and neglecting the rest. By tracking
the tendencies in the time series, ASAR was able to trans-
form the time series into new dimensions while preserving
the shape and the information. An experiment was designed
to test its ability of maintaining the information, reducing
dimensionality, and accelerating the data mining process. The
experimental results have shown that ASAR outperforms FAD,
PAA, and SAX approaches in terms of the compression ratio,
the time needed to perform 1-NN classification and K-means
clustering, and in the K-means clustering accuracy. It has
also achieved high accuracy results in the 1-NN classification.
These results assure that ASAR is able to conserve storage
space and accelerate the data mining process while preserving
the shape and the information of the time series. In addition,
the experimental results have shown that ASAR is independent
of the data type, behavior, domain, or length.

Some domains provide multivariate time series data (such
as speed, flow, and occupancy in the intelligent transportation
systems domain), which usually describe the same process.
A possible future work is to extend ASAR to represent
these multivariate time series data in a unified representation.
Another possible future work is to define a new similarity
measure based on the ASAR representation by utilizing the
shape-preserving feature. Since this similarity measure will
be tailored to the ASAR representation, this extension could
achieve better results for the data mining tasks than using other
similarity measures such as Euclidean distance or Dynamic
Time Warping.
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representation approach. With an average compression ratio of
94.7%, ASAR surpasses the competing approaches in reducing
the dimensionality of the time series. PAA and SAX come in
second and third places, respectively. However, FAD shows
an unstable compression ratio among the datasets due to its
high reliance on the data behavior, resulting in not guaranteed
dimensionality reduction. Furthermore, the data mining tasks
acceleration feature was demonstrated by measuring the time
needed to apply the 1-NN classification and the K-means clus-
tering. Table VII shows that these tasks have been performed
the fastest by using the ASAR representation. ASAR took
around 70% of the time needed to perform the tasks when
compared to the PAA representation, which comes in second
place. It is even less for others. Furthermore, it took around
20% of the time needed to perform these tasks using the time
series in its raw form.

In summary, ASAR has achieved the best results in terms
of the compression ratio. In addition, it has achieved the best
results in terms of the data mining process acceleration and
the K-means clustering. Moreover, even though it comes in

third place in terms of the 1-NN classification, it has achieved
a pretty good result, which shows the ability to preserve
the time series information. This is also proved by ASAR’s
superiority in the K-means clustering results. These results
were accomplished independently of the data behavior and
domain, which provides extra advantage for ASAR as it can
be used without any constraints on the type of data. The latter
feature was proved by employing data from different domains
with a diversity of behaviors and time series lengths (see Table
III and Figure 2).
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In this paper, a novel time series representation approach has
been proposed. The Adaptive Simulated Annealing Represen-
tation (ASAR) approach treats the time series representation as
an optimization problem. Its objective is to segment the time
series based on the tendencies by recording the instances that
best explain the tendencies and neglecting the rest. By tracking
the tendencies in the time series, ASAR was able to trans-
form the time series into new dimensions while preserving
the shape and the information. An experiment was designed
to test its ability of maintaining the information, reducing
dimensionality, and accelerating the data mining process. The
experimental results have shown that ASAR outperforms FAD,
PAA, and SAX approaches in terms of the compression ratio,
the time needed to perform 1-NN classification and K-means
clustering, and in the K-means clustering accuracy. It has
also achieved high accuracy results in the 1-NN classification.
These results assure that ASAR is able to conserve storage
space and accelerate the data mining process while preserving
the shape and the information of the time series. In addition,
the experimental results have shown that ASAR is independent
of the data type, behavior, domain, or length.

Some domains provide multivariate time series data (such
as speed, flow, and occupancy in the intelligent transportation
systems domain), which usually describe the same process.
A possible future work is to extend ASAR to represent
these multivariate time series data in a unified representation.
Another possible future work is to define a new similarity
measure based on the ASAR representation by utilizing the
shape-preserving feature. Since this similarity measure will
be tailored to the ASAR representation, this extension could
achieve better results for the data mining tasks than using other
similarity measures such as Euclidean distance or Dynamic
Time Warping.
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