
Műszaki Tudományos Közlemények vol. 9. (2018) 83–86.
https://doi.org/10.33894/mtk-2018.09.16
Hungarian: https://doi.org/10.33895/mtk-2018.09.16,
http://eda.eme.ro/handle/10598/30297

OVERVIEW OF MODERN NOSQL DATABASE
MANAGEMENT SYSTEMS. CASE STUDY: APACHE
CASSANDRA

Katalin FERENCZ

Sapientia Hungarian University of Transylvania, Faculty of Technical and Human Sciences, Department of
Electrical Engineering, Târgu-Mureş, Romania, ferenczkatalin@yahoo.com

Abstract
The wide spread of IoT devices makes possible the collection of enormous amounts of sensor data. Tradition-
al SQL (structured query language) database management systems are not the most appropriate for storing
this type of data. For this task, distributed database management systems are the most adequate. Apache Cas-
sandra is an open source, distributed database server software that stores large amounts of data on low-coast
servers, providing high availability. The Cassandra uses the gossip protocol to exchange information between
the distributed servers. The query language used is the CQL (Cassandra Query Language).
In this paper we present an alternative solution to traditional SQL-based database management systems -
the so called NoSQL type database management systems, summarize the main types of these systems and
provide a detailed description of the Apache Cassandra open source distributed database server installation,
configuration and operation.

Keywords: database, NoSQL, distributed, Cassandra, CQL.

1. Introduction

The most important feature of today's rapidly
evolving world is keeping track of the surround-
ing environment, collecting, storing and process-
ing logged information. We use different intelli-
gent sensors and tools connected to the Internet
to map our environment. They are constantly
sending data that is stored somewhere in the
"cloud" from the users' point of view. However,
for professionals developing such applications,
the effective design and practical implementation
of "cloud storage" is a major challenge.

During our research, the main goal is to set up
a distributed database system with multiple com-
puters and logging sensor data for various IoT
devices. In practice, we also want to demonstrate
that an IT system can be developed that is capable
of the storageing and appropriate processing of
large amounts of data.

2. Database management systems

Before the fast development phase of IoT was
launched, the most common database manage-
ment systems were SQL-based systems. However,
this development also brings the development of
database management systems. So in the early
2000s began the development of the NoSQL data-
bases and NoSQL (Not Only SQL) query language
that differs from SQL-based databases in storing
and querying data. The NoSQL can be referred to
as a shared database and solves the problem of
SQL databases; that data can only be stored on
a single computer, and gives the opportunity to
store it in the cloud. It is a very important feature
that they have a dynamic schema for unstruc-
tured data and can be scaled horizontally, which
means that we can connect new machines and
servers to handle better the increased traffic.

Ferencz K. – Műszaki Tudományos Közlemények vol. 9. (2018)84

In the case of NoSQL databases there are four
different methods that can be used to store the
data:
–– key/value store, which stores the keys and their
assigned values;

–– document store, where semi-structured data
can be stored;

–– column store, where the data columns are
stored one after the other inside a table;

–– graph store, in which the data can be well-mod-
elled as a graph and the data are linked with an
indefinite number of connections.

With the general spread of the Internet, and
with the emergence of sensors, we live in a Big
Data period, when large numbers of users can
create and access huge amounts of information.
This is why Big Data applications present three
challenges for which NoSQL technology tries to
provide the solution. This problem is commonly
referred to as 3V that stands for: volume – veloc-
ity – variety.

NoSQL type systems give up immediate con-
sistency (consistency, contradiction-exemption)
because their main concept is to have more com-
puters assigned to a database. If a server fails, it
switches to another server, ensuring maximum
availability.

The CAP theory tries to describe the NoSQL
properties: consistency – availability – partition
tolerance. [1]

The most common NoSQL database manage-
ment systems used today are summarized in Ta-
ble 1.

Among the database management systems in-
cluded in the table, the Apache Cassandra data-
base management system is used in this research,
because it is widespread, open source, well-doc-
umented and has many APIs already developed.

3. Apache Cassandra
Apache Cassandra is an open-source distribut-

ed database server software, developed in the C/
C++ programming language, whose purpose is to
store large amounts of data on low-cost servers
and provide high availability. The development
of Cassandra, known as the developer of Amazon
DynamoDB, started with Avinash Lakshman and
Prashant Malik on Facebook, so it is not surpris-
ing that it follows the Amazon DynamoDB archi-
tecture and vision. The project is a member of the
Apache Incubator from March 2019. [3]

Cassandra supports the operation of clusters in
multiple data centers. The data model used in its
structure is a hybrid of keyvalue and column data
model. There are two key points for a Cassandra
system: the data partition and the data model.

