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Abstract 
The side relief faces of the monolithic involute gear hob are machined through relieving. The resulting 
surfaces are bevel helical surfaces in which the side cutting edges result from the intersection of these 
with the helical rake face. Theoretically, the gear hob is derived from an involute worm. Re-
sharpening decreases the diameter of the hob, thus the edges became closer to the axis, and as a conse-
quence they will be situated on a smaller worm than the original. The present paper analyses the devia-
tion of the re-sharpened gear hob’s carrying worm from the theoretically perfect involute worm whose 
characteristic dimensions were adjusted considering the re-sharpened gear hob characteristic diame-
ters. It was proven that the evolution of the errors is significantly different from that described in the 
literature. Thus, increasing the new gear hob diameters in comparison with the calculated dimensions 
is unnecessary, because it cannot reduce the error to half with this procedure. The mathematical model 
was built up accepting that the edges result from the intersection of an involute worm with a helical 
rake face and the side relief faces result from the rototranslation of the edges on a bevel helix leading 
curve dressed by the relieving parameter. 
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1. The Model of the Gear Hob’s 
Generating Worm 

According to the majority of opinions giv-
en in the literature [1-8], the gear hob’s 
generating worm is considered in the pre-
sent paper to be an involute worm. Mathe-
matically, the helical surfaces of the invo-
lute worm can be generated using two dif-
ferent procedures [1, 3, 4, 5, 6, 8]: roto-
translating generating lines, or roto-
translating involutes over a cylindrical helix 
leader curve. The present model will make 
use of generating lines. In order to obtain 

the greatest possible simplification of the 
right sides of the equations, generating lines 
motion will start from a particular position 
that differs from the position of the real 
cutting edges in the manufacturing process 
[1, 3, 4, 5]. Figure 1. shows the basic cir-
cle’s involute curves and the corresponding 
generatrix lines. If axis z is oriented from 
left to right, generatrix 21AA  producing 
involute curve 1CA will mesh the right 
worm surface. Similarly, generatrix 21BB  
describing the involute 1DB will mesh the 
left worm surface. The definition of left and 
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right side is made for the tooth. The inclina-
tion angle bλ of the generatrix is equal to 
the inclination angle of the basic helix line. 
The pressure angle otα can be computed 
from the inclination angle 0λ  of the pitch 
helix line, the normal module nm  and the 
number of teeth of the worm i, using the 
equations of the involute geometry [9]. In 
the present paper the generating worm has 
only one tooth.  

The xyz  frame is attached to the worm. 
Axis y is the symmetry axis of the radial 
section. It is easy to remark that generatrix 
lines can be rotated from the basic position 
(Figure 1.) in any arbitrary position, re-
specting the condition of tangency to the 
basic helix.  

The computing and the formulas can be 
essentially simplified if – exploiting the 
property mentioned before – planes  
( )21AAA  respectively ( )21BBB  containing 
the generating lines and tangents to the 
basic cylinder are roto-translated till they 

become parallel and both perpendicular to 
axis y. Generating line 21AA  turns in *

2
*
1 AA  

and 21BB  in *
2

*
1 BB . The parameters of the 

roto-translation are the axial pitch 

0cosλ
π nm

axπ =  and the rotation angle t02 απ − . 

The parametric equations of the generat-
ing lines can be written using the geomet-
rical relations shown in Figure 2: 
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Here the parameter j is assigned to -1 for 
the left side and to +1 for the right side of 
the worm tooth.  
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Figure 1. The radial section of the involute worm and the worm surface generating lines  
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Figure 2. The generating lines of the involute worm surfaces rotated in the starting position. 

The surfaces of the worm tooth are ob-
tained if generatrix lines are attached first to 
a mobile frame mmm zyx , initially in cover-
ing with xyz, followed by a roto-translation 
of parameter axp  about axis z. A detailed 
presentation is given in [8]. It is useful to 
keep the rotation parameter v on positive 
values, thus the roto-translation matrix 
takes the following form: 
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The equations of the generating worm sur-
faces are obtained using expressions (1) and 
(2) within the matrix equation of the trans-
formation [3, 4]: 
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Parameter bh  in the expression of the z-
coordinate signifies the distance of points 

*
2A  respectively *

2B  from the plane ( )xy  
(Figure 2). Its value results from geometric 
dependencies of the basic helix line and the 
involute: 
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Equations (3) present an advantageous 
form because parameters u and v are sepa-
rated. This particularity confers a signifi-
cant advantage when computing the inter-
section of helical surfaces with the rake 
face. 

