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In the Hungarian part of the Tisia block, four occurrences of rhizolith-bearing 

pedogenic calcrete have been published, three of them are located in southern 

Transdanubia. Nodular calcrete with beta fabrics was documented from the lower 

Permian (Cisuralian) continental Korpád Sandstone Formation where the subaerial 

exposure profile was developed on strongly altered volcanic shard-rich siliciclastic 

substrate. Additionally, two locations with Microcodium-bearing calcrete developed on 

lower Jurassic carbonate substrate were published in the last few years. The scope of 

this study is to briefly summarize pedogenic calcrete records known from the Permian 

to the Cenozoic of southern Transdanubia (Tisia block, Hungary), and to highlight their 

regional paleoenvironmental and paleogeographic importance. 
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Introduction 

 

Calcrete is a near-surface, terrestrial accumulation of predominantly calcium 

carbonate (Wright and Tucker 1991; Alonso-Zarza et al. 1998, Alonso-Zarza 2003). 

Calcretes which were formed only when evaporation exceeded precipitation, i.e. when 

the climate was at least seasonally arid, are generally considered as reliable 

palaeoenvironmental and palaeoclimatic indicators (Wright and Tucker 1991; Alonso-

Zarza 2003; Alonso-Zarza and Wright 2010; Brasier 2011). According to the descriptive 

morphological terminology of Wright (1990), at the simplest level two end-member 

microfabric types occur in calcretes. Alpha calcretes (e.g. groundwater calcrete) consist 

of micritic to microsparitic groundmasses, typically with such features as crystallaria, 

floating skeleton grains, large euhedral crystals, crystal size mottling and displacive 

growth features. On the other hand, beta calcretes (e.g. pedogenic calcrete) exhibit 

microfabrics dominated by biogenic features such as rhizoliths (organo-sedimentary 

structures produced by roots; Klappa 1980), microbial tubes, alveolar textures, and 

Microcodium. 

The genus Microcodium was originally created by Glück (1912) for aggregates of 

unusual shaped calcite crystals in Miocene marine deposits, and it was placed in the 

Codiaceae of the Chlorophyta. Two kinds of Microcodium were defined by Esteban 

(1972): ’Microcodium a’ refers to typical Microcodium, consisting of prismatic calcite 

crystals; whereas ’Microcodium b’ was defined by its smaller grain size and 

subquadrangular sections of its prisms (atypical Microcodium). Based on a large 

number of reports, the original interpretation of Microcodium as siphonaceous alga or 
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any other phototrophic microorganism has been rejected; however, the process of 

Microcodium formation still remains unsolved (Klappa 1978; Alonso-Zarza et al. 1998; 

Košir 2004; Kabanov et al. 2008). Microcodium was interpreted as a calcification 

product of a mycorrhizae-cortical root cell association by Klappa (1978). Alonso-Zarza 

et al. (1998) suggested that ’Microcodium b’ formed through calcification of root cells. 

Similarly, Košir (2004) stated that morphology and structure of the typical 

Microcodium aggregates indicate that they formed through biologically controlled 

precipitation of calcium carbonate within the root cortical cells. On the other hand, 

Kabanov et al. (2008) proposed a non-rhizogenic biologically induced origin for typical 

Microcodium (’type a’) formation. According to these authors, it may be produced by 

actinobacterial or fungal substrate mycelia probably in association with other bacteria 

capable of consuming metabolites of the mycelial organism. Therefore, the typical 

Microcodium is a biologically induced mineralization driven by a saprotrophic 

microorganism or a microbial association decomposing dead terrestrial organic matter 

(rootlets and earlier generations of fungi, humified organic matter) (Kabanov et al. 

2008).  

Kabanov et al. (2008) provided an extensive review of the available literature for 

Paleozoic and Cretaceous–Cenozoic Microcodium occurrences. Unfortunately, 

however, there was no mention about Hungarian Microcodium records in that article. 

