
Performance Evaluation of a Live, Crowdsensing
Based Transit Feed Service Architecture

Károly Farkas∗, Róbert Szabó† and Bernát Wiandt∗
∗Dept. of Networked Systems and Services,

†HSNLab, Dept. of Telecommunications and Media Informatics,
Budapest University of Technology and Economics, Budapest, Hungary

Email: farkask@hit.bme.hu, robert.szabo@tmit.bme.hu, bwiandt@hit.bme.hu

Abstract—Taking public transportation is an efficient and
environmentally sound way of traveling in most of the cities.
Unfortunately, the static schedule information of the public
transport vehicles, available at the stops, on the web or in some
special format like GTFS (General Transit Feed Specification),
usually does not reflect the actual traffic situation. However, real-
time traffic updates require the gathering of an immense amount
of tracking data. Mobile crowdsensing, via the mobile devices
of the crowd, can offer a cheap and efficient way for collecting
such data. Nonetheless, for motivating active participation some
day zero service must be provided to the users. In this paper,
we discuss how to realize a live public transport information
service extending a static timetable based on GTFS data, as
the day zero service, using the power of the crowd for data
collection. We detail the design of such a service implemented by
an XMPP (Extensible Messaging and Presence Protocol) based
mobile crowdsensing architecture and evaluate its performance.
We show how we can build a scalable service architecture even
with commodity hardware to handle thousands of users.

Keywords—Crowdsensing, Public transport, GTFS, Pub-
lish/subscribe, XMPP

I. INTRODUCTION

Commuting has become part of our daily routine which
results in spending a significant part of our time with traveling.
Public transportation offers a viable alternative for commuters,
especially in crowded cities, reducing private vehicle usage,
fuel consumption, environmental pollution and alleviating traf-
fic congestion. However, it is important for the passengers
to have accurate information about the arrival time at the
stops of the public transit vehicles. Otherwise, unexpectedly
long waiting times can frustrate passengers and divert them
from using public transport. It is even better if some other
extra information about the arriving vehicle, for instance the
congestion level or baby buggy friendliness, is also provided,
making travel planning easier.

Fortunately, most transit operators of big cities make their
timetables or transit feeds freely available for the passengers
or third party application developers. The General Transit Feed
Specification (GTFS) [1] – originally developed by Google –
evolved into the de-facto standard to exchange transit feeds
publicly. However, the widely used GTFS format enables
only the exchange of static transit information (e.g., departure
schedules, travel time, operating hours), which does not reflect
live traffic conditions. Remedy to live updates is the relatively
new real-time extension to GTFS [2], which relies on operators
to invest into a real-time fleet tracking and communication

infrastructure to be able to provide live service updates.
Unfortunately, nowadays very few operators offer such services
due to the necessary investments.

Another approach to live updates is using mobile crowd-
sensing1 [3] and let the crowd collect the information re-
quired to extend the basic timetable service. In this case,
voluntary passengers sense and send live service updates (e.g.,
delays, congestion, hazard, etc.) to a service provider via their
smart-phones. The service provider then aggregates, cleans,
analyzes the collected data, and derives and disseminates
the live updates to the users. For sensing, the built-in and
ubiquitous sensors of the mobile phones can be used either in
a participatory or an opportunistic way depending on whether
data collection happens with or without user involvement. The
contribution of every traveler can be useful. Hence, passengers
waiting for a trip can report the line number with a timestamp
of every arriving public transport vehicle at a stop during
the waiting period. On the other hand, on-board passengers
can send actual location information of the moving vehicle
periodically and report events of arrival at/departure from the
stops.

