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ABSTRACT
We report a systematic study of the dynamics of chain formation in electrorheological fluids using Brownian dynamics simulations. The
parameters of the system such as applied electric field, polarizability, dipole moment, friction coefficient, and number density are expressed
in reduced units and changed in a wide range in order to map the system’s behavior as a function of them. We define time constants obtained
from bi-exponential fits to time dependence of various physical quantities such as dipolar energy, diffusion constant, and average chain
length. The smaller time constant is associated with the formation of shorter chains (pairs, triplets, and so on), while the larger time constant
is associated with the formation of longer chains in the regime of those that overarch the simulation cell. We use the approximation that the
dipole moments are induced by the applied electric field only, as usual in the literature. However, we report preliminary results for the case
when particle–particle polarization is also possible.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0037985., s

I. INTRODUCTION

In electrorheological (ER) fluids,1 fine non-conducting solid
particles are suspended in an electrically insulating liquid with the
particles having larger dielectric constant than the solvent. Then,
an applied electric field induces polarization charges at the arising
dielectric boundaries that can be corresponded to effective dipoles
placed in the centers of the particles.

The interactions of these dipoles lead to a structural change in
the ER fluid known as the ER response. This structural change is the
aggregation of ER particles first into shorter and then into longer
chains due to the fact that the head-to-tail position of two dipoles
along the direction of the applied field is a minimum-energy config-
uration. In the case of strong applied fields, the chains form larger
clusters, for example, columnar structures.

This structural change results in changes in all major physical
properties of the ER fluid. From a practical point of view, one of
the most important is viscosity. The externally controllable, fast, and

reversible change in viscosity makes ER fluids a central component
of various devices, such as brakes, clutches, dampers, and valves.2,3

Such devices have crucial importance in various industries including
the automotive industry.

Because the functioning of ER devices is based on microscopic
mechanisms leading to an emergent macroscopic pattern, a num-
ber of modeling studies4–24 have been devoted to the investigation
of the microscopic processes behind chain formation and corre-
sponding changes in measurable physical properties. Cluster for-
mation has been investigated via cluster size distribution,4,9,11,12,22,24

order parameters,12–15,21 mean square displacement (MSD) and dif-
fusion constant,4,6,12 pair distribution functions,6,12 and relaxation
times.5,11,12,23 In particular, Cao et al.23 identified relaxation times
corresponding to various subprocesses such as initial aggregation,
chain formation, and column formation. See and Doi9 described
aggregation kinetics and chain formation for two-dimensional ER
fluids. A scaling law is also presented in this work. These processes
were also investigated in the presence of shear5,6,10,15,23 with the
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goal of computing shear stress, various terms of viscosity, oscillatory
strain, and dependence on the strain rate.

In this paper, our main interest is to study the dynamics of
the formation of chains with a newly developed Brownian dynam-
ics simulation package based on a novel Langevin integrator.25–27

We are interested in the mechanisms by which the chains and their
clusters are formed when the electric field is switched on. We charac-
terize this dynamics by plotting various physical properties such as
energy, diffusion constant, average chain length, chain-length dis-
tributions, and radial distribution functions (RDFs) as functions of
time.

In particular, we intend to provide a systematic study over a
wide range of reduced parameters and to study the effect of the
various parameters on the dynamics of chain formation. Reduced
parameters make it possible to study a model without any consid-
erations of real ER fluids. Here, we reduce our quantities with the
particle diameter, d, mass of the particle, m, and the thermal energy,
kT, where k is Boltzmann’s constant and T is the absolute temper-
ature. Reduced units are also useful because they may express rela-
tive strengths of competing effects. The reduced dipole moment, for
example, is the strength of the dipole–dipole interaction relative to
kT, namely, it expresses the relative strength of the ordering effect of
the electrostatic forces compared to the disordering effect of thermal
motion.

We consider the effect of system size (number of particles), the
strength of the applied electric field, polarizability, the product of
these (dipole moment), friction coefficient, and the number density
of the ER particles. We try to dig into the depths of microscopic pro-
cesses in order to understand what is going on at the microscopic
level.

Once the time dependence of the various physical quantities is
available, we average the behavior of the chains of different lengths
into some aggregate behaviors characterized by two time constants
obtained from fitting bi-exponential functions to various physical
quantities. We interpret and justify these time constants. Such char-
acteristic time constants are useful because they make it possible
to relate our simulations to experimental data, where such time
constants can also be obtained from fitting to experimental data.28,29

The papers listed above were produced with an approximate
model where the dipoles on the ER particles were assumed to be
induced by the applied field only, while the polarization of the parti-
cles by other particles was ignored. Here, we also use this approxima-
tion, but we also present some preliminary results for the case when
particle–particle polarization is present. These results show that the
two models produce similar dynamics if the polarizability is not too
large. If the polarizability is large, however, we expect deviations
from the results presented here and in the literature.

Here, we present systematically and in detail what happens
in an ER fluid on the microscopic level during the time from the
moment of switching the applied field on to later times when the
chains are already formed.

II. MODELS AND METHODS
A. The polarizable dielectric sphere

The ER fluid is modeled as dielectric spheres of dielectric con-
stant ϵin inside the sphere immersed in a fluid of dielectric constant

FIG. 1. Sketch of an ER particle in an external electric field, Eappl. The dielec-
tric constant inside the sphere is ϵin, while outside the sphere is ϵout. The sur-
face charge distribution, σ(r), induced on the dielectric boundary [Eq. (1)] can be
approximated by a point dipole, μ, in the center of the sphere [Eq. (2)].

ϵout (Fig. 1). The radius of the spheres is R, while their diameter is
d = 2R. If an electric field, E, is applied on the sphere, a polarization
charge density

σ(θ) = 3ϵ0(
ϵin − ϵout

ϵin + 2ϵout
)E cos θ, (1)

is induced on the surface of the sphere, where E = |E|, θ is the polar
coordinate (the angle between a point on the surface and E), and ϵ0
is the permittivity of vacuum. Far from the sphere, the effect of this
surface charge distribution can be approximated with an ideal point
dipole placed in the center of the sphere computed as30

μ = 4πϵ0(
ϵin − ϵout

ϵin + 2ϵout
)R3E = αE, (2)

where

α = 4πϵ0(
ϵin − ϵout

ϵin + 2ϵout
)R3 (3)

is the particle polarizability.
If it is further assumed that the characteristic time of the rear-

rangement of the surface charge during the movement of the parti-
cles is much smaller than the characteristic time of the rotation of the
particles, the μ dipole always points to the direction of E even if the
sphere rotates. Then, the induced charges chiefly corresponding to
the polarization of solvent molecules around the sphere always have
enough time to rearrange themselves. As an ideal limit, we take this
rearrangement infinitely fast.