Among the paleosol sections in Hungary, calcretes from the Triassic cyclic peritidal–

lagoonal platform carbonate succession and from the Pleistocene lacustrine setting of 

the Gerecse Hills, as well as Quaternary paleosols at the pediment of the Mátra Hills 

have received special attention (Bakacsi 1993; Bakacsi et al. 1994; Mindszenty and 

Deák 1999; Bajnóczi et al. 2006). Microcodium-bearing calcretes, however, have not 

been investigated in detail. On the other hand, pedogenic calcrete reports in the 

Hungarian part of the Tisia block published in English are rare (Lelkes 1994; Varga et 

al. 2002a, 2002b; Varga et al. 2012); and some papers intend to reach only a Hungarian 

readership (Varga 2000, 2002, 2009, 2011; Varga et al. 2002c). The scope of this study 

is to summarize pedogenic calcrete records known from the Permian to the Cenozoic of 

southern Transdanubia, Hungary, and to highlight their regional paleoenvironmental 

and paleogeographic importance. 

Moreover, as Microcodium can be seen as a natural product of actinobacterial or 

fungal activity, corresponding to the nano- to microscale interaction between 

decomposing organic matter and a microbial association (Kabanov et al. 2008), this 

topic can trigger multidisciplinary attention of researchers interested in study of 

interactions of artificial nanostructures and biological systems. 

 

Pedogenic calcrete records in southern Transdanubia, Hungary 

 

In the central Carpathian–Pannonian area, the Mid-Hungarian line, a key 

element in the tectonics of the Intra-Carpathian area, subdivides the pre-Tertiary 

basement in two parts (Fig. 1A): Alcapa (Alpine–West Carpathian–Pannonian) block on 

the north and Tisia (Tisza–Dacia unit or Tisza Mega-unit) on the south (Csontos and 

Nagymarosy 1998; Csontos et al. 1992, 2002). In the Hungarian part of the Tisia block, 

four occurrences of pedogenic calcrete with in situ Microcodium or poorly preserved 

Microcodium-like structures have been published (Fig. 1B), three of them are located in 

southern Transdanubia. 
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Paleozoic (Permian) occurrence 

 

In southern Transdanubia (Fig. 1C), the Permian siliciclastic and volcaniclastic 

rocks were deposited in continental strike-slip and rift-related basins, belonging to the 

internal part of the Variscan orogenic domain (Barabás and Barabásné Stuhl 1998; 

Vozárová et al. 2009). Among these units, the fine-grained siliciclastic deposits of the 

Cisuralian Korpád Sandstone Formation are distinctive in terms of presence of nodular 

calcretes with rhizocretions (Varga 2009; Varga et al. 2012). 

The alluvial Korpád Formation occurs in the subsurface in southern 

Transdanubia and ranges up to 700 m in thickness, consisting of polymictic 

conglomerate, breccia, sandstone, and mudstone (Fazekas 1987; Barabás and Barabásné 

Stuhl 1998). This formation contains a sparse Early Permian macroflora (e.g., 

Pecopteris, Voltzites) and a lowermost Permian microflora composed of the 

Potonieisporites and Vittatina assemblage (Barabás and Barabásné Stuhl 1998). 

Calcretes and calcareous paleosols were not recognized previously in this unit; however, 

a large amount of individual dolomite concretions and concretionary aggregates 

together with animal burrows were described by Jámbor (1964) from the red siltstone 

samples (drill core 9015, near the village of Dinnyeberki, Mecsek Mts.; Fig. 1C). Varga 

(2009) and Varga et al. (2012) reported that these carbonate concretions are, at least 

partially, of rhizogenic origin, representing nodular horizons of calcrete profiles. 

The studied subaerial exposure profile developed on strongly altered volcanic 

shard-rich siliciclastic substrate where calcium could be derived from the hydrolysis of 

volcanic glass and plagioclase feldspar. Calcrete microfabric is characterized by the 

presence of micritic mottles, root traces (e.g., rhizocretions and smaller root casts; Fig. 

2), and associated biogenic structures such as faecal peloids (rounded micrite pellets 

resulting from invertebrate defaecation in the soil) and relic structures of in situ 

Microcodium-like aggregates (in the sense of Klappa 1980 and Kabanov et al. 2008). 

Unfortunately, Microcodium appears as partly to totally recrystallized calcite grains, so 

primary morphology could not be identified. The rhizocretions are complex tubular 

structures up to 1 cm in diameter, with a wall structure of irregular micritic laminae 

which form roughly concentric layers around the central hollow filled by drusy calcite 

spar cement (Fig. 2B). In the pedogenic micritic laminae of rhizocretions, carbonate is 

replaced by tiny authigenic quartz showing clear evidence for localized silicification 

(Fig. 3). 

 

Eocene Microcodium corroding Jurassic (Pliensbachian) substrate 

 

Eocene calcrete-sourced pebbles were found in a lower-middle Miocene 

conglomerate sequence (Szászvár Formation) in the western part of the Mecsek Mts. 