Although the participatory sensing based approach is a
viable alternative, it faces several challenges. The basic chal-
lenge, similarly to other crowdsensing based services, is how
passengers can be motivated to participate in data collec-
tion. We believe, that a day zero service, which is provided
from the beginning and improved, based on the crowd-sensed
data, following incremental service development, can be an
appropriate incentive. Along this line, as a sequel work to
[4] and [5], we propose and investigate a scenario, where a
static transit feed as the day zero service is improved and
updated with live service updates from participatory users.
We show how such a scenario can be implemented by the
Extensible Messaging and Presence Protocol (XMPP) [6]. We
evaluate different XMPP server setups under load. We present
measurement results showing that even commodity PCs are
able to carry on with the load and handle several thousand
users, and that XMPP server clustering can remedy service
scaling. We show, that with our architecture and a GTFS
emulator static and live service updates can easily be combined
introducing incremental service improvements based on mobile
participatory users.

The rest of the paper is structured as follows. In Sec. II we

1We use the terms crowdsensing, crowdsourcing and participatory sensing
interchangeably in this paper.

– 251 –

INES 2014 • IEEE 18th International Conference on Intelligent Engineering Systems • July 3-5, 2014, Tihany, Hungary

978-1-4799-4615-0/14/$31.00 ©2014 IEEE

review related work. We introduce our design in Sec. III. We
present our measurement based evaluation results for different
service setups in Sec. IV. Finally, we draw conclusions in
Sec. V.

II. RELATED WORK

In this section, first we review mobile participatory sensing
based transit tracking applications. Next, we discuss GTFS as
the de-facto format of transit feed exchange. We explain, why
we build our transit feed service also on this specification. Fi-
nally, we shortly describe XMPP, as our choice of architecture.

A. Transit Tracking Using Mobile Phones

Our approach has the most similarities with recent ideas
on transit tracking systems. The authors in [7] propose a
bus arrival time prediction system based on bus passengers’
participatory sensing. The proposed system uses movement
statuses, audio recordings and mobile celltower signals to
identify the vehicle and its actual position. The authors in [8]
propose a method for transit tracking using the collected
data of the accelerometer and the GPS sensor on the users’
smart-phone. EasyTracker [9] provides a low cost solution for
automatic real-time transit tracking and mapping based on GPS
sensor data gathered from mobile phones which are placed in
transit vehicles. It offers arrival time prediction as well.

These approaches focus on the data (what to collect, how
to collect, what to do with the data) to offer enriched services
to the users. However, our focus is on how to introduce
such enriched services incrementally, i.e., how we can create
an architecture and service model, which allows incremental
introduction of live updates from participatory users over static
services that are available in competing approaches. In our
view, our contribution complements the ones with focus on
analytics and automated transit context detections.

B. GTFS and GTFS-realtime

GTFS [1] is used to represent public transport data for
various operators around the globe. Google Maps, for example,
uses GTFS data sources to plan a trip taking public transport in
major cities. In our transit feed service, we rely on the GTFS
data model and terminology, hence we briefly describe here the
most important and mandatory data structures of a GTFS feed.
The GTFS database consists of comma delimited text files
which describe the following GTFS feed elements. Agency:
who provides the transit data; Routes: a route groups trips
(see below) as a single service offered to riders (a.k.a. lines);
Stops: individual locations where vehicles pick up or drop
passengers; Stop times: vehicle arrival and departure times
from the viewpoint of an individual stop; Calendar: weekly
schedule of the service; and Trip: a sequence of two or more
stops for each route that occurs at a specific time.

GTFS-realtime (GTFS-rt) [2] is an extension to the GTFS
specification. It defines the feed format which allows public
transportation agencies to provide live updates about their
fleet to application developers. The specification defines the
following feed types: Trip updates: delays, cancellations or
changes to trips; Service alerts: unforeseen events affecting a
station, route or entire network; Vehicle positions: location and
congestion states related to vehicles. In order for an agency to

track its fleet and provide realtime GTFS feeds, it has to invest
into a costly infrastructure, both hardware and software. Today,
only a few Google partner agencies provide GTFS-rt services.

On the other hand, there exists a wide variety of third party
applications for smart-phones, e.g., OneBusAway [10], which
offer access to GTFS transit feeds in various presentations.
Common to most of them is that their service is static without
live updates. In order for us to offer a competitive service even
without participatory users we will also use static GTFS data
as a basic service, which is provided from day zero of the
application’s launch.

