
Műszaki Tudományos Közlemények vol. 11. (2019) 47–50.
https://doi.org/10.33894/mtk-2019.11.08
Hungarian: https://doi.org/10.33895/mtk-2019.11.08
https://eda.eme.ro/handle/10598/31245

ImplementatIon of an InterIor-poInt algorIthm
for lInear complementarIty problem workIng In
a wIde neIghborhood

Zsolt Darvay 1, attila-Szabolcs Orbán2

Babeș-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca, Romania
1 darvay@cs.ubbcluj.ro
2 orban.attila@yahoo.com

abstract
In this article, we study the interior-point algorithm for solving linear complementarity problems, published
by Xiaouje Ma, Hongwei Liu, Jianke Zhang and Weijie Cong from the implementation point of view. The al-
gorithm was implemented in C++ programming language, thus supporting the effectiveness of the method.
Despite the fact that the theoretical results refer only to the monotone linear complementarity problem,
practical testing showed that the algorithm also works well in more general cases.

keywords: interior-point algorithm, linear comlementarity problem, wide neighborhood, path-following al-
gorithm, object-oriented technique.

1. Introduction
various interior-point