(Fig. 1C). Based on evidence from spore and pollen remains (Varga 2000; Varga et al. 

2002a, 2002b, 2002c), local geology (Wéber 1982, 1985) and an ancient analogue 

(Gierlowski-Kordesch et al. 1991), the reworked calcrete seems to be related to the 

continental sequence of the middle Eocene–early Oligocene(?) Szentlőrinc Formation. 

Rocks of this unit are not exposed in Hungary; they were penetrated in significant 

thickness by boreholes in southern Transdanubia (Wéber 1982, 1985; Varga et al. 

2004). 

The depositional environment of the Szentlőrinc Formation is interpreted as an 

alluvial system containing a carbonate–clastic alluvial plain (floodplain environment), 
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locally with brown coal seams (Wéber 1982, 1985; Varga et al. 2002a, 2004). The 

provenance area surrounding the basin comprised Paleozoic (e.g., metamorphic and 

acidic volcanic fragments, fine-grained sandstones) and Mesozoic (e.g., Triassic 

limestone and dolomite, Jurassic limestone and marl clasts, Cretaceous limestone clasts 

derived from the Mecsek-Villány zone, and altered basic volcanics) rocks supplying the 

clastics (Varga 2002; Varga et al. 2002a, 2004). The basement, partially, constituted a 

supposed karst system correlated with the Jurassic Szársomlyó Limestone of the Villány 

area delivering bedload and dissolved carbonates into the sedimentary basin (Varga et 

al. 2004). 

The beige colored reworked calcrete consisting of sand and gravel-sized clasts 

coated by laminated micrite could develop on carbonate rock substrate associated with 

an alluvial fan system containing fragments of Mecsek-type lower Jurassic rocks (Varga 

2000; Varga et al. 2002c). Calcrete microfabrics reveal coated grains, peloids, 

rhizoliths, alveolar textures, and well preserved in situ Microcodium aggregates (Fig. 4). 

The root structures are mostly represented by root casts and rhizocretions but root 

petrifaction also occurs. Some root casts are associated with alveolar texture and 

Microcodium. In most cases the isodiametric to elongated Microcodium grains with 

characteristic opaque inclusions and uniform extinction distinctly cluster in aggregates 

and radiate from central cavities filled with limpid calcite spar cement. The aggregate 

shape is generally „corn-cob” or cylinder with rosette appearance in transverse sections, 

corresponding to the typical Microcodium. In the studied calcrete, peloids and coated 

grains are also very frequent (Fig. 5). Ooids and pisoids are micritic, rather indistinctly 

laminated, and have cores of carbonate rock fragments, rarely bioclasts, calcite spar or 

detrital quartz grains. Additionally, a few coated grains with cores of root-cast 

fragments, Microcodium grains or intraclasts have been recognized in the calcrete 

samples, which indicate that the horizon formed through multiple phases of brecciation 

resulted from penetrative growth of roots and subsequent cementation by micrite (Varga 

et al. 2002b, 2002c).  

Origin of the reworked calcrete clasts is unknown, however, pisolithic and 

brecciated horizons are common at the top of calcrete profiles where intense brecciation 

favors the formation of calcrete-sourced clasts (Alonso-Zarza 2003). Alternatively, 

Wórum (1999) suggested a late Oligocene compressional stress field in the area studied, 

so the occurrence of calcrete-sourced pebbles in the lower Miocene conglomerate layers 

may reflect the tectonically controlled physical erosion of the Szentlőrinc rocks. 

 

Pedogenic calcrete developed on lower Jurassic (Sinemurian) carbonate substrate 

 

In a narrow belt between the villages of Ófalu and Zsibrik, southern 

Transdanubia (Fig. 1B), occurrences of Jurassic rocks are known in an elongated 

tectonic zone at the SE part of the Mecsek Mts. (details see in Császár et al. 2007). 

Relevant part of this Jurassic sequence belongs to the so-called Zobákpuszta Sandstone 

Formation (formerly a part of Vasas Marl Formation; Raucsik 2012) which is composed 

of alternating gray sandstone and sandy, calcareous siltstone, claystone and marl beds 

with gray sphaerosiderite concretions and Gryphaea coquinas. The formation has a 

general fining upward character and the average carbonate content of the sediments 

increases upsection suggesting transgressive depositional dynamics. Based on its 

sedimentary structures and fossil assemblage (e.g., bivalves, foraminifers, ostracods, 

and echinoderm fragments), the formation must have been deposited in littoral to 
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shallow sublittoral zone of a marine basin with normal salinity during the Sinemurian 

(Császár et al. 2007). 

