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abstract
In this article, we study the interior-point algorithm for solving linear complementarity problems, published 
by Xiaouje Ma, Hongwei Liu, Jianke Zhang and Weijie Cong from the implementation point of view. The al-
gorithm was implemented in C++ programming language, thus supporting the effectiveness of the method. 
Despite the fact that the theoretical results refer only to the monotone linear complementarity problem, 
practical testing showed that the algorithm also works well in more general cases.
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1. Introduction
various interior-point algorithms have been 

introduced [1,2,3] to solve linear optimalization 
problems, and which have proven to be effective. 
Some of the methods were generalized to linear 
complementarity problems (LCPs) [4], which are 
often used to solve engineering problems. There 
are two types of path-following interior-point 
algorithms, namely the short and long step ver-
sions. as it turns out the theoretical efficiency of 
short step algorithms is generally better, but the 
long step ones perform better in practice. ai [5] 
introduced the first large update algorithm for 
linear optimalization (aPF) which has the same 
theoretical complexity as the best short step 
methods.

ai and Zhang [6] generalized ai’s method to 
LCP. Ma, Liu, Zhang and Cong  [7] extended the 
above algorithm (aPF+) by introducing two dif-
ferent steps. They called the first one fast step and 
the second one safe step. Both work in the wide 
neighborhood specified by ai, but in the case of 
fast step, the analyzed neighborhood is modified 
by changing the parameters. In the following sec-
tions we investigate this algorithm and discuss 
the possibilities for its implementation. 

2. the description of the problem
The LCP can be formulated in the following way:

where q ϵ ℝn and M ∊ ℝn×n. Furthermore, we as-
sume that matrix M+MT is positive semidefinite, 
i.e. xT Mx ≥ 0 for any x ϵ ℝn. The matrix M and the 
vector q are given, and x, s are the variables of 
the problem.

Primal-dual interior-point methods have prov-
en to be very effective for solving LCPs.

We assume that Ƒ++ the set of feasible solutions 
of the LCP is nonempty:

The following set defines the central path,  
which is a basic concept for primal-dual interi-
or-point methods:

where xs denotes the componentwise product of 
x ϵ ℝn and s ϵ ℝn.

Other notations used in the paper are: xi-de-
notes the i-th element of the vector x ϵ ℝn; e is 



Darvay Zs., Orbán A. Sz. – Műszaki Tudományos Közlemények 11. (2019)48

the n-dimensional all-one vector; for any number   
a ϵ ℝn  a+ := max{a, 0} and  a– := min{a, 0}; ‖x‖ is 
the l2  norm, ‖x‖1 is the l1  norm. We extend the 
notations a+ and a– for vectors as well.

3. The modified algorithm
ai defined the wide  neighborhood for the aPF 

algorithm as follows:

where 0 < β < 1 and μ = (xT s) / n. For the aPF+ 
algorithm we need to introduce the following pa-
rameters:

assume that the pair of current iterates (x, s) be-
longs to the wide neighborhood Ɲ(τ, β). We use 
a fast step to solve the following system of equa-
tions:

 (1)

after determining Δxa and Δsa we try to calcu-
late the step size α, such that the new vectors 
x(α) = x + α Δxa and s(α) = s + α Δsa reside in the 
wider neighborhood Ɲ(τ, θβ + (1 - θ) βmax). This 
is achieved by slightly increasing the value of β, 
which is one of the defining characteristics of the 
aPF+ algorithm. The normalized duality gap is 
calculated using the formula μ(α)=(x(α)T s(α)) / n.

In [7] the authors intorduce a threshold val-
ue named κ and decide with the help of the in-
equality μ(α) ≤ κ μ if the safe step is needed. If 
the inequality holds, the new value of β will be  
θ β + (1 - θ) βmax . Otherwise, we take a safe step, 
such that the resulting points will be in the origi-
nal neighborhood N(τ,β). In case of a safe step, we 
solve the following system of equations:

  (2)

where  , 

λeT (τμe - xs)– + eT (τμe - xs)+ = 0. However, the spec-
ified pair (Δxp, Δsp) does not give the direction of 
the safe step, so we must also include (Δxa, Δsa). 
Unlike the article [7] we don’t work with a linear 
combination of directions (Δxa, Δsa) and (Δxp, Δsp), 

but we introduce a 0 < γ < 1 constant, which will 
be used for weighting the safe step. So the step of 
size α results in:

x(α) = x + α (γ Δxp + Δxa) and  
s(α) = s + α (γ Δsp + Δsa).

4. The algorithm

In the following we present the algorithm pub-
lished in [7], modified by us using the parameter γ. 

Input parameters: required precision  ε > 0,  
0 < β0 < βmax ≤ 1/3, τ < 1/2, 0 < θ ≤ 1/2, 0 < κ < θ,

γ ϵ (0,1) and the initial point (x0, s0) ϵ Ɲ(τ, β0).

