
Műszaki Tudományos Közlemények vol. 11. (2019) 43–46.
https://doi.org/10.33894/mtk-2019.11.07
Hungarian: https://doi.org/10.33895/mtk-2019.11.07
https://eda.eme.ro/handle/10598/31244

Numerical results for the general linear
complementarity problem
Zsolt Darvay,1 Ágnes Füstös 2

Babeș-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania
1 darvay@cs.ubbcluj.ro
2 fustosagi@yahoo.com

Abstract
In this article we discuss the interior-point algorithm for the general complementarity problems (LCP) intro-
duced by Tibor Illés, Marianna Nagy and Tamás Terlaky. Moreover, we present a various set of numerical
results with the help of a code implemented in the C++ programming language. These results support the
efficiency of the algorithm for both monotone and sufficient LCPs.

Keywords: interior-point algorithm, general linear complementarity problem, numerical results, sufficient
matrix, object-oriented programming.

1. Introduction
Linear complementarity problems (LCPs) can

be used to solve various practical problems. The
problem is defined by a matrix M, which describes
a linear relationship, but also a complementarity
condition must hold.

The LCP is ℕℙ-complete, so without some condi-
tions on M we cannot efficiently find the solution.
There are algorithms that solve the LCP in polyno-
mial time if the matrix M is positive semi-definite,
or if the matrix is P*(κ) (although in this case the
complexity also depends on κ), but no polynomi-
al algorithm for checking the P*(κ) property was
given.

Tibor Illés, Marianna Nagy and Tamás Terlaky
[1, 2, 3] provided a method for modifying the
interior-point algorithms so that the general lin-
ear complementarity problem could be solved in
polynomial time. This means that we calculate an
approximate solution or conclude that the P*(κ)
property doesn’t hold.

We implemented the algorithm in the C++ pro-
gramming language.

2. Description of the LCP
In case of the LCP we want to find vectors

x,  s  ϵ ℝn that satisfy:

(1)

where q ∊ ℝn, M ∊ ℝn×n and xs denotes the compo-
nent-wise product of vectors x and s.

3. The P*(κ) property
The class of P*(κ) matrices was first introduced

by Kojima et al. [4] as a generalization of positive
semi-definite matrices.

A matrix M ∊ ℝn×n is P*(κ) if the following condi-
tion holds for any value of x ∊ ℝn:

(2)

A matrix M ∊ ℝn×n is P* if it is P*(κ) for some pos-
itive κ, i.e.

4. The P0 property
A matrix M ∊ ℝn×n is P0 if it does not have a prin-

cipal minor, which is negative.

Darvay Zs., Füstös Á. – Műszaki Tudományos Közlemények 11. (2019)44

A matrix M ∊ ℝn×n is P0 if and only if

	

is nonsingular for any positive diagonal matrices
X, S ∊ ℝn×n.

5. Other relations used in the algorithm
The algorithm follows the central trajectory and

determines the next point in each iteration using
a Newton step.

The system of equations, which defines the New-
ton step, is the following:

	 (3)

If M is a P0 matrix then the previous system
has a unique solution and the Newton step with
length α is given by the relations

x(α)=x+αΔx, s(α)=s+αΔs. 	 (4)

The distance from the central path is deter-
mined by the following proximity measure:

	 (5)

If the proximity measure exceeds a predeter-
mined upper bound (δc (xs, μ) < τ), then the ite-
rates are close to the central path. In this case, we
reduce the barrier parameter μ.

To approximate the local κ, we use the following
function in each step:

	 (6)

If, during an inner iteration, the decrease of the
proximity measure is not sufficient, i.e.

	 (7)

then the matrix, which defines the LCP is not a
P*(κ) matrix for the local κ. In this case, we cal-
culate κ for the new step direction vector Δx [1].

6. Stopping conditions
During the algorithm, we study several different

conditions. If one of these holds, then different
conclusions can be drawn. We study the follow-
ing:

1. The complementarity gap reaches a predefined
threshold: xT s < ϵ.

2. The new κ is not defined, i.e. there is no positive
product Δxi Δsi when calculating formula (2). In
this case, M is not a P* matrix.

3. The new κ exceeded the predefined κ̃ fupper
bound: κ(Δx) > κ̃ . In this case, M is not a P* (κ̃̃)
matrix.

7. The algorithm
We define the algorithm for the general LCP [1]

from the implementation point of view as follows:

Input: κ̃ > 0 upper bound for κ; τ ≥ 2 proximity pa-
rameter; ε >0 accuracy parameter; 0 < σ < 1 bar-
rier update parameter; (x0, s0) initial point, µ0 > 0
s.t. δc(x0s0 , µ) < τ.

Output: (x, s) the solution of the LCP or a message
confirming that the matrix is not P*(κ).

begin
 x := x0; s := s0; µ := µ0; κ := 0;
 while xTs > ε do begin
 µ = σ (xT s)/n;
 while δc(xs, µ) ≥ τ do begin
 calculate (∆x, ∆s) with a = µe – xs;
 if M is singular then
 return the matrix is not P0;

 end if
 ᾱ= maximumStep(x, s, µ);
 if δc

2(xs, µ) - δc
2(x(ᾱ) s(ᾱ, µ) < 5/(3(1+4κ)) then

 calculate κ(∆x);
 if κ(∆x) is not defined then
 return the matrix is not P* ;
 end if
 if (κ(∆x) > κ̃) then
 return the matrix is not P* (κ̃) ;
 end if
 κ = κ(∆x);
 end if
 x = x(ᾱ); s = s(ᾱ);
 end
 end
end.
The function for calculating the maximum step

size is given as follows:

function maximumStep(x, s, µ):

nr_it = 0;
while (δc(x(α/2) s(α/2), µ) < δc(x(α) s(α), µ) and

nr_it < 10) do begin
α=α/2;

Darvay Zs., Füstös Á. – Műszaki Tudományos Közlemények 11. (2019) 45

nr_it = nr_it + 1;
end
return α;

end
We implemented the algorithm in the C++ pro-

gramming language, using the code introduced in
the publication [5], within the Visual Studio inte-
grated development environment.