In the study area, characteristic features of some ancient calcrete formation are 

restricted to few small outcrops developed over mixed carbonate–siliciclastic 

sandstones and conglomerates (L4, L12, and L16 outcrops; Császár et al. 2007), 

showing week to moderate degree of actual surface weathering. The altered substrate is 

characterized by corroded siliciclastic grains (quartz, K-feldspar, and rare muscovite 

and zircon) with circumgranular calcite rims (Fig. 6) and, sometimes, root structures 

represented by micrite- and/or microspar-filled curved channels, alveolar-septal 

structures, and probably in situ corrosive Microcodium. Their aggregates enclose 

internal areas filled with micrite cement (Fig. 6D). In this area, moderately preserved 

Microcodium-like structures of elongate calcite prisms (measuring 50–80 μm in length 

and 10–20 μm in width) has been reported only from outcrop L16 (Varga 2011).  

Jurassic rocks here are locally covered by shallow marine Miocene, Pannonian 

or Quaternary deposits with unconformities between them (Császár et al. 2007); 

however, the calcrete formation event has not been dated. 

 

Paleoenvironmental and paleogeographic significance of calcrete records 

 

Rhizoliths and related features are products of pedodiagenesis; therefore they are 

indicators of palaeosols and hence of subaerial vadose environments in ancient 

successions (Klappa, 1980). During pedogenesis, root respiration produces significant 

levels of CO2 (and hence of carbonic acid), additionally, microbial decomposition also 

releases CO2 that controls the dissolution and precipitation of pedogenic carbonate 

(Wright and Tucker 1991; Alonso-Zarza 2003; Brasier 2011). All workers studying 

Microcodium in relation to the environment of its formation agree on its biogenic 

subsurface non-marine nature (e.g., Klappa 1978; Kabanov et al. 2008). Two peaks in 

Microcodium abundance occur at the Moscovian–early Permian and latest Cretaceous–

Paleogene intervals which are distinct by low pCO2 in the atmosphere (Berner 2006; 

Royer 2006; Kabanov et al. 2008). Most of the accumulations of Microcodium occur 

within continental depositional settings that are affected by pedogenesis and/or calcrete 

formation within palustrine, fluvial, and, rarely, karstic settings. Furthermore, in situ 

occurrence of Microcodium aggregates in shallow marine facies always indicates 

subaerial exposure and pedogenic modification of the sediment (Košir 2004). On the 

other hand, calcretes as indicators of unconformities could be used in subsurface 

stratigraphy, providing one more element of basin-architecture analysis in buried 

deposits (Alonso-Zarza and Wright 2010). 

With respect to the lower Permian (Cisuralian) nodular calcrete belonging to the 

Korpád Formation, micromorphological features mentioned above together with the 

mineralogy suggest a relatively dry climate with low amount of rainfall (100–500 

mm/year) during pedogenesis (Varga et al. 2012). This result supports that the southern 

Transdanubian part of the Tisia block was located in the arid paleoclimatic belt during 

the early Permian. Interestingly, however, another calcrete record has never been 

documented in the Cisuralian continental sequences of the Tisia (see Vozárová et al. 

2009, 2010, and references therein). Permian deposits from the Apuseni Mountains 

(Romania) developed also in continental facies with molassic characteristics where red 

beds are dominant (Seghedi et al. 2001) but basal black-colored and bituminous shaly 

deposits suggest somewhat more humid climate. On the other hand, considered in a 
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Circum-Pannonian context, the depositional basin of the Korpád Formation is well 

correlated with the Permian basins of the Western Carpathians and the Eastern Alps, 

Alcapa. The Cisuralian sediments of the Zemplinicum (the Cejkov and Černochov 

Formations) were deposited in an alluvial fan setting alternating with floodplain or 

ephemeral lake deposits with calcrete horizons, all showing the typical features of 

semiarid/arid climatic conditions (Vozárová et al. 2009, 2010). Additionally, calcrete 

horizons together with lenses of dolomite and gypsum occur locally in the Hronicum 

Cisuralian sequence (the Malužiná Formation) comprising a thick succession of 

alternating conglomerates, sandstones and shales deposited in braided alluvial and 

fluvial-lacustrine environments under a semiarid/arid climate (Vozárová et al. 2009, 

2010; Vdačný et al. 2013). Furthermore, in the Drauzug and in the Gurktal Nappe (the 

Laas Formation and the Werchzirm Formation, respectively), proximal to distal alluvial 

red-beds, grading into fine-grained sandflat-playa complexes locally with calcrete crust, 

characterize the Cisuralian (Vozárová et al. 2009, 2010). 