If we take a system of N particles at positions {rj}, the potential
produced by a dipole μj (that is at rj) at the position ri of another
dipole μi is

Φj(ri) =
1

4πϵ0

μj ⋅ rij

r3
ij

, (4)

where rij = ri − rj and rij = |rij|. The electric field exerted on dipole i
by dipole j is
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Ej(ri) =
1

4πϵ0

3nij(nij ⋅ μj) − μj

r3
ij

, (5)

where nij = rij/rij.
In Eq. (2), the electric field at ri is a sum of the applied field,

Eappl (it defines the z direction) and the electric field produced by all
the other dipoles, E(ri) =∑j≠iEj(ri). The total dipole moment

μtot
i = αEappl + αE(ri) = μappl

i + μpart
i (6)

is induced by these two components and is split into the terms μappl
i

and μpart
i accordingly.

● The dipole moment μappl
i induced by the applied field is con-

stant and always points to the z direction. It can be called
“permanent” in the sense that it is always there when Eappl is
switched on, but it is not permanent in the chemical sense in
which the polar molecules have permanent dipoles.

● The dipole moment μpart
i induced by all the other ER parti-

cles depends on the electric field produced by the induced
dipoles, so it is calculated by an iterative procedure.31

In the rheological literature, it is usual to ignore μpart
i , namely,

the polarization of the particles by each other. In this work, we show
some preliminary results for the full solution of Eq. (6) in com-
parison with the approximate approach using an effective dipole
moment,

μeff
≡ μappl + ⟨μpart

⟩, (7)

where ⟨⋯⟩ denotes ensemble average.

B. Dipolar interactions between particles
The interaction potential between the two dipoles (irrespective

whether it is induced by Eappl or by other particles) is

udip
ij (rij,μi,μj) = −μi ⋅ Ej(ri)

= −
1

4πϵ0

3(nij ⋅ μi)(nij ⋅ μj) − μi ⋅ μj

r3
ij

, (8)

while the force exerted on dipole μi by dipole μj is

fdip
ij (rij,μi,μj) = −(μi ⋅ ∇i)Ej(ri)

=
1

4πϵ0

1
r4

ij
{3[μi(nij ⋅ μj) + μj(nij ⋅ μi)

+ nij(μi ⋅ μj)] − 15nij(nij ⋅ μi)(nij ⋅ μj)}. (9)

The torque acting on the dipoles has been ignored due to the
assumption of the instantaneous rearrangement of induced charges.

The dipolar force acting on dipole μappl
i is

Fdip
i =∑

j≠i
f appl

ij +∑
j≠i

f part
ij , (10)

where

f appl
ij = f dip

ij (rij,μappl
i ,μappl

j ) (11)

is the force exerted on dipole μappl
i by dipole μappl

j and

f part
ij = f dip

ij (rij,μappl
i ,μpart

j ) (12)

is the force exerted on dipole μappl
i by dipole μpart

j .
Similarly, the dipolar energy is divided as

Udip
= Uappl + Upart, (13)

where

Uappl
=

1
2∑i

∑
j

udip
ij (rij,μappl

i ,μappl
j ) (14)

is the interaction energy between dipoles induced by Eappl and

Upart
=

1
2∑i

∑
j

udip
ij (rij,μappl

i ,μpart
j ) (15)

is the induction energy. A more detailed derivation of the induction
energy can be found in the paper of Předota et al.32

C. Short-range interactions between particles
The full interaction potential between two ER particles must

contain a short-range core potential for which we use the cut and
shifted Lennard Jones (LJ) potential also known as the Weeks–
Chandler–Anderson (WCA) potential, that is,

uWCA
ij (rij) =

⎧⎪⎪
⎨
⎪⎪⎩

uLJ
ij (rij) + uLJ

ij (rc) if rij < rc

0 if rij > rc,
(16)

where

uLJ
ij (rij) = 4εLJ

⎡
⎢
⎢
⎢
⎢
⎣

(
d
rij
)

12

− (
d
rij
)

6⎤
⎥
⎥
⎥
⎥
⎦

(17)

is the LJ potential. The WCA force is

fWCA
ij (rij) =

⎧⎪⎪
⎨
⎪⎪⎩

fLJ
ij (rij) if rij < rc

0 if rij > rc
, (18)

where

fLJ
ij (rij) = 24εLJ

⎡
⎢
⎢
⎢
⎢
⎣

2(
d
rij
)

12

− (
d
rij
)

6⎤
⎥
⎥
⎥
⎥
⎦

rij

r2
ij

(19)

is the LJ force. In these equations, the cutoff distance is rc = 21/6d that
is at the minimum of the LJ potential, so this potential is a smooth
repulsive core potential.

D. Brownian dynamics simulation
The trajectories of the particles in the phase space interacting

with each other via the systematic force

Fi =∑
j
(fWCA

ij + f appl
ij + f part

ij ) (20)

are determined by solving Newton’s equation of motion in a molec-
ular dynamics simulation. When the particles are immersed in a
solvent, we use Langevin’s equations of motion,33

m
dvi(t)

dt
= Fi(ri(t)) −mγvi(t) + Ri(t), (21)
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where ri, vi, m, and γ are the position, the velocity, the mass, and
the friction coefficient of particle i, respectively. The mass and the
friction coefficient are assumed to be the same for every particle, but,
in general, they can depend on i.

In addition to the systematic force, the force has two extra
components: the frictional force, −mγvi(t), and the random force,
Ri(t). The former describes friction, while the latter describes ran-
dom collisions with surrounding solvent molecules. They represent
the interactions with the heat bath and are coupled through the
fluctuation–dissipation theorem.

This stochastic differential equation is solved numerically.34–37

We use the GJF-2GJ version27 of a collection of algorithms proposed
by Grønbech-Jensen and Farago,25–27

vn+ 1
2 = avn− 1

2 +
√

bΔt
m

f n +
√

b
2m
(Rn
− Rn+1

), (22)

rn+1
= rn +

√
bvn+ 1

2 Δt, (23)

where rn = r(tn) is any position coordinate of any particle, vn = v(tn)
is any velocity coordinate of any particle, tn = nΔt is the time in the
nth time step, Δt is the time step,

a =
1 − γΔt/2
1 + γΔt/2

, (24)

b =
1

1 + γΔt/2
, (25)

tn+ 1
2
= tn + Δt

2 , and tn− 1
2
= tn −

Δt
2 . The discrete time noise

Rn+1
= ∫

tn+1

tn

R(t′)dt′ (26)

is a random Gaussian number with properties

⟨Rn
⟩ = 0 (27)

and

⟨RmRn
⟩ = 2kTγmΔtδmn, (28)

with δmn being the Kronecker-delta. The algorithm reproduces the
overdamped limit solution at high frictions.

E. Reduced units
There are competing effects in an ER system. Since the head-

to-tail position, in which the dipoles are aligned along nij (θ = 0)
at contact (rij = d), has a minimum energy, the dipolar interactions
have an ordering effect. Thermal motion, on the other hand, has a
disordering effect that expresses the coupling to a thermostat of tem-
perature T and friction with the surrounding solvent with viscosity
η. We can characterize the disordering effect of the thermal motion
by kT energetically.