C. XMPP

XMPP [6] is an open technology for real-time communica-
tion using XML (Extensible Markup Language) [11] message
format. XMPP allows sending of small information pieces
from one entity to another in quasi real-time. It has several
extensions, like multi-party messaging [12] or notification
service [13]. This latter realizes a publish-subscribe (pubsub)
communication model [14], where publications sent to a node
are automatically multicast to the subscribers of that node.
Moreover, collection nodes [13] can be used to easily manage
subscriptions through aggregate notifications. XMPP is well
established and widely used in instant messaging services, like
Google Talk [15] or Facebook Chat [16].

On the other hand, beyond implementing instant messag-
ing, XMPP can also be used for other service architectures. For
instance, the authors in [17] proposed to bring XMPP into the
Internet of Things embedded systems. They concluded with
experiments that XMPP can be minimized to run on resource
constrained devices and being able to communicate with full
fledged clients. Based on their results it will be possible to
not only bring smart-phone based sensing into the common
platform of XMPP, but also smart objects. Another example
is the Social Backbone (SBone) [18], [19] which provides an
open architecture based on the Jabberd2 [20] XMPP server. It
allows personal devices to share their resources and state with
each other, seamlessly and securely, using a social network for
authentication, naming, discovery and access control. These
approaches show similarities with our use-case and demon-
strate the applicability of XMPP beyond the basic instant
messaging scenario. So, we have also chosen XMPP as the
core building element of our transit service architecture.

III. DESIGN OF THE XMPP BASED LIVE TRANSIT FEED
SERVICE

We discussed the use of an XMPP based generic open
architecture for mobile participatory sensing in [5]. In our
service design, we consider that architecture and adapt it to
our live transit feed service.

A. Requirements for Developing Crowdsensing Based Services

We discussed the basic, high level requirements for crowd-
sourcing based service development in [5]. These are: i) uni-
fying open architecture; ii) extensible information model; and
iii) decoupling between producers and consumers. However,
the key issue for participatory sensing applications is how they
can attract user contributions.

K. Farkas et al. • Performance Evaluation of a Live, Crowdsensing Based Transit Feed Service Architecture

– 252 –

To capture interest and motivate contribution, we believe
that such applications must offer a day zero service. This
means that the new application must provide at least similar
service level and user experience to the already available
services from the launch day of the application, otherwise
nobody will use it. For instance, a static public transportation
timetable can be offered as the immediate day zero service
and the quality of experience of this service may be improved
with live crowd-sensed information as more and more users
start to participate. In the following, we discuss and examine
such a use-case scenario where the day zero service, based on
static GTFS data, is combined with mobile crowdsensing.

B. The Publish-Subscribe Model for GTFS Feeds

We turned the GTFS database into an XMPP node hi-
erarchy to avoid unnecessary communication overhead. This
node structure facilitates searching and selecting transit feeds
according to user interest. The pubsub node model for content
filtering in a transit feed (see Sec. II-B for the terminology) is
depicted in Fig. 1.

Fig. 1. Publish-Subscribe Model for GTFS Feeds

Transit information and real-time event updates are handled
in the Trip nodes at the leaf level. The inner nodes in the node
hierarchy contain only persistent data and references relevant
to the trips. The users can access the transit data via two ways,
based on routes or stops. When the user wants to see a given
trip (vehicle) related traffic information the route based filtering
is applied. On the other hand, when the forthcoming arrivals
at a given stop (location) are of interest the stop based filtering
is the appropriate access way.

For instance, the leaf node with trip ID “BKK-Routes-
3040-In-A87757824” (cf. the bracketed labels in the nodes of
Fig. 1 and Fig. 2) handles the transit feed and its real-time
updates related to Trip 2 in the inbound direction belonging
to Route A of Agency BKK (operator at Budapest, Hungary).
On the other hand, node “BKK-Routes-3040” stores persis-
tent transit information with regard to Route A (e.g., route
name, short name, stops, head-signs), since references to all
the currently active inbound trips are found in node “BKK-
Routes-3040-In”. Similarly, node “BKK-Stops-F01086” stores
persistent data with regard to the given stop (e.g., stop name,
GPS coordinates) and lists the routes this stop is part of.
Furthermore, the trip ID of every active trip is listed in the
route node.