2. The side relief faces of the invo-
lute gear hob. 

2.1. The relief face generating edges  
The relief face generating edges are the 

intersections of the theoretical (designed) 
involute worm and the rake face. This latter 
is also a helical surface whose pitch helix 
line is perpendicular to the pitch helix line 
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of the involute worm. As a consequence, 
the sense of its helix is opposite to that of 
the worm, but the tangent line to its pitch 
helix forms the angle 0λ  with the axis z. 
The rake face generating line intersects axis 
z staying perpendicular to it. Let’s suppose 
that the start position of the generating line 
forms angle ε−  with axis x. This ensures 
the possibility of moving the rake face in 
any desired position relative to the involute 
worm. The basic position is given by the 
particular value 0=ε  of the position pa-
rameter. The general equation of the rake 
face can be written on the basis of Figure 3:  
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The helix pitch Cp  of the rake face is 
computed from the condition of perpen-
dicularity of the pitch helices [8]. 

In the following, the implicit form of the 
equation of rake face will be used: 

02arctg =++ επ z
πx

y

C
   (6) 

As defined before, the generating curves 
of the side relief faces are obtained by inter-
secting the involute worm’s surfaces with 
the rake face. Introducing the parametric 
functions (3) in equation (6) and priming v 
depending on u the edge defining function 
becomes as follows: 
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Finally, the parametric equations of the 
generating edges are given by expressions 
(3) if parameter v is replaced by function (7). 
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Figure 3. The rake face of the gear hob 

2.2. The equations of the side relief 
faces 

The side relief faces are generated by 
passing the generating edges over a conical 
helix leading line which is defined by the 
relieving depth k and the axial pitch axp . 
The detailed model of the side relief face 
meshing is described in [3, 4, 8]. Using the 
transformation given in [8], the parametric 
equations of the side relief face result as 
follows:  
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3. The meshing worm of the re-
sharpened gear hob 

If the theoretical generating edges (3) with 
(7) are roto-translated about axis z follow-
ing a leader helix with axial pitch axp  these 
will re-mesh the theoretical worm surfaces 
from which they originate.  Geometrically 
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the re-sharpening can be defined as the ro-
tation of the rake face about the axis z with 
an angle ε  whose value increases with the 
number of re-sharpenings. Due to the coni-
cal helix effect, the new edges move closer 
to the axis with the distance εδ πε 2

mzk= . As 

a consequence, they will fit a worm whose 
characteristic diameters decrease with εδ2 . 
The decreasing of the diameter under con-
stant axial pitch leads to the increasing of 
the pitch helix angle.  

In order to compute the re-sharpened edg-
es, the side relief face parametric functions 
(8) will be inserted in the rake face implicit 
equation (6). After elementary trigonomet-
ric transformations an implicit equation is 
obtained in unknowns ϕ,u  that meets the 
following form:  
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Equation (9) is built up by use of the fol-
lowing functions: 
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It is to be observed that equation (9) is 
transcendent regarding both variables and 
as a consequence it can be only numerically 
solved. 

The solving procedure consists in priming 
the value of angle ϕ for a set of N discrete 
values of parameter u. First of all let’s re-
mark that in using the first two parametric 
expressions of the involute worm (3) the 

distance of an arbitrary surface point to the 
axis z of the helix can be primed as 

22 uRb +=ρ    (11) 

Only the subset of surface points situated 
between the addendum and the dedendum 
cylinder are considered. Thus, using equa-
tion (11) the limits of u became: 

2222
babf RRuRR −≤≤−  (12) 

Now let’s define an equidistant division 
over the compact set of radii [ ]af RR , : 
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Using formula (11) the equidistant radius 

division (13) generates a u division. Solving 
equation (9) for each 1..0, −= Nlul  N or-

dered pairs ( ) 1..0,, −= Nlu ll ϕ  are ob-
tained. Introducing these in equations (8) of 
the side relief faces a set of 3N coordinates 
result. Pairing the resulted x, y, z values 
with the corresponding lu  values the edges 
can be written as cubic spline fitting func-
tions depending only on parameter u: 
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The meshing worm of the new edges be-
comes the generating surface for the ma-
chined gear. The equations of the meshing 
worm result from the following matrix 
equation: 

( )

( )
( )
( )



































 −

=

11000
100

00cossin
00sincos

,
2 uS

uS
uS

w
ww
ww

wu
z

y

x

pax
p

r  

(15) 



M.Máté, D. Hollanda 

 80 

O

x

y

M
L

B

A

θ0 θy

α’0t

αy ϕy

K

R’0

Ev.Pr.