Due to data security, data is stored on multiple
machines, so synchronizing data between the ma-
chines is very important.

The main features of Apache Cassandra are:
–– it is a distributed system: there are many com-
puters in the network and these are connected;

–– it is decentralized: this is a very important fea-
ture of Cassandra, because it distinguishes it
from other database management systems. Ac-
cordingly, it is not masters-slave based, there is
no Single Point Failure, so if a port is damaged,
the entire system will not collapse and the data
will be available. This is due to the fact that
there is a ring topology, there are data centers,
and every node within a data center has the
same value;

–– it is fault-tolerant: the data is stored on at least 3
computers and there is no data loss;

–– it has high availability;
–– it is flexible scalable: if you increase the burden
on a system and expand it, it can be done with-
out notification by adding a new node;

–– the linear scalability: if the number of nodes is
doubled, the database server’s permeability is
doubled;

–– tuneable consistency: at the expense of avail-
ability we can enhance consistency.

A Cassandra cluster can be made from multi-
ple physical computers and from multiple virtu-
al machines that are networked. Since there are

Name Data model Use

Cassandra

Hybrid of key-value
and column-oriened
models;
Cassandra query
language

CERN, eBay,
Netflix, GitHub

Redis Het of (key, value),
complex types

Twitter,
GitHub, Flickr,
Stack Overflow

Voldemort Complex key-values
com-pound objects LinkedIn

DynamoDB Document and
key-value models Amazon, BMW

Allegro Graph
RDF-Resource De-
scription Framework,
graph database

Stanford, IBM,
Ford, Siemens,
NASA

Memcached No replication and
persistence Wikipedia

Table 1. The most common NoSQL database manage-
ment systems [2]

Ferencz K. – Műszaki Tudományos Közlemények vol. 9. (2018) 85

other computers in the network, members of
the cluster will know which node belongs to the
cluster based on the information contained in the
configuration files. The cluster members use the
Gossip protocol to communicate with each other.
It also uses a different protocol to form the cluster
configuration: this is the Snitch that allows spec-
ifying which node belongs to the data center and
forms the cluster.

Once the cluster has been set up using Gossip
and Snitch protocol settings, in order for the sys-
tem to be fault-tolerant and have high availability,
it is necessary to define the location of the data so
it is necessary to determine which node or nodes
to store data in. For high availability, it is neces-
sary that the data be stored on multiple nodes.

Fault-tolerance and high availability mean that
we replicate the data, usually three replicas at
minimum. This means that we have calculated a
given token for the given partition key, which de-
termines which node will hold that partition, but
in the cluster ring the next (clockwise) two node
(if the replication factor is 3) will also store this
partition.

The Figure 1. shows that the client writes data
to the data center and that the B node is responsi-
ble for the data, so the 2 nodes next to it will also
store this data. Note that the client application
communicates with the F node, so that it is now
the coordinator, but it can communicate with any
other node, in that case the node would become a
coordinator as the nodes are equal.

Another important feature of Cassandra is that
we can control the consistency level to determine
how many replicas should succeed in writing or
reading. By default, you can have three values:
–– ONE: it is sufficient if one node feedback is sent;
–– ALL: each node must be answered;
–– QUORUM: the majority must answer.
 Immediate consistency is achieved if the sum of

writing and reading consistency levels is greater
than the replication factor.

Cassandra Query Language (CQL) is the primary
language that allows users to communicate with
the Apache Cassandra database. The easiest way
to interact with Cassandra is by using the CQL
shell, cqlsh. Using this, you can create keyspaces
and tables, insert new information, query tables,
and many other actions.

CQL offers a variety of built-in data types, in-
cluding collection types. In addition, it allows the
user to create their own unique data types.

4. Summary

As a direct result of our work, we have created
a knowledge base that allows easy learning of the
CQL query language, understand the operation of
the Cassandra NoSQL database management sys-
tem, and to create a few node-based Cassandra
clusters.

Using this documentation developed for educa-
tional purposes it can be easy to customize data-

Figure 1. Cassandra replication

Ferencz K. – Műszaki Tudományos Közlemények vol. 9. (2018)86

base operations such as: creation, insertion and
querying, modifying, deleting data.

Future work includes the design and develop-
ment of an electronic circuit for IoT sensor data
acquisition and also the storage, visualization and
processing of these data.

References
[1] https://en.wikipedia.org/wiki/NoSQL
[2] N.Q.Mehmood, R.Culmone, L. Mostarda: Model-

ing temporal aspects of sensor data for MongoDB
NoSQL database, J Big Data(2017) 4:8

[3] http://cassandra.apache.org