C. Architecture of the Live Transit Feed Service

Our service architecture (see Fig. 2) consists of a stan-
dard XMPP server or federation of XMPP servers, a GTFS
Emulator, analytics module and a mobile client application.
The mobile application is using a standard XMPP stack (e.g.,
ASmack [21]). This provides a semi automatic navigation of
the GTFS data through a user interface and makes possible to
send report/feedback or real-time sensor data (e.g., crowded-
ness information, vehicle arrivals at the stops) to the server.
Either the same or separate XMPP servers (the latter is shown
in Fig. 2) can be used to handle the published events and the
collected data/reports. When user feeds are not available the
GTFS Emulator, using the static GTFS Database, publishes
transit information. Hence, the day zero service is provided
by the GTFS Emulator in our case. The business logic of the
service, e.g. stop event detection or estimating vehicle arrivals
at the stops, is handled by the analytics module.

In our performance analysis, we use the pubsub node
structure depicted in Fig. 1. The clients will receive traffic
updates according to their subscribed channels. Moreover, we
implement only a simple analytics module that disseminates
live feed, created by the GTFS Emulator in our experiments,
into the appropriate pubsub channels.

Fig. 2. XMPP Based Pubsub Architecture for Live Transit Feed Service

IV. EVALUATION

A. Measurement Components

In our measurements, we used some basic components to
load and measure the characteristics of an imaginary crowd-
sourced transit feed service. In our setups, we used XMPP
Server(s), GTFS Emulator, Active and Passive Clients.

• XMPP Server(s): We used the Erlang Jabber/XMPP
daemon (ejabberd) [22] as our XMPP server(s). We
ran the server(s) on AMD Athlon K9 Dual-Core
Processor 5050e hardware at 2600 MHz with 2 GByte
RAM and 3.8.0-19 Linux kernel.

• GTFS Emulator: We developed a standalone GTFS
Emulator, which sends GTFS stop events into the
XMPP server(s) from a time stamped, ordered event
list generated directly from a GTFS Database (see

– 253 –

INES 2014 • IEEE 18th International Conference on Intelligent Engineering Systems • July 3-5, 2014, Tihany, Hungary

Sec. II-B). We mapped the static schedule of the
agency to the crowd service with this Emulator.

• Passive Clients: We set the load of our XMPP
server(s) by changing the number of Passive Client
subscriptions, emulated by virtual machines, to differ-
ent pubsub nodes.

• Active Clients: Active Clients, emulated by virtual ma-
chines, publish measurement messages to the XMPP
server(s) they are subscribed to at every 100 msec.
They measure the Service Time which is the elapsed
time between publishing and receiving a measurement
message.

B. Measurement Setups

We investigated three different measurement setups (see
Fig. 3, black solid lines - physical architecture, colored dashed
lines and colored device names - logical architecture):

1) Our first setup consisted of a single machine (beyond
the GTFS Emulator, GTFS Database and an Ethernet
Switch), where only one XMPP server (see the blue
dashed lines and the Server in Fig. 3) was used to
carry the load. We used this setup for the baseline
measurements.

2) In our second setup, we used a cluster of XMPP
servers to investigate scalability and extended the
single server setup with two additional servers. We
organized the three servers into a hierarchy (see the
green dashed lines and the Master, Slave 1, Slave
2 in Fig. 3) where the Master server received and
replicated the transit feed input from the Emulator
while the two Slave servers carried the load of
subscribers.

3) In the third setup, we used a cluster of three XMPP
servers again (see the red dashed lines and the Server
1, Server 2, Server 3 in Fig. 3), but this time with
application level load sharing. Thus, we do not have
any dedicated server rather the Emulator distributes
the load among the servers fulfilling equal role.

Fig. 3. Measurement Scenarios

C. Measurement Methodology

We used active clients to measure the Service Time (see
above). We were interested in how XMPP server(s) running
on commodity PC(s) can handle the task of serving various
number of users under the GTFS Emulator’s load.