The balance of these competing effects can be emphasized
by using reduced units in the calculations. Reduced units express
physical quantities as dimensionless numbers obtained by divid-
ing a quantity in a physical unit by a unit quantity in the same
unit, t∗ = t/t0, for example. Reduced quantities are useful from
a practical point of view because their values are close to 1,
so it is easier to work with them. They are also useful because
they express relations between the quantities in the numerator
and the denominator. In this work, we use the particle mass, m,
the particle diameter, d, and kT to build the reduced quantities
(Table I). The mass of the particles depends on ρin and d through
m = ρind3π/6, so we can also reduce with ρin and d, as shown
in Table I.

Using reduced units is a kind of scaling5 phenomenon, such as
the theorem of corresponding states. For a specific set of reduced
parameters that defines the state of the system, the system behaves
in a well-defined way. A set of reduced parameters, however, can
be constructed from different sets of parameters in real-life physical
units such as the temperature, T, the mass density of the material of
the ER particle, ρin, the diameter of the ER particle, d, the dielectric
constant of the ER particle, ϵin, the dielectric constant of the solvent,
ϵout, the viscosity of the solvent, η, and the strength of the applied
electric field, Eappl.

Many of these quantities enter the calculations indirectly. The
parameters ρin and d determine the mass, m. The parameters
ϵin, ϵout, and d determine the particle polarizability, α, through
Eq. (3). The friction coefficient can be computed from Stokes’s
law as

γ =
3πηd

m
. (29)

TABLE I. Reduced quantities.

Quantity Symbol Unit quantity Reduced quantity

Time t t0 =
√

md2/kT t∗ = t
√

kT/md2 = t
√

6kT/πρind5

Distance r r0 = d r∗ = r/d
Density ρ ρ0 = 1/d3 ρ∗ = ρd3

Velocity v v0 = d/t0 =
√

kT/m v∗ = v
√

m/kT =
√
πρind3/6kT

Energy u u0 = kT u∗ = u/kT
Force F F0 = kT/d F∗ = Fd/kT
Electric field E E0 =

√
kT/4πϵ0d3 E∗ = E

√
4πϵ0d3/kT

Dipole moment μ μ0 =
√

4πϵ0kTd3 μ∗ = μ/
√

4πϵ0kTd3

Particle polarizability α α0 = 4πϵ0d3 α∗ = α/4πϵ0d3

Friction coefficient γ γ0 =
√

kT/md2 γ∗ = γ
√

md2/kT = γ
√
ρind5/6kT
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The diffusion constant in the high coupling limit can be expressed
by Einstein’s relation,

D =
kT
mγ

, (30)

or, in reduced units, D∗ = 1/γ∗.
An important parameter is the (square of the) reduced dipole

moment,

(μ∗)2
=
μ2
/4πϵ0d3

kT
(31)

which is related to the ratio of the dipolar energy and the thermal
energy and proportional to the λ parameter used in the literature. If
(μ∗)2 is large, the dipolar interactions are strong enough to induce
chain formation. If (μ∗)2 is too large, the chains freeze, and the ER
particles solidify (note that the fluid itself does not solidify). If (μ∗)2

is small, thermal motion prevents chain formation and/or breaks the
chains.

Our practical concern is how to make the simulation efficient
enough to collect enough information about the dynamics of the sys-
tem in a reasonable amount of computer time. The time step, Δt∗,
with which we can tune the speed of sampling is a subject of opti-
mization. If Δt∗ is too small, the simulation will evolve slowly at the
price of valuable computation time. If Δt∗ is too large, the overlap of
the repulsive cores of the particles [Eq. (18)] leads to instabilities in
solving the Langevin equation. If one wants to use a large time step,
there are methods to cope with this problem.6,13,38

Without such techniques, we can give an estimation for a max-
imum value of Δt∗ above which there is a considerable risk for
particle overlap. We introduce the average distance, Δs, that a par-
ticle moves in a time step with the average thermal velocity, v̄

=
√

3kT/m. In reduced units, it is

Δs∗ =
v̄Δt

d
=
√

3Δt∗, (32)

so it characterizes the average distance in relation to the particle size.
It is proportional to Δt∗. Because this reduced distance, and, conse-
quently, the reduced time step should be smaller than 1, a strict limit
is imposed to Δt∗.

In our simulations, we used the value Δt∗ = 0.01. Larger values
caused particle overlaps and instabilities in the simulations. Smaller
values were needed at extreme values of (μappl

)
∗.

III. RESULTS AND DISCUSSION
In this study, we report an analysis of the dynamics of chain

formation over a wide range of parameter space. We study depen-
dence on N, ρ∗, γ∗, α∗, and (μappl

)
∗
= α∗E∗appl. We perform M0 time

steps in the absence of applied electric field (Eappl = 0) and ME time
steps in the presence of it in order to study the dynamics of chain
formation after the electric field is switched on.

We show the values of block averages (denoted by ⟨⋯⟩b) for
various physical quantities (see Subsection III A) as functions of t∗.
The length of a block (Mb is the number of time steps in a block)
is also a subject of optimization. If a block is too short, the phys-
ical quantities averaged over a block will have bad statistics. If a
block is too long, we lose time resolution and information about the
dynamics of the system.

FIG. 2. Illustration of the periodic simulation of M0 = 50 000 and ME = 450 000
time steps in the absence and presence of an applied electric field, respectively
(Δt∗ = 0.01). The average chain length is shown as a function of t∗. The black line
consists of data obtained as averages over blocks of length Mb = 5000 time steps.
The thick red line shows the average over 20 periods.

Even optimized, the results for the studied quantities are noisy.
Therefore, to improve statistics, we perform several of these Mc
= M0 + ME cycles and average over the cycles (see Fig. 2). When
we start a cycle over, we restart from a freshly generated initial con-
figuration in a completely disordered state without chains. This way,
the subsequent periods are independent and can be averaged.

In this work, unless we state otherwise, we performed Mb
= 5000 time steps in a block, ten blocks without field (so M0 = 10
Mb = 50 000), 90 blocks with field (so ME = 90 Mb = 450 000), and
20 such periods. M0 = 50 000 and ME = 450 000 time steps corre-
spond to lengths t∗ = 500 and 4500 in reduced time (Δt∗ = 0.01).
Such a simulation was altogether 10 × 106 time steps long.

A. Quantities studied
We can characterize the time dependence of chain formation

with several physical quantities. Here, we briefly list them, while a
detailed description and analysis are found in Ref. 39.

In chains, particles are aligned into head-to-tail positions along
the z-axis that is a lowest-energy configuration. The one-particle
dipolar energies (uappl

)
∗
= (Uappl

)
∗
/N and (udip

)
∗
= (Udip

)
∗
/N

(they are different only if particle–particle polarization is present),
therefore, are good indicators of chain formation.