 
Figure 4.The definition of the deviation of the generating surface

4. The re-sharpened gear hob fit-
ting ideal involute worm  

As a consequence of the re-sharpening the 
pitch radius decreases to 

eRR δ−= 0
'
0   (16) 

The normal module must be kept constant 
(theoretically it varies due to re-sharpening 
[4]) thus the inclination angle of the pitch 
helix turns in  

'
0

'
0 2

sinarc
R

mn

π
πλ =  (17) 

Using the new pitch radius and pitch helix 
angle, the basic circle radius and the invo-
lute pitch pressure angle can be computed: 

'
0

0'
0 sin

tgarctg
λ

a
a n

t =  (18) 

'
0

'
0

' cos tb RR α=    (19) 

5. The computing of the deviation 
Let’s define the deviation as the distance 
between the radial sections of the meshing 
worm and the ideal involute worm of the re-
sharpened gear hob. The geometrical for-
mulation of the definition is shown in Fig-
ure 4. It is evident that the ideal involute 
worm radial section is an involute that it 
intersects the radial section curve of the 
meshing worm on the pitch circle. The dis-
tance is measured in normal direction to the 
involute, thus the measuring direction is a 
tangent to the basic circle. 

The radial section of the meshing worm 
results from expanding matrix equation (15) 
followed by zeroing coordinate z: 
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Replacing w in the parametric functions of 
the coordinates x, y with the function ( )uw  
the meshing worm’s radial section becomes 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
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The value of parameter u for the pitch radius 
results from the equation 

( ) ( ) ( ) 0222'
0 =−− uSuSR yx   (22) 

The root of (22) will be implemented in ex-
pressions (21). The obtained x and y values 
are the coordinates of point K, defining a po-
sition vector having the polar angle 

( )
( )0

0
0 arctg

uz
uy

=θ    (23) 

It should be mentioned that the present 
computing of angle 0θ is made considering 
the values of the arc tangent function on a 
symmetric interval comprising double peri-
od [ ] { }22 ;, ππππ −¬− . If point K is situated in 
the III or the IV quadrant, the value of the 
polar angle is negative, otherwise it be-
comes positive.  

Let’s consider an arbitrary point M on the 
meshing worm’s radial section and a tan-
gent line to the basic circle, denoted MB. 
This tangent line intersects the ideal invo-
lute passing through K at point L. The polar 
angle of position vector OM is computed 
similarly to (23): 

( )
( )M

M
y uz

uyarctg=θ   (24) 

The difference in lengths of tangent seg-
ments KA and LB – as it results from the 
mathematical definition of the circle’s invo-
lute – is equal to the basic circle 
arc ybRAB ϕ'= . The expression of angle 

yϕ can be deduced using synthetic geomet-

ric properties resulting from figure 4. It can 
be written that: 

( )'
00

'
arccos ty

b
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R
aθθϕ +−+=   (25) 

The angle yα is primed using the orthogo-
nal triangle BOM. Finally, the expression of 
the deviation can be computed involving 
expressions (23,.., 25) in the following for-
mula: 

( )ytybR ϕαα −−=∆ '
0

' tgtg  (26) 

The sign of the deviation shows the rela-
tive position of the meshing and the ideal 
involute worm. If the deviation is positive 
then the involute curve falls in the interior 
of the meshing worm’s section, thus the 
tool eliminates more material from the tooth 
gape than necessary and as a consequence it 
produces a small and acceptable undercut of 
the tooth base and also a crowning on the 
addendum segment. If the deviation is 
negative, then the tool meshes a thinner 
tooth gap while the involute surface re-
mains covered by the allowance rest. 

5. Numerical simulation 
The mathematical model presented in the 
previous chapters was tested on gear hobs 
with one thread, °= 200nα normal involute 
pressure angle, and mm5=nm  normal 
module. Gear hobs were studied with pitch 
helix inclination angle set at °= 201λ , 
and0 °= 302λ . In the first case the teeth 
number matches 121 =mz , while in the sec-
ond case 102 =mz . The value of the reliev-
ing parameter was computed considering 
the top relief angle value set on °= 8Vα . 
While designing a gear hob, the literature 
recommends the increasing of its character-
istic diameters corresponding to the half of 
the re-sharpening reserve. This reserve is 
considered equal to the half of the angular 
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pitch. As a result the increasing of the char-
acteristic radii must match the Archimedean 
spiral polar radius variation for a polar an-

gle of
mz

π
2
1 . It can be written that 

422
1 kzk

z
m

m
=

π
π    (27) 

It is to be pointed out that the real edges of 
the new gear hob are obtained from equa-
tions (9) by setting the ε  angle value 

at
mz2

π− . 