We picked a busy hour (7am to 8am, weekday) from
the GTFS database of Budapest’s (capital of Hungary) transit
operator (BKK) as the source to the Emulator. In the event
trace, 96.6% of the events belonged to bursts (GTFS databases
show this characteristic as most of the arrivals are scheduled
at solid minutes) with the rest spread evenly between these
bursts. We increased the playback speed of the Emulator with
a factor of three, without affecting the characteristics of the
trace, resulting in a burst interarrival time of 20 sec.

We used Student’s t-distribution to estimate a 95% con-
fidence interval for the sampled mean of the Service Time.
The active measurement clients sent probe messages at every
100 msec. The passive clients subscribed to all the trip
content channels (e.g., 10 passive users generated a load of
3 × 10 × 1, 000 = 30, 000 events to be sent out per minute
by the XMPP server(s)). Additionally, active clients sent 600
measurement messages per minute, which were also sent to all
subscribers. Therefore, 3600 message/min load corresponds to
a single active client in the system.

In our measurement setups, we made sure that none of the
active or passive clients, nor the Emulator be the bottleneck,
but only the XMPP server(s) after certain load. For this reason,
we used multiple machines to generate the active and passive
load and GTFS events.

D. Results: Single Server Setup

With the single server setup, we established baseline mea-
surements. Along the x axis the time offset is depicted, when
the active measurement messages were sent to the XMPP
server. The time offset was synchronized to the start of the
corresponding burst generated by the GTFS Emulator. Since
the three times playback speed of the Emulator, bursts were
started with a 20 sec interarrival time. We used memory
databases in the XMPP server.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14

S
e
rv

ic
e
 T

im
e
 [

se
c]

Offset from start of burst [sec]

3600 message/min
39600 message/min
75600 message/min

111600 message/min
147600 message/min

Fig. 4. Service Time with 95% Confidence Interval in the Single Server
Setup

Fig. 4 shows the Service Time with 95% confidence
interval measured over 55 bursts under different loads. We can

K. Farkas et al. • Performance Evaluation of a Live, Crowdsensing Based Transit Feed Service Architecture

– 254 –

see that a single server can handle about 150,000 messages per
minute with a Service Time not greater than 2.3 seconds even
at the peak of the bursts (in case of higher load we already
experienced data losses).

E. Results: Server Cluster Setup with One Master and Two
Slaves

With this setup, we were interested to investigate how our
service can scale in hardware without application support. The
clustering mechanism in ejabberd enables the architecture itself
to distribute the load transparently. Fig. 5 shows the Service
Time with 95% confidence interval measured at the Slave
servers (the Master did not handle subscriptions in this setup).
Note, that the plots depict the total load of the system and not
the per server load. With regard to this setup we can observe
the following points:

• The load was almost evenly distributed between the
Slaves.

• Each of the slaves was able to serve as many messages
as the single Server in the previous setup.

• The Master server is not a bottleneck if no subscribers
are attached to it.

• The two stages of server processing almost tripled
the Service Time under the same per server load (see
Fig. 5a and 5b).

Basically, with the additional cost of a Master server, the
load handled by this architecture can linearly be increased
by adding Slaves to the system with the expense of a higher
Service Time. It remains to be further investigated (our future
plans), how many more Slaves can be added to a Master.

F. Results: Server Cluster Setup with Application Layer Load
Sharing

In order to get rid of the extra delay introduced by the
Master server in the previous setup, we can create an appli-
cation layer load sharing scheme, where XMPP content nodes
are uniformly mapped to different XMPP servers by some
deterministic method. In this setup, our Emulator randomly
mapped each new trip content node to one of the three available
XMPP servers. The measurement results of this scenario are
shown in Fig. 6. Note again, that the plots depict the total load
of the system and not the per server load. With regard to this
setup we can observe the following points:

• The Service Time characteristics are similar to the
single server setup (except on Server 3).