When the particles are “frozen” into chains, their mobility char-
acterized by the isotropic diffusion constant decreases that is com-
puted as the slope of the mean square displacement (MSD) as a
function of time,

D(tb) =
⟨r2
(t)⟩b

2Δtb
, (33)

where tb is the time at the beginning of a block and Δtb = MbΔt is
the length of the block. (From now on, when we talk about a value
of a quantity at a given time t, we always mean the average over a
block at time tb.) Note that D is an approximate value obtained over
a block of limited length (see Fig. 6 of Ref. 39). The exact equilibrium
diffusion constant would be obtained in the limit of Δtb →∞. Even
though approximate, D(tb) characterizes chain formation.

The chain formation can be directly followed by identifying
chains in every configuration. If we denote the number of chains
of length s for a given configuration with ns, we can compute the
average chain length as

sav =
∑s sns

∑s ns
(34)
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for that configuration. This quantity then can be further averaged
over time steps in a block providing time dependence, sav(t). We
define two particles being in the same chain if they are closer to
each other than a predefined distance, rij < λgd. For λg, we use the
value 1.2 in this study, but other numbers produce the same dynam-
ics although with quantitatively different results for ns.39 This is a
geometrical definition. An energetic definition is also possible, but it
gives qualitatively the same result as the geometrical one (see Fig. 7
of Ref. 39).

The chain distribution ns(t) means a lot of data as a function of
s and t that are not easy to visualize. Examples are shown in Figs. 8
and 9 of Ref. 39. Here, we will plot ns(t) both as a function of s at
fixed t and as a function of t at fixed s.

The structure of a fluid can be quantitatively characterized by
pair distribution functions. Although there are various projections
of the full pair distribution function in the series expansion of rota-
tional invariants, here, we study only the radial distribution function
(RDF), g(r), which describes the probability that another particle is
found at a distance r from a central particle. Peaks in g(r) repre-
sent probable distances for small r, while g(r)→ 1 when r →∞ in a
fluid phase. Aggregation of particles increases these peaks. Although
we also compute other distribution functions in the simulations, the
conclusions that we can draw from them are not different from those
drawn from g(r).

B. Characteristic times
Our results will show that the dynamics of the system can be

loosely characterized with two processes, a faster one and a slower
one. The faster one can be associated with the formation of chains
either from integration of shorter elements or from disintegration of
longer chains. The slower one can be associated with the disappear-
ance of chains either from aggregation into even longer chains (or
into columnar structures, where chains stick together) or from their
disintegration into shorter chains.

In both cases, association and dissociation have the same rate
at equilibrium, but at the beginning, it is the association process that
dominates. The fast subprocess is fast because its rate is determined
by the abundance of lone particles (e.g., monomers, s = 1), dimers (s
= 2), and short chains. The slow subprocess is slow because its rate
is determined by the mobility of longer chains or their ability to find
monomers or other short chains that they could incorporate.

The idea to fit bi-exponential functions to the time-dependent
function of any physical quantity that we can squeeze out of our
simulations naturally arises28,29

f (t) = a0 + a1e−t/τ1 + a2e−t/τ2 . (35)

It is clear that using such a function is an approximation. The brute
force approach would be writing up N coupled differential equa-
tions for the components of the system where the components are
the chains,

ns(t)
dt
= k1,s−1n1ns−1 +⋯ + ks/2,s−s/2ns/2ns−s/2

+ k′s+1,1ns+1 +⋯ + k′N,N−snN

− (k′1,s−1 +⋯ + k′s/2,s)ns

− k1,sn1ns −⋯ − kN−s,snN−sns (36)

for every s = 1, . . ., N. Here, the first row expresses processes pro-
ducing chain s by associations from shorter chains i and j with rate
constant ki ,j with i + j = s. The second row expresses processes
producing chain s by dissociations from longer chains i with rate
constant k′i ,i−s. The third row expresses processes consuming chain
s by its dissociation into shorter chains i and s − i with rate con-
stant k′i ,s−i. The fourth row expresses processes consuming chain
s by associations with another chain i with rate constant ki ,s. Terms
containing s/2 assume that s is even; for odd s values, (s − 1)/2 should
be there.

Solving this system of equations analytically is practically
impossible for sensible particle numbers. Even solving numerically
and relating rate constants to data extracted from a simulation is
a computational nightmare due to the large number of data that
should be visualized and the statistical noise that burdens the data.

Therefore, we use the heuristic approach of the bi-exponential
fit and characterize the dynamics of the system with the resulting
time constants, τ1 and τ2. The accuracy of the fit is surprisingly good
in most cases even though many of the subprocesses in Eq. (36) are
not first-order.

A further advantage of this approach is that we can per-
form the same kind of fitting for experimental data and relate our
model calculations to experimental reality. For example, the same
bi-exponential fit was used by Horváth and Szalai28,29 who studied
the dielectric response of ER fluids.

C. The importance of particle–particle polarization
The simulation studies in the ER literature that we are aware

of have been done for the case when only the dipoles induced by
the applied field, μappl = αEappl, were used in the calculations, while
the dipoles induced by all the other particles, μpart, were ignored.
One exception we found is the work of Wang et al.40,41 who used
a mean-field approximation to take mutual polarization of particles
into account (no iteration).

Here, we show some preliminary results to get an impression of
how this approximation works. Figure 3 shows the time dependence
of various quantities for two pairs of simulations.

In one pair of the simulations, the reduced dipole moment
induced by Eappl was kept constant at the value (μappl

)
∗
=
√

6≈2.449.
Two simulations were performed for α∗ = 0.01 [Fig. 3(a)] and α∗
= 0.02 [Fig. 3(b)]. The corresponding reduced electric field strengths,
E∗appl, and the resulting dipole moments (μpart

)
∗ and (μtot

)
∗ are col-

lected in Table II. The red curves in Fig. 3 show the results for this
case.

In the other pair of the simulations, we used the resulting total
dipole moment of the previous simulation as an effective dipole
moment, (μeff

)
∗
= 2.563 and 2.696, but we ignored the particle–

particle polarization (μpart = 0 and Upart = 0). The black curves in
Fig. 3 show the results for this case.

The top-left panels of Figs. 3(a) and 3(b) illustrate the rela-
tion of the two kinds of simulations. While the total dipole moment
jumps to the (μeff

)
∗ value abruptly as the applied field is switched on

in the μpart = 0 case (black curves), it gradually approaches the same
value in the case when particles polarize each other and it takes some
time for them to aggregate and polarize each other (red lines). The
total dipole moment is also a key quantity for the calculation of the
dielectric constant.
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FIG. 3. Preliminary results for an ER fluid where polarization of the particles by other particles is taken into account (μpart ≠ 0). Red curves show the results for this case on the
examples of various quantities: average chain length, sav, square of the total dipole moment, μ = μappl + μpart, total one-particle dipolar energy, udip = uappl + upart (here, uappl

is also shown with dotted line), and the diffusion constant, D. These quantities are shown in reduced units. The red curves refer to the case of (a) α∗ = 0.01 and (b) α∗ = 0.02
that correspond to (μappl)∗ =√6 = 2.449. The values obtained for the total dipole moment are (a) ⟨(μtot)∗⟩ = 2.564 and (b) ⟨(μtot)∗⟩ = 2.696 as ensemble averages.
These values were used as effective dipole moments in the simulations without particle–particle polarization (black curves): (μeff)∗ = ⟨(μtot)∗⟩. Simulation parameters are
N = 256, γ∗ = 100, and ρ∗ = 0.05.