In contrast to the early Permian subaerial exposure profile, only sporadic 

information exists for correlation of younger Transdanubian pedogenic calcretes 

developed on lower Jurassic substrates. The aforementioned correlation of the Eocene 

microflora-bearing calcrete-sourced gravels found in the lower Miocene Szászvár 

conglomerate sequence with the Szentlőrinc Formation is somewhat speculative, 

because of insufficient petrographic and biostratigraphical control. Additionally, we are 

unaware of any Microcodium findings in Paleogene successions from the Hungarian 

part of the Tisia block. It is important to note, however, that Microcodium is most 

extensively reported from the latest Cretaceous–Eocene of the Mediterranean regions 

(Kabanov et al. 2008, and references therein). Corresponding to the Circum-Pannonian 

area, excellently documented subaerial exposure surfaces, including calcretes with 

typical Microcodium, occur within a succession of upper Paleocene and lower Eocene 

shallow-marine limestones (the Trstelj Formation and Alveolina-Nummulites 

Limestone) in southwestern Slovenia (Košir 2004), so our result fits well to the younger 

peak of Microcodium abundance in a global context. 

Finally, regarding the pedogenic calcrete developed on lower Jurassic 

(Sinemurian) carbonate substrate, the calcrete formation event has not been dated. Apart 

from the aforementioned Eocene unconformity, there are several Neogene and 

Quaternary subaerial exposure events with calcrete formation in the study area. 

Calcretes of shallow-marine carbonate systems have been described from the Sarmatian 

sediments from various parts of Hungary (Fig. 1B). According to Lelkes (1994), 

sedimentation on a restricted carbonate platform was interrupted by subaerial periods 

and pedogenesis during the Sarmatian. The diagnostic features for pedogenic calcrete 

facies identified from 27 core sections are rhizoliths (root moulds, root casts, root 

tubules, rhizocretions, and root petrifactions), alveolar textures, rare typical 

Microcodium (core Soltvadkert–4 only), calcified insect eggs, peloids, and various types 

of pedogenic voids (Lelkes 1994). Based on the neighboring location sites (Fig. 1B) the 

beta calcrete developed on lower Jurassic carbonate substrate could probably form 

during the Sarmatian subaerial exposure event. Nevertheless, other cycles separated by 

unconformities reflecting subaerial vadose environments have also been mentioned in 

the Neogene to Quaternary basin fill (e.g., Bajnóczi et al. 2006) so the time of the 

calcrete formation developed on the Sinemurian substrate and, therefore, its 

paleoenvironmental relationship cannot be estimated in a satisfactory manner.  
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Concluding remarks 
 

This paper summarizes Hungarian examples of calcified plant roots and 

Microcodium from subaerial exposure profiles in southern Transdanubia, Tisia block, 

which are characterized by root-influenced fabric but differ in form and stage of 

development. Three occurrences of rhizolits together with in situ Microcodium or 

poorly to moderately preserved Microcodium-like structures related to calcrete profiles 

have been documented in the area studied. These are the followings: nodular calcrete 

belonging to the lower Permian (Cisuralian) Korpád Sandstone Formation (Western 

Mecsek Mts.), Eocene calcrete-sourced clasts developed on Jurassic substrate from the 

Miocene Szászvár conglomerate sequence (Western Mecsek Mts.), and calcrete of 

uncertain age developed on carbonate-siliciclastic substrate of the Sinemurian 

Zobákpuszta Sandstone Formation in a narrow belt between the villages of Ófalu and 

Zsibrik (Eastern Mecsek Mts.).  