8. Numerical results
8.1. The "speed" of convergence based on
the changes of σ

In the implementation of the algorithm, µ is
calculated in each iteration using the formula
μ = σ (xT s) / n. Table 1. shows how the choice of σ
influences the number of iterations. We studied
the sufficient LCPs published on the webpage [6].
The authors of [7] were the first ones who pre-
sented numerical results to these sufficient LCPs.
The following notations are used in the table: M =
matrix, σ = sigma, O = number of outer iterations,
∑I = sum of all inner iterations, AI = average num-
ber of inner iterations.

The results are summarized in Table 2. The de-
crease of the parameter σ causes the decrease of
the total number of outer and inner iterations, but
the average number of inner iterations increases.

In the following section we analyze the lower
bound of the parameter κ.

Table 1. Results for sufficient LCPs

M σ O ∑I AI

HEF_10_01 0.15 7 24 3.429

0.4 13 26 2

0.6 23 46 2

0.9 115 115 1

HEF_10_02 0.15 7 19 2.714

0.4 13 26 2

0.6 23 46 2

0.9 115 115 1

HEF_20_01 0.15 7 23 3.286

0.4 13 28 2.154

0.6 23 46 2

0.9 115 115 1

HEF_20_02 0.15 7 18 2.571

0.4 13 27 2.077

0.6 23 46 2

0.9 115 115 1

Table 2. Results for monotone LCP

σ O ∑I AI

0.15 7 28 4

0.4 13 31 2.384

0.6 24 31 1.291

0.9 114 118 1.035

8.2. The exponential increase of the lower
bound of κ

The study of the following matrix was suggested
by Zsolt Csizmadia. In [9] the authors proved that
the matrix is sufficient, but the corresponding κ
parameter may increase exponentially depend-
ing on the size of the matrix.

Based on this matrix, we studied the LCP using
q= [0  1  …  n-1]T.

In the case of sufficient matrices, in general, we
cannot determine the value of the parameter κ,
but we can provide a lower bound for it. The algo-
rithm calculates the local value of κ for the given
iteration, based on formula (6). The maximum of
these gives a lower bound for κ.

The results are shown in Table 3.

Table 3. Increase of κ depending on the size of the ma-
trix

n σ κ

5 0.8 2.70815

10 0.8 347.535

20 0.8 1261800

9. Conclusions
We presented numerical results for the general

LCP introduced by Illés, Nagy and Terlaky. During
the implementation, a specific method for deter-
mining the maximum step length was introduced.

Below we present the results for the following
monotone LCP presented in article [8]:

Darvay Zs., Füstös Á. – Műszaki Tudományos Közlemények 11. (2019)46

The algorithm worked efficiently on sufficient
and monotone LCPs as well. In the case of the ma-
trix introduced by Zsolt Csizmadia we studied the
change of the parameter κ depending on the size
of the matrix.

Acknowledgement

The authors acknowledge the research support of
the Transylvanian Museum Society (EME).

References
[1] Illés T., Nagy M., Terlaky T.: A polynomial path-fol-

lowing interior point algorithm for general linear
complementarity problems. Journal of Global Op-
timization 47/3. (2010) 329–342.
https://doi.org/10.1007/s10898-008-9348-0

[2] Illés T., Nagy M., Terlaky T.: EP Theorem for Dual
Linear Complementarity Problems. Journal of Op-
timization Theory and Applications 140/2. (2009)
233–238.
https://doi.org/10.1007/s10957-008-9440-0

[3] Illés T., Nagy M., Terlaky T.: Polynomial Interior
Point Algorithms for General Linear Comple-
mentarity Problems. Algorithmic Operations Re-
search, 5. (2010) 1–12.

[4] Kojima M., Megiddo N., Noma T., Yoshise A.: A
Unified Approach to Interior Point Algorithms for
Linear Complementarity Problems. Lecture Notes
in Computer Science, 538, Springer Verlag, Ber-
lin, Germany. (1991)

[5] Darvay Zs., Takó I.: Computational comparison of
primal-dual algorithms based on a new software.
unpublished manuscript. (2012)

[6] Morapitiye S.: Sufficient Matrices. (accessed on 12
February 2019).
http://math.bme.hu/~sunil/su-matrices/

[7] Darvay Zs., Illés T., Povh J., Rigó P. R.: Predic-
tor-corrector interior-point algorithm for suffi-
cient linear complementarity problems based on a
new search direction. manuscript. (2019)

[8] Hock W., Shittkowski K.: Test Examples for Non-
linear Programming Codes. Lecture Notes in Eco-
nomics and Mathematical Systems 187. Springer,
Berlin (1981)
https://doi.org/10.1007/978-3-642-48320-2

[9] de Klerk E., E.-Nagy M.: On the complexity of com-
puting the handicap of a sufficient matrix. Math-
ematical Programmming Serie A 129. (2011)
383–402.
https://doi.org/10.1007/s10107-011-0465-z

https://doi.org/10.1007/s10898-008-9348-0
https://doi.org/10.1007/s10957-008-9440-0
http://math.bme.hu/~sunil/su-matrices/
https://doi.org/10.1007/978-3-642-48320-2
https://doi.org/10.1007/s10107-011-0465-z