The other quantity, where we observe deviation between the
two kinds of simulations, is the energy (bottom-left panels). This
deviation follows from the way Uappl and Upart are defined; dipole
moments μappl

i and μpart
i are separate dipole moments. There are

terms that seem to be missing from Eqs. (14) and (15). The miss-
ing terms result from collecting all the μappl

− μappl, μappl
− μpart, and

μpart
− μpart interactions and deducting the self-polarization term.32

The black curve can be recovered with proper rescaling.
The diffusion constant (bottom-right panels) behaves the same

way in the two kinds of simulations. This result implies that the par-
ticles influence each other mobility when they are already close to
each other, so the induced dipoles, μpart, are formed.

The average chain length, sav, is shown in the top-right pan-
els. Its behavior is practically the same for the two kinds of sim-
ulations in the case of α∗ = 0.01, while deviations occur for α∗
= 0.02. Larger α∗ values produce even larger deviations (data not
shown).

From these preliminary results, we can conclude that explicit
consideration of particle–particle polarization becomes important
as α∗ increases, and, probably, as ρ∗ increases. We believe that this

TABLE II. Simulation parameters for the cases [Figs. 3(a) and 3(b)] including particle–
particle polarization.

Parameter Figure 3(a) Figure 3(b)

(μappl
)
∗ 2.449 2.449

α∗ 0.01 0.02
E∗appl 244.9 122.45
⟨(μpart

)
∗
⟩ 0.114 0.247

⟨(μtot
)
∗
⟩ 2.563 2.696

is an important result especially in the light of the fact that we
have not found any single simulation study in the literature where
particle–particle polarization was taken into account. We will devote
a separate paper to this effect, while in this paper, we stay with the
“traditional” approach, namely, we use the approximations μpart

i = 0,
Upart = 0, and fpart

ij = 0.
In this approximation, we cannot have independent values for

α∗ and E∗appl separately, only for their product, (μappl
)
∗
= α∗E∗appl.

Therefore, from now on, our independent variable will be (μappl
)
∗

[or its square, see Eq. (31)], so, to simplify notation, we will denote
μappl simply with μ. One should, however, keep in mind that this
dipole moment is the result of polarization by an applied field.

D. The effect of the number of particles
Most of the simulations in this paper will be shown for

N = 256, so we need to justify why this value is appropriate to char-
acterize larger (more realistic) system sizes. Figure 4 shows the time
dependence of the quantities already discussed in Fig. 3 for dif-
ferent system sizes for a dipole moment where considerable chain
formation is observed, (μ∗)2

= 6.
The time dependence of the one-particle dipolar energy and the

diffusion constant practically do not depend on the number of par-
ticles if N ≥ 256 (bottom panels). The inset of the bottom-left panel
shows that N = 128 is probably too small, but the behavior is still the
same qualitatively.

The behavior of the average chain length, on the other hand,
does depend on N (top-left panel). The left hand side panel in the
top row shows that the equilibrium limit of sav depends on the
size of the simulation cell: larger cells can enclose longer chains.
The analyses of chains of various lengths are necessarily system size
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FIG. 4. System size analysis. Average chain length (top-left panel), average chain
length normalized by the cube root of particle number (top-right panel), one-particle
dipolar energy (bottom-left panel), and diffusion constant (bottom-right panel) as
functions of t∗ for different particle numbers, N. In the inset of the top-right panel,
the time evolution of the number of chains with length six normalized by the particle
number is shown. Simulation parameters are (μ∗)2 = 6, γ∗ = 100, and ρ∗ = 0.05.

dependent. Because the length of the chain overarching the cell
scales with L∼N1/3 and the number of short chains scales with N,
it is expected that we can extrapolate our results for a necessarily
small-system size to larger ones.

If we scale the average chain length with N1/3, we obtain that
the equilibrium limit scales with N1/3 (top-right panel). This result
harmonizes with the result (see later) that the average chain length
is dominated by the length of the chain that overarches the cell for
(μ∗)2

= 6; there is a peak in the chain-length distribution at that
value. This value depends on the width of the simulation cell, L.

The inset shows that the number of short chains scales with
N. This is also logical. The dynamics of shorter and longer chains,
therefore, has different N dependence, but it is possible to draw
conclusions for larger systems from our small-system simulations.

System size in a computer simulation is necessarily finite. We
generally need to compromise between large computation time and
system-size artifacts. Here, we use N = 256 for the rest of this paper.

E. The effect of friction coefficient
The reduced friction coefficient tunes the rate at which the par-

ticles diffuse [Eq. (30)]. Larger γ∗ results in a slower evolving sim-
ulation as shown by the left panels in Fig. 5. If we scale the reduced
time with γ∗ as shown in the right panels of Fig. 5, the curves for
the average chain length and the dipolar energy coincide. This is not
true, however, for the diffusion constant (see Fig. 13 of Ref. 39).

This result implies that we can extrapolate to large values of
γ∗ from simulations performed for a small value of γ∗. This state-
ment is also supported by Fig. 6 that shows the characteristic times as
functions of γ∗. They have a monotonic and smooth γ∗ dependence.

FIG. 5. The average chain length (top row) and one-particle reduced dipolar energy
(bottom row) as functions of t∗ (left column) and t∗/γ∗ (right column) for various
values of the reduced friction coefficient, γ∗, are shown. Simulation parameters
are N = 256, (μ∗)2 = 6, and ρ∗ = 0.05. The length of a block is Nb = 5000 for
γ∗ = 100, Nb = 10 000 for γ∗ = 1000, and Nb = 80 000 for γ∗ = 10 000 and γ∗
= 100 000.

This figure indicates that there is an order of magnitude difference
between τ∗2 and τ∗1 .

F. The effect of dipole moment (electric field)
The most important issue is the dependence of chain forma-

tion on the applied electric field because Eappl is the major exter-
nal control parameter. Eappl-dependence means μ-dependence in the
absence of particle–particle polarization, so we will use that nomen-
clature from now on and talk about μ∗-dependence. In addition, μ∗

FIG. 6. Time constants obtained from bi-exponential fits to (udip)∗(t∗) (symbols)
and D∗(t∗) (dashed lines) as functions of the friction coefficient, γ∗. Parameters
are the same as in Fig. 5.
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FIG. 7. One-particle dipolar energy (top-left panel), diffusion constant (top-right
panel), average chain length (bottom-left panel), and the number of chains of
length six (bottom-right panel) as functions of t∗ for different values of (μ∗)2 (3,
5, 8, 11, 15, and 25). Simulation parameters are N = 256, γ∗ = 100, and ρ∗ = 0.02.
In these simulations, we performed 200 cycles of the M0 + ME period.

[and, especially, (μ∗)2, see Eq. (31)] expresses the strength of the
ordering effect of the applied field in relation to the disordering effect
of thermal motion.