Interestingly, in a Circum-Pannonian context, Permian calcrete-bearing 

sediments have not been reported from the Apuseni Mountains (Tisia), but the 

depositional basin of the Korpád Formation can be correlated to the Permian basins of 

the Western Carpathians (e.g., Zemplinicum and Hronicum) and the Eastern Alps (e.g., 

Drauzug and Gurktal Nappe), Alcapa. In contrast to the Cisuralian subaerial exposure 

profile, only sporadic information exists for correlation of younger Transdanubian 

calcretes developed on Jurassic substrates. According to our opinion, if calcretes as 

indicators of unconformities receive more attention in the area of the Tisia block they 

may be used more efficiently in surface/subsurface stratigraphy as well as for regional 

paleoenvironmental and paleogeographic correlations.  
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Figure captions 

 

Fig. 1. A) Major tectonic units of the Carpathian–Pannonian area after Csontos et al. 

(1992, 2002). B) Location map of the pedogenic calcretes from the Hungarian part of 

the Tisia block. 1 = Permian calcrete (Varga et al. 2012); 2 = Eocene calcrete-sourced 

clasts (Varga et al. 2002b); 3 = Calcrete developed on Sinemurian substrate (Varga 

2011); 4 = Calcrete developed on Miocene (Sarmatian) substrate (Lelkes 1994). C) 

Structural framework and generalized geological map of the Western Mecsek Mts. 

(Konrád and Sebe 2010). 1 = Neogene; 2 = Jurassic and Cretaceous; 3 = Triassic; 4 = 

Upper Permian – Lower Triassic; 5 = Palaeozoic in general; 6 = observed fault; 7 = 

supposed fault; 8 = observed reverse fault; 9 = supposed reverse fault; 10 = strike-slip 

fault; 11 = syncline; 12 = anticline. 

 

Fig. 2. Photomicrographs of petrographic thin sections of the Permian calcrete (A–C: 

sample 15.22.1; D: sample 15.22.2). A–B) Rhizocretion with complex tubular structure. 

Smaller second order rhizocretions and root casts are obvious around the well developed 

central rhizocretion, suggesting vertical root systems with taproot and laterals (A: 

Plane-polarized light; B: Crossed nicols). Smaller root casts are indicated by arrows. C) 

Strongly recrystallized Microcodium-like calcite aggregates with relics of dark finely 
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dispersed inclusions in close vicinity to rhizoliths. Plane-polarized light. D) In 

surroundings of the second order rhizocretions small pellets are present. Plane-polarized 

light. 

 

Fig. 3. Photomicrographs of petrographic thin sections of the Permian calcrete (sample 

15.22.1). A–D) In the pedogenic micritic laminae of rhizocretions (Rh), carbonate is 

replaced by tiny authigenic quartz having euhedral crystal terminations (arrows). Plane-

polarized light. 

 

Fig. 4. Eocene calcrete developed on lower Jurassic carbonate substrate. A) Polished 

slab of the Eocene calcrete-sourced gravel derived from the brecciated horizon of a 

partially or totally eroded calcrete profile. Highly irregular to subrounded clasts coated 

with micritic laminae composed of predominant Pliensbachian limestone fragments. 

Root-induced brecciation is evidenced by rhizolith (arrow). Coin for scale: 23 mm. B) 

In situ Microcodium aggregates within root channel. Plane-polarized light. C) Typical 

Microcodium („rosette”) structure in peloidal calcrete. Plane-polarized light. D) 

Microcodium aggregate with characteristic opacity of individual grains due to fine 

inclusions. Plane-polarized light. 

 

Fig. 5. Eocene calcrete developed on lower Jurassic carbonate substrate (Plane-

polarized light). A–B) Spar cement filled root casts with Microcodium aggregates. C–D) 

Calcrete peloids (sand-silt sized micritic grains) and indistinctly laminated, micritic 

vadose pisoids. Some pisoids have cores of carbonate rock fragments (e.g. bioturbated 

packstone–wackestone with sponge spiculae and echinoderm fragments; arrow). 

 

Fig. 6. Photomicrographs of pedogenic calcrete developed on lower Jurassic 

(Sinemurian) carbonate substrate (Plane-polarized light). A–C) Floating siliciclastic (Q: 

quartz and K: K-feldspar) grains coated by displacive asymmetric to circumgranular 

cement rim showing a typical feature of calcretes. The remaining void spaces are filled 

with micrite or microspar. Root-structures are indicated by arrows. D) Weekly 

recrystallized Microcodium-like calcite aggregates composed of a single layer of 

individual, elongate prismatic crystals of calcite. 
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Fig. 1. 
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Fig. 2. 
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Fig. 3 
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Fig. 4. 
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Fig. 5 
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Fig. 6 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