• There are differences between the servers, which
might reflect the uneven load distribution from the
Emulator. This can be explained by the fact, that we
mapped trips to different servers, however, there are
significant differences in event rates within trips.

• These results do not reflect the overhead incurred at
the Emulator to share the load. It also remains to be
further investigated.

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12 14

S
e
rv

ic
e
 T

im
e
 [

se
c]

Offset from start of burst [sec]

7200 message/min
79200 message/min

151200 message/min
223200 message/min
295200 message/min

(a) Master → Slave 1

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12 14

S
e
rv

ic
e
 T

im
e
 [

se
c]

Offset from start of burst [sec]

7200 message/min
79200 message/min

151200 message/min
223200 message/min
295200 message/min

(b) Master → Slave 2

Fig. 5. Service Time with 95% Confidence Interval in the Server Cluster
Setup: One Master and Two Slaves

V. CONCLUSIONS

In this paper, we discussed how an incremental real-time
transit feed service based on crowdsensing could be realized
over commodity hardwares (PCs), standard protocols (XMPP),
open source servers (ejabberd) and publicly available de-facto
standard GTFS databases. We investigated the performance of
our service architecture in case of 3 different setups, such as
a single server, a server cluster with a Master and two Slaves,
and a cluster of three servers with application layer support
for load sharing. We have not discussed, yet how our results
can be mapped to real user numbers of a live transit feed
service. If we assume, that a single passive (subscriber) user
is interested in no more than 10 trips at any time, and the
live updates are limited to one update per trip per minute,
then we can serve about 15,000 simultaneous on-line passive
users with our commodity dual-core AMD Athlon 2.6 GHz
PC with 2 GByte RAM keeping the Service Time below 2.5
seconds, or multiple of them selecting an appropriate server
cluster architecture. As our future work, we plan to investigate
further the server cluster setups, and use our prototype Android
client application under development in the measurements to
generate live feeds as real load.

ACKNOWLEDGMENT

The publication was supported by the EITKIC 12-1-2012-
0001 project, which is supported by the Hungarian Govern-

– 255 –

INES 2014 • IEEE 18th International Conference on Intelligent Engineering Systems • July 3-5, 2014, Tihany, Hungary

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14

S
e
rv

ic
e
 T

im
e
 [

se
c]

Offset from start of burst [sec]

10800 message/min
118800 message/min
226800 message/min
334800 message/min
442800 message/min

(a) Server 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14

S
e
rv

ic
e
 T

im
e
 [

se
c]

Offset from start of burst [sec]

10800 message/min
118800 message/min
226800 message/min
334800 message/min
442800 message/min

(b) Server 2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14

S
e
rv

ic
e
 T

im
e
 [

se
c]

Offset from start of burst [sec]

10800 message/min
118800 message/min
226800 message/min
334800 message/min
442800 message/min

(c) Server 3

Fig. 6. Service Time with 95% Confidence Interval in the Server Cluster
Setup: Three Servers with Application Layer Load Sharing

ment, managed by the National Development Agency, financed
by the Research and Technology Innovation Fund and was
performed in cooperation with the EIT ICT Labs Budapest
Associate Partner Group (www.ictlabs.elte.hu). Károly Farkas
has been partially supported by the Hungarian Academy of
Sciences through the Bolyai János Research Fellowship.

REFERENCES

[1] Google Inc., “General Transit Feed Specification Reference.” [Online].
Available: https://developers.google.com/transit/gtfs/reference/

[2] ——, “General Transit Feed Specification Realtime.” [Online].
Available: https://developers.google.com/transit/gtfs-realtime/

[3] R. Ganti, F. Ye, and H. Lei, “Mobile Crowdsensing: Current State and
Future Challenges,” IEEE Communications Magazine, pp. 32–39, Nov.
2011.

[4] R. L. Szabo and K. Farkas, “Publish/Subscribe Communication for
Crowd-sourcing Based Smart City Applications,” in Proceedings of the
2nd International Conference of Informatics and Management Sciences
(ICTIC 2013), K. Matiasko, A. Lieskovsky, and M. Mokrys, Eds., Mar.
2013, pp. 314–319.