We performed simulations for (μ∗)2
= 3, 5, 8, 11, 15, and 25.

Figure 7 shows the time dependence of the dipolar energy, the diffu-
sion constant, the average chain length, and the number of chains of
length s = 6. The energy decreases to deeper values as (μ∗)2 increases
because the dipolar energy is proportional to μ2 [see Eq. (8)]. The
dipolar energy, however, decreases disproportionately with μ2 that
is well visible in Fig. 7, where we plot the dipolar energy normalized
by (μ∗)2.

This disproportionate decrease of the dipolar energy with (μ∗)2

is explained by the increased aggregation of the particles caused by
the stronger interactions. Partly, the dipolar interaction can be so
strong [reduced dipole moments (μ∗)2

= 11 and above are really
large] that the attraction in the head-to-tail position overcomes the
repulsion of the core potential. As a result, the particles can get closer
to each other than r = d. This is directly shown by the first peaks of
the RDF shifting toward smaller r∗ values as (μ∗)2 increases (Fig. 8).

In addition, due to thermal motion, the particles in a chain
tend to “move out of the line” of the chain in the lateral dimension.
As μ∗ increases, they are bound to the chain more strongly, so the
chains tend to be more like a straight line keeping the particles in the
minimum-energy positions (Fig. 8).

The increased order is also shown by the increasing average
chain length (bottom-left panel of Fig. 7), the decreasing diffusion
coefficient (top-right panel of Fig. 7), the increasing peaks of the
RDFs (Fig. 8), and the snapshots in Fig. 8. The formation of larger
aggregates and the disappearance of short chains are shown by the
behavior of n6(t∗) that declines close to zero for (μ∗)2 values larger
than 8 (bottom-right panel of Fig. 7).

Eventually, chains aggregate into columnar structures when
the ordering effect of the applied field is large enough. The struc-
tures formed at large couplings between dipoles, however, get quite
close to freezing. This is indicated by the quickly declining diffu-
sion constant in Fig. 7. Its value, however, never declines to zero,
which indicates that the system is not frozen. It rather behaves
as a two-dimensional fluid of chains. This means that the chains,
once formed, are quite stable and they diffuse in the (x, y) plane as
autonomous entities. These chains are heavier and less mobile than
individual ER particles. In addition, their kinetic energy is partially
stored in a rotation around their z-axes.

The behavior of the chains of various lengths is shown in Fig. 9
that shows the ns(t∗) vs t∗ functions for different values of (μ∗)2

in the different panels. The ns(t∗) curves for chains shorter than
s0 (the length of the chain overarching the cell) are plotted by thin
lines of various colors. The ns0(t

∗
) curves are plotted with thick red

lines [(μ∗)2
= 5, 8, and 11]. They are not only one lines, but more

for larger values of (μ∗)2 (15 and 25). The ns(t∗) curves for aggre-
gated chains (s > s0) are plotted with thin brown lines. They are very
noisy, so it is their common behavior that is meaningful instead of
individual ones.

In the case of (μ∗)2
= 3, we do not observe the formation of

long chains. Short chains may form with ns exponentially decay-
ing with s (note the logarithmic scale). This is also shown in Fig. 8
plotting chain-length distributions (ns vs s functions) and radial dis-
tribution functions, g(r∗), for four time moments (actually, time
blocks),

● t∗ = 250, in the absence of Eappl (the WCA fluid, black lines)
● t∗ = 550, at the beginning of the time period in the presence

of Eappl when chains just started to form (red lines)
● t∗ = 1500, in the middle of the time period in the presence of

Eappl when individual chains are mostly formed (green lines)
● t∗ = 5000, at the end of the simulated time period in the

presence of Eappl when chains have formed and (for large μ∗
values) aggregated (blue lines)

For (μ∗)2
= 3, the ns functions show a simple decreasing behav-

ior but shifted toward larger s values as time goes by (Fig. 8). The g(r)
functions show a minimal structure in the presence of Eappl with just
two peaks compared to the black line (WCA fluid) that just shows a
gas-like behavior.

In the case of (μ∗)2
= 5, two chains of length s0 are present in

the simulation cell (on average) as shown by the thick red line. This
curve “jumps out” of the crowd of curves of other chains indicating
that this chain has a special status among all the chains (higher prob-
ability). Whether this simulation artifact can be the subject of further
investigation. If it is an artifact, it is due to the periodic boundary
conditions that stabilize this chain because it is practically a loop in
which every particle has the lowest energy due to its periodic neigh-
bors. The fact that this curve “jumps out” even for larger system sizes
(N = 2048) implies that this might be a real physical effect character-
istic even to real system sizes. After all, even in a real macroscopic
experimental cell, the chains that overarch the slit between the two
electrodes can be more stable because they are bound at the two
ends.

For (μ∗)2
= 5, we observe that shorter chains behave as inter-

mediates (see thin colored lines). First, they are produced from
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FIG. 8. Chain-length distributions (second column) and radial distribution functions (third column) for different values of (μ∗)2 (increasing from 3 to 25 from top to bottom).
The black curves refer to a block in the absence of Eappl (t∗ = 250). The red curves refer to a block at the beginning of the period in the presence of Eappl when chains start
forming (t∗ = 550). The green curves refer to a block during chain formation (t∗ = 1500). The blue curves refer to a block at the end of the period in the presence of Eappl

when chains (and possibly aggregation of chains) have formed (t∗ = 5000). Additionally, for each (μ∗)2, snapshots from the simulations are shown at t∗ = 550 (first column,
front view of the simulation cell) and t∗ = 5000 (fourth and fifth columns, front and top views of the simulation cell, respectively). Parameters are the same as in Fig. 7.

shorter chains, then their number decreases approaching their equi-
librium values that decrease with increasing s (Fig. 9). The ns distri-
bution now is also decreasing, but now larger s values are possible
(Fig. 8). The interesting thing is the peak at s0 = 23 (note the log-
arithmic scale) that indicates the special role of this overarching
chain. The g(r) function clearly indicates strong structuring. This
is an obvious sign of aggregation because the fluid is otherwise low
density (ρ∗ = 0.02).

If we increase the dipole moment to (μ∗)2
= 8, we can see sim-

ilar phenomena except that we observe an interesting gap between
the lines below s0 = 24 (thin lines with colors) and above it (thin
brown lines). There is a jump corresponding to this gap in the ns vs s
function in Fig. 8. If there is a phase transition with increasing μ (we
are unsure), it must be somewhere here. We must be careful with

such statements, however. We need to conduct a more detailed and
less noisy investigation for larger systems if we want to be sure about
the existence of a phase transition.