The computation of the deviation was real-
ized for 4 states of wear. For more clarity 
the wear state was primed in percent. The 
states considered in this simulation corre-
spond to 0, 25, 75, and 100%-of wear, The 
corresponding ε  values are: 

{ }
mmmm zzzz 2442 ;;; ππππε −−∈  

Here 0=ε  is omitted until it corresponds 
to a 50% wear state, where characteristic 
diameters of the gear hob are equal to those 
of the theoretical generating worm and as a 
conclusion the deviation is zero by defini-
tion. 

The repartition of the deviations are pre-
sented in Figures 5-12.  

Analyzing simultaneously the deviations 
presented in the Figures 5-8 it can be con-
cluded that their position and values depend 
on the side of the edge and the degree of 
wear.  

It is interesting that the deviation curves in 
case of a new gear hob are identical for the 
left and the right side edges. 

This results from Figure 5. where the 
graphic shown below indicates the differ-
ences of deviations recorded on the left and 
right edges. The magnitude here indicates 
the numerical approximation error.  

Figures 6. and 7. show deviations corre-
sponding to wear statuses situated on the 
opposite sides of the ideal status, and the 

25% and the 75% wear. It can be observed 
that the sense of curvatures changes. It 
should also be noted that the deviation on 
the right side is significantly greater than on 
the link side, but also that due to their mag-
nitude, this is negligible. On the right edge 
the deviation is negative for radii less than 
the pitch radius, at 25% of wear, and posi-
tive otherwise. If the wear status reaches 
75% then the sense of the repartition is in-
verted. Between the limits of 75% and 
100% wear the repartition of the deviation 
keep their characteristic, but the values in-
crease to twice.  

Figures 9-12 show the repartition of the 
deviations in the case of a gear hob having 
a 3° pitch helix inclination. It can be ob-
served that all characteristics and evolution 
of the deviation functions are identical with 
those deduced for the 2° inclined pitch helix.  

Here the deviation of the new hob reaches 
10mm that is inadmissible. In contrast to 
this, the full wear status corresponds to a 
maximal deviation of only 3 microns which 
can be accepted. 
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Figure 5. Deviation in the case of new gear hob 



The Deformation of the Gear Hob’s Generating Surfaces Due to the Re-Sharpening 

 83 

∆
 [µµ]

zµ=12
λ0= 2° 

65 70 75

0

0.2

-0.2

-0.4
ρ [µµ]

Left

Right

25%

 
Figure 6. Deviation in the case of 25% wear 
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Figure 8. Deviation in the case of 100% wear 
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Figure 9. Deviation by a new gear hob 
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Figure 10. Deviation in case of 25% wear 
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Figure 11. Deviation in the case of 75% wear 
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Figure 12. Deviation in the case of 100% wears 

6. Conclusions 
The numerical investigation of the gear 

hob’s mathematical model makes it possi-
ble to formulate some conclusions regard-
ing the construction and design of mono-
lithic gear hobs.  

First it is necessary to emphasize that de-
spite the fact that the ideal status is situated 
on the middle of the re-sharpening reserve 
e.g. between 0% and 100% of wear, the 
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deviations are significantly higher before 
the ideal status than after. This conclusion 
is supported through the comparative inves-
tigation of figures 6, 7, 8, and figures 10, 11 
and 12. The deviation of the 25% worn and 
re-sharpened 2° pitch helix inclined gear 
hob is nearly 6 times lower in comparison 
with its new status. In the case of the 3° 
pitch helix gear hob this scale increases to 
almost 20, which is significant!  

In the wear interval of 25%-75% the devi-
ation values remain under one micron. It 
can be concluded that they have only theo-
retical significance. 

Even in the case of total wear status the 
re-sharpened gear hobs show acceptable 
deviation values in comparison with the 
ideal involute gear suited to the diminished 
diameters. 

Considering the particularities of the devi-
ation evolution with wear status, it can be 
concluded that the classical design of the 
gear hob - where the ideal elements are set 
on the middle of the wear reserve - is not 
the optimal solution. The conception re-
garding the dimension of the new gear hob 
must be renewed. The re-sharpening reserve 
must be distributed about the ideal dimen-
sions in such way that the deviations should 
not exceed the admissible value. The model 
can be used for the computing of the limits 
of variation regarding the pitch diameter. 

When the difference between the theoreti-
cal and the real grinding wheel meshed re-
lief face is significant, the variation of the 
deviation functions can be slightly different. 
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