[5] ——, “A Publish-Subscribe Scheme Based Open Architecture for
Crowd-sourcing,” in Proceedings of 19th EUNICE Workshop on Ad-
vances in Communication Networking (EUNICE 2013). Springer, Aug.
2013, pp. 1–5, to appear.

[6] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” RFC 6120 (Proposed Standard), Internet Engineering Task Force,
Mar. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6120.txt

[7] P. Zhou, Y. Zheng, and M. Li, “How Long to Wait?: Predicting
Bus Arrival Time with Mobile Phone based Participatory Sensing,” in
Proceedings of the Tenth International Conference on Mobile Systems,
Applications, and Services (MobiSys 2012), Jun. 2012.

[8] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Cooperative
Transit Tracking Using Smart-phones,” in Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems (SenSys 2010),
Nov. 2010, pp. 85–98.

[9] J. Biagioni, T. Gerlich, T. Merrifield, and J. Eriksson, “EasyTracker:
Automatic Transit Tracking, Mapping, and Arrival Time Prediction
Using Smartphones,” in Proceedings of the 9th ACM Conference on
Embedded Networked Sensor Systems (SenSys 2011), Nov. 2011, pp.
1–14.

[10] OneBusAway Developers, “OneBusAway.” [Online]. Available: https:
//github.com/OneBusAway/

[11] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau,
“Extensible markup language (XML) 1.0 (fifth edition),” W3C, W3C
Recommendation REC-xml-20081126, Nov. 2008. [Online]. Available:
http://www.w3.org/TR/2008/REC-xml-20081126/

[12] P. Saint-Andre, “XEP-0045: multi-user chat,” XMPP Standards
Foundation, Standards Track XEP-0045, Feb. 2012. [Online]. Available:
http://xmpp.org/extensions/xep-0045.html

[13] P. Millard, P. Saint-Andre, and R. Meijer, “XEP-0060: Publish-
subscribe,” XMPP Standards Foundation, Draft Standard XEP-0060,
Jul. 2010. [Online]. Available: http://xmpp.org/extensions/xep-0060.
html

[14] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
Many Faces of Publish/Subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, Jun. 2003.

[15] Google Inc., “Google Talk for Developers: Open Communications,”
Mar. 2013, last updated May 15, 2013. [Online]. Available:
https://developers.google.com/talk/open communications/

[16] Facebook Inc., “Facebook Chat API,” 2013. [Online]. Available:
http://developers.facebook.com/docs/chat/

[17] M. Kirsche and R. Klauck, “Unify to Bridge Gaps: Bringing XMPP into
the Internet of Things,” in Proceedings of the 10th IEEE International
Conference on Pervasive Computing and Communications Workshops,
Work in Progress (PERCOM Workshops), Mar. 2012, pp. 455–458.

[18] P. Shankar, B. Nath, L. Iftode, V. Ananthanarayanan, and L. Han,
“Sbone: Personal Device Sharing Using Social Networks,” Technical
Report, Rutgers University, Tech. Rep., 2010. [Online]. Available:
http://www.cs.rutgers.edu/∼iftode/SBone10.pdf

[19] P. Shankar, L. Han, V. Ananthanarayanan, M. Muscari, B. Nath, and
L. Iftode, “A Case For Automatic Sharing over Social Networks,” in
Proceedings of the First ACM SIGKDD International Workshop on Hot
Topics on Interdisciplinary Social Networks Research (HotSocial 2012),
Aug. 2012.

[20] Jabberd Community, “Jabberd,” http://jabberd2.org/.
[21] aSmack Contributors, “aSmack API,” https://github.com/Flowdalic/

asmack/.
[22] ejabberd Community, “ejabberd – Distributed Fault-tolerant

Jabber/XMPP Server in Erlang,” Aug. 2013. [Online]. Available:
http://www.ejabberd.im/

K. Farkas et al. • Performance Evaluation of a Live, Crowdsensing Based Transit Feed Service Architecture

– 256 –