Increasing the dipole moment even further [(μ∗)2
= 11, 15,

25], the gap vanishes. The thick red line still “jumps out” for (μ∗)2

= 11. For even larger values of (μ∗)2 (15 and 25), we can find
not only a single thick red line but a collection of thick red lines.
This and the fact that the value of s0 increases (23, 24, and so on)
as (μ∗)2 increases can be explained by the fact that the ER par-
ticles can get closer to each other when the strong dipolar inter-
action attracts them. This is also shown by the g(r) functions in
Fig. 8: the first peak is getting below the r∗ = 1 contact position
of the WCA fluid. The soft WCA potential is pretty “hard” nor-
mally, but if there is a strong attractive force balancing it, it becomes
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FIG. 9. The number of chains of specific
lengths (s ≥ 2) averaged over blocks as
a function of time, t∗. The panels refer to
dipole moments (μ∗)2 = 3, 5, 8, 11, 15,
and 25. Chain length s increases along
the arrows. The thick red lines refer to
a chain that completely crosses the sim-
ulation cell in the z direction. In these
simulations (N = 256 and ρ∗ = 0.02),
the length of this overarching chain is
around the value nL = 23 (for compar-
ison, the width of the simulation cell is
L = 23.4d). The color lines refer to the
chains of lengths up to ns0 , while brown
lines refer to the chains of lengths above
ns0 . Parameters are the same as in
Fig. 7.

“softer.” This flexibility allows overarching chains of different
lengths.

This phenomenon results in a smaller effective diameter of the
particles compared to the value of d used in the WCA potential and
with which we define the reduced quantities. This might be worth
taking into account during analyzing our results.

The number of chains longer than s0 exceeds the number of
chains shorter than s0 as t∗ → ∞. This is shown by the brown
lines overstepping the colorful lines in Fig. 9 and by the relation
of the green and blue curves in Fig. 8. Aggregation of chains that
corresponds to chains with lengths larger than s0 is shown by the
“shoulders” near the peaks of the g(r) functions in Fig. 8.

These simulations have been done for a low density (ρ∗ = 0.02)
in order to identify and visualize the chains better. We have not
performed simulations for larger (μ∗)2 values in this work for the
following reasons:

● The simulations were problematic computationally; overlap
of particles caused these particles to “shoot apart” due to the
large repulsion. This problem can be solved with smaller Δt∗

or larger γ∗ values that correspond to larger computational
time.

● The process of chain formation, which is our main interest
here, was so abrupt for γ∗ = 100 used in these simulations
that we could not really follow the dynamics. This problem
can be solved with larger γ∗ values that, again, corresponds
to larger computational time.

Therefore, we did not pursue these state points here.
These state points can be especially important, however, if we

want to relate our reduced units to real ER fluids. Table III shows a
few examples that we found in the literature. As far as the value of the
reduced dipole moment is concerned, we encountered ER fluids that
correspond to much higher and much lower μ∗ values than those
we work with in our study (for Eappl = 106 V/m). For example, the
value μ∗ = 0.008 04,28,29 according to our simulations, is too small
to produce chain formation (this small value is due to the nano-size
diameter of the particles). This is the result of both the low ϵin/ϵout
ratio and the small d. The values of μ∗ above 20,6,7,13,14 on the other
hand, are so large that chains aggregate into stable structures and the

TABLE III. Properties of various ER fluids and the corresponding reduced quantities.

References ER particle Solvent d/m ϵin ϵout ϵin/ϵout α∗ E∗appl μ∗

6 Lithium-polymethacrylate Light oil 1.5 × 10−5 30 3 10 0.094 9553 896
6,13, and 14 Alumina Petroleum oil 10–5 8 2 4 0.063 5200 325
6,13,14 poly(methacrylate) Chlorinated hydrocarbon 10–5 23.36 7.3 3.2 0.053 5200 275
6,13,14 SrCO3 Silicon oil 10–6 NA 2 ∼800 0.125 164.4 20.5
6,13,14 SrCO3 Silicon oil 5 × 10−7 NA 2 ∼300 0.124 58.1 7.2
28 and 29 Silica (SiO2) Silicon oil 2 × 10−8 4 2.7 1.48 0.017 0.465 0.00804
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ER particles solidify. These large values of μ∗ are generally the results
of the large particle diameters.

This might be the real experimental situation, but it is hard to
study with our simulation methodology. Beyond a certain point, we
simulate the movement of chains rather than the movement of parti-
cles accumulating to form chains. Their motion is much slower (see
the diffusion constants in Fig. 7), but it is doable because it is a two-
dimensional fluid of chains. When the chains aggregate, however, we
have a solid-like structure that requires special sampling techniques.

The realm of state points (in reduced units) that we simulate
in this work, therefore, corresponds to moderate applied fields (Eappl

≈ 104
−105 V/m) or not too large particles.
Another fact that makes direct comparison of our results to

experimental data difficult is that real ER and magnetorheologi-
cal fluids are generally polydisperse as opposed to the model we
study here. The particle diameters specified in experiments are mean
values, and deviation from monodispersity influences the proper-
ties of the system. Simulation studies considered, for example, the
change in the shear stress in bidisperse42–44 and polydisperse41,45,46

systems.
Although a clear-cut proof for phase transition has not been

found, we observe an interesting maximum in the characteristic
times, τ∗1 and τ∗2 , as functions of μ∗ in Fig. 10. Our explanation for
this maximum is heuristic. The τ∗1 and τ∗2 parameters have been fit-
ted to the dipolar energy or the diffusion constant. Therefore, they
are aggregated parameters that contain many effects averaged into
them. Judging from the maximum, we must have competing effects
in play.

One effect is that larger time constants belong to the longer
chains (see Fig. 11). With increasing μ∗, longer chains appear in the
system, slowing down the overall processes and resulting in larger
time constants. At the same time, stronger dipolar interactions speed
up aggregation resulting in smaller time constants. The two effects
seem to compete resulting in the maximum. At small values of μ∗
(increasing part in Fig. 10), the first effect dominates: longer chains
just appear in the system. When chain formation is strong [above

FIG. 10. The τ∗1 (black, bottom panel) and τ∗2 (red, top panel) time constants
obtained from bi-exponential fits to (udip)∗(t∗) (symbols) and D∗(t∗) (dashed
lines) as functions of μ∗. Parameters are the same as in Fig. 7.

FIG. 11. The τ∗1 and τ∗2 time constants obtained from bi-exponential fits on the
ns(t∗) functions as functions of s for (μ∗)2 = 8. The dashed lines represent the
values obtained from fitting to the (udip)∗(t∗) function. Parameters are the same
as in Fig. 7.

(μ∗)2
= 5], the increasing dipolar attraction pulling these chains

together is the dominating effect.
Figure 11 provides a relation between “aggregate” time con-

stants fitted to, for example, the dipolar energy, and time constants
fitted to individual ns(t∗) functions. This figure shows the fitted time
constants as functions of s for (μ∗)2

= 8. The two horizontal lines
indicate the time constants fitted to the dipolar energy.

We were able to fit to the ns(t∗) curves for not too large s values.
Above s = 15, fitting a bi-exponential does not really work, and the
two time constants become equal. It is a nice result that the “aggre-
gate” values of τ∗1 and τ∗2 fitted to the energy confine the values fitted
to the ns(t∗) curves.

FIG. 12. Analysis of the dependence of average chain length (top-left panel), num-
ber of chains of length six (top-right panel), one-particle dipolar energy (bottom-
left panel), and diffusion constant (bottom-right panel) on the reduced density
(packing). Simulation parameters are N = 256, (μ∗)2 = 6, and γ∗ = 100.
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FIG. 13. The τ1 and τ2 time constants obtained from bi-exponential fits to
(udip)∗(t∗) (symbols) and D∗(t∗) (dashed lines) functions plotted against the
reduced density, ρ∗. Parameters are the same as in Fig. 12.

This result is in agreement with our hypothesis on the mean-
ing of the two time constants. The smaller time constant fitted to
the energy is associated with the smaller time constants (formation)
of the shorter chains. The larger time constant fitted to the energy

is associated with the time constants of the longer chains. Because
we start from monomers and dimers, there must be a fast process
producing the intermediate products with time constant τ∗1 . When
the chains are formed, however, they have their own dynamics with
diffusion, dissociation, and association characterized by the time
constant τ∗2 .

G. The effect of packing
The reduced density characterizes the packing of the particles;

ρ∗ = Nd3/V is the fraction of the volume occupied by the cubes
around the particles in relation to the total volume. Note that an
alternative reduced quantity is the packing fraction, ρ∗π/6, which
is the fraction of the volume occupied by the particles themselves in
relation to the total volume (it cannot be larger than 1). At larger ρ∗,
the particles get close to each other to the contact position (r = d)
with a higher probability.

Figure 12 shows the time dependence of various quantities for
different values of ρ∗. Interestingly, the one-particle dipolar energy
goes to the same equilibrium value at different densities (bottom-left
panel). This is in contrast to the behavior of homogeneous isotropic
bulk dipolar fluids (the dipoles can rotate there), where this energy
sensitively depends on ρ∗. The fact that in the case of the ER fluid

FIG. 14. The number of chains with vary-
ing lengths (s ≥ 2) averaged over blocks
as a function of time, t∗ (first column) for
three reduced densities (ρ∗ = 0.05, 0.1,
and 0.2), and snapshot from the simu-
lation for each density at t∗ = 50, front
(second column) and top views (third
columns). Parameters are the same as
in Fig. 12.
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with dipoles aligned in the z direction (udip
)
∗ does not depend on

ρ∗ implies that the dominant effect determining the dipole–dipole
energy is the interactions of particles inside the chains.

At larger ρ∗ values, however, the curves approach the equilib-
rium values faster. Stronger packing rather has effects on dynamics
because the particles can find each other faster.

What was said for the dipolar energy above is also valid for the
diffusion constant (bottom-right panel). Figure 13 shows that the
characteristic times, τ∗1 and τ∗2 , get smaller as ρ∗ increases. The τ∗1
and τ∗2 values fitted to (udip

)
∗ and D∗ behave similarly. Although

the uncertainty of fitting for τ∗2 is quite large, from this and earlier
figures (Figs. 6, 10, and 11), we can conclude that the time constant
τ∗2 is larger than τ∗1 with about an order of magnitude.

The top panels of Fig. 12 show the behavior of the average chain
length, sav(t∗), and n6(t∗) as a function of time. The s = 6 chains form
and vanish more quickly at high densities, which is also reflected in
the time constants (Fig. 13).

The average chain length increases with increasing ρ∗ despite
the fact that the length of the chain overarching the cell decreases
(s0 = 17, 13, and 10 for the reduced densities ρ∗ = 0.05, 0.1, and 0.2,
respectively, indicated by thick red lines in Fig. 14). This can only be
caused by the fact that the chains aggregate at larger densities with
higher probability.

This can be followed in more detail in Fig. 14 that shows the
ns(t∗) functions (similar to Fig. 9) for three different densities (from
top to bottom) with snapshots taken at t∗ = 50 when the chains are
already formed [(μ∗)2

= 6]. The rows of this figure refer to reduced
densities ρ∗ = 0.05, 0.1, and 0.2 (from top to bottom).

In the case of ρ∗ = 0.02, there was only one overarching chain
(with length s0 = 23, top-middle panel of Fig. 9 is the closest case)
“jumping out.” At ρ∗ = 0.05, we have two: the single overarching
chain (s = 17) and two of them stuck together (s = 35). The double
chain here and in the following rows are indicated with thick blue
lines. As the reduced density increases, triplets (thick green lines)
and quadruplets (thick orange line) of chains appear.

The ns(t∗) curves for s < s0 are plotted with thin lines of various
colors. The ns(t∗) curves between s0 and lengths of chain pairs (35,
27, 21) are plotted with thin brown lines. The ns(t∗) curves between
the pairs and triplets are plotted with thin yellow lines. The ns(t∗)
curves above the triplet lengths are plotted with thin gray lines. As
ρ∗ increases, the number of long chains increases. In the case of ρ∗
= 0.2, the gray curves dominate (next to those that “jump out”).
This indicates that, beyond the overarching chains and their pairs,
triplets, and so on, the dominant configurations are shorter chains
attached to triplets, quadruplets, and so on.

These aggregates of chains were also analyzed in previ-
ous Brownian dynamics simulations.4,6,10,12,15,23,46,47 Fernández-
Toledano et al.,46 for example, computed connectivity defined as
the distribution of mutual orientation of particles in contact. For
a monodisperse system, they identified peaks at angles 0○ (parti-
cles inside the same chain) and ≈60○ (particles in two neighbor-
ing chains), while they found a profoundly different behavior for
polydisperse systems.

IV. CONCLUSIONS AND FUTURE PROSPECTS
Our Brownian dynamics simulations revealed several interest-

ing phenomena regarding the dynamics of chain formation in ER

fluids. Compared to earlier simulation studies, our results provide
additional insight into fine details of chain formation by monitoring
individual chains of different lengths. In addition, our study is a sys-
tematic analysis over a wide parameter space with special attention
to the characteristic times that are associated with the dynamics of
chain formation. While we focused on the approximate model where
the particle–particle polarization was ignored (in accordance with
earlier studies with one notable exception41), we report preliminary
results for the case when the mutual particle–particle polarization is
present. While results obtained from the approximate method can
be suitable for a qualitative description of the phenomena, particle–
particle polarization may be needed for a more quantitative analysis.
It is crucial, for example, for modeling the increase in the relative
permittivity as a result of chain formation.

The parameter space that we considered corresponds to cases
where the system is fluid-like (not frozen), quickly evolving (small
friction coefficient), and relatively small (N = 256). All these served
our purpose of performing a large bulk of simulations and provid-
ing a systematic study of the behavior of the system in dependence
of the various parameters. We did our best, however, in providing
insight into how our results can be extrapolated to parameters out-
side the parameter space simulated here. In future studies, however,
those parameter sets can be considered if they prove to be related to
specific experimental situations under focus.

The behavior of the system under stress is a case that is crucially
relevant from a technological point of view. This is also on our list.
Obviously, there is a lot to do in order to understand the microscopic
level behavior of the ER devices.
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