(x, s) = (x0, s0);  β = β0;
while  xT s > ε do begin

Calculate (Δxa, Δsa) based on  (1).
fast step:
α = alphaFast(x, s, Δxa, Δsa, β, βmax)
x(α) = x + α Δxa; s(α) = s + α Δsa;
μ(α) = (x (α)T s(α)) / n;
if μ(α) ≤ κ μ then

β = θ β + (1 - θ) βmax;
else begin

safe step:
Calculate (Δxp, Δsp) based on  (2).
α = alphaSafe(x, s, Δxa, Δsa, Δxp, Δsp, β);
x(α) = x + α (γ Δxp + Δxa ); 
s(α) = s + α (γ Δsp + Δsa); 
μ(α) = (x(α)T s(α)) / n;

end if
(x, s) = (x(α), s(α)); μ = μ(α);

end.

We mention that functions alphaFast and  
alphaSafe calculate the step length, such that the 
pair of vectors (x(α), s(α)) will be in  neighbor-
hoods Ɲ (τ, θ β + (1 - θ) βmax) and Ɲ (τ, β).

5. Implementation 

We implemented the algorithm in the C++ pro-
gramming language, using the visual Studio de-
velopment environment and the code introduced 
in [8]. 

During the implementation of both steps we 
faced the question of how the maximum step-size 
can be determined so that the obtained iterates 
remain in the wide neighborhood. 
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The best step-size α can be computed by solving 
the optimalization problem min μ(α), (x(α), s(α)) ϵ 
Ɲ(τ,β), 0 < α ≤ 1 in each iteration [7].

Instead of this we calculated the step-size  as 
follows: first we determined the maximum step 
length, which satisfies the feasibility conditions. 
Then we checked whether the new iterates were 
in the neighborhood. If the condition was not met, 
we halved the step and checked again whether 
the obtained points were in the neighborhood. 
We repeated this procedure until the correspond-
ing step-size was obtained.

6. numerical tests
The algorithm was tested on two monotone 

LCPs.
The first is the following (lcp01, see [9]):

The second LCP’s matrix can be found in [10]. 
The problem, which was investigated by us is the 
following (lcp02): 

n = 10, q = [1, 5, 3, 6, 1, -7, 1, 8, 9, 1]T.

6.1. Analyzing the change of θ
at each iteration of the algorithm, we change 

the neighborhood of the central path, which is 
characterized by the parameter β. Its value may 
vary between a predetermined lower and upper 
bound. The modification is made using parame-
ter θ, which is positive and does not exceed 1/2 
(see table 1. and 2.).

We can observe that using lower values of θ gen-
erally results in a lower number of iterations.

6.2. Analyzing the change of γ

In the safe step, we introduced the parameter 
γ, which is responsible for  weighting  (Δxp, Δsp). 
Thus, we can modify the new iterates x(α) = x + 
α (γ Δxp + Δxa) and s(α) = s + α (γ Δsp + Δsa). In the 
following, we study the effect of changing the pa-
rameter γ on the results determined by the algo-
rithm.

It can be stated that if γ is very small then the 
effect of the safe step will be reduced so that more 
iterations are performed (see table 3. and 4.).

7. conclusions

In this article we investigated the algorithm of 
Ma, Liu, Zhang and Cong, which uses two differ-
ent steps to achieve the theoretical efficiency of 
short-step algorithms.

We modified the algorithm from the implemen-
tation point of view, by weighting the safe step 
using a parameter γ.

The efficiency of the algorithm was proved us-
ing a code written in the C++ programming lan-
guage. In the case of various monotone LCPs, we 
analyzed the change in the number of iterations 
depending on the θ and γ parameters.

 Despite the fact that the algorithm applies to 
monotone LCPs, we also achieved good results 
for some test problems, which does not fulfill this 

table 1. Results for  lcp01

number of the 
test

θ ϵ (0, 1/2] Iterations

1 0.04 19

2 0.07 20

3 0.2 20

4 0.5 20

table 2. Results for  lcp02

number of the 
test

θ ϵ (0, 1/2] Iterations

1 0.04 30

2 0.07 31

3 0.2 32

4 0.5 33

table 3. Results for lcp01

number of the 
test

γ ϵ (0, 1) Iterations

1 0.9 20

2 0.6 20

3 0.3 21

4 0.01 21

table 4. Results for lcp02

number of the 
test

γ ϵ (0, 1) Iterations

1 0.9 32

2 0.6 32

3 0.3 33

4 0.01 34
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requirement. We solved the test problems pub-
lished in [11] with matrices of size 10 × 10 and 
20 × 20 in, at most, 24 iterations. We mention that 
the first numerical results for the problems pre-
sented in [11] were published in [12].

accordingly, in the future it is worth analyzing 
the theoretical efficiency of the algorithm for this 
more general class of matrices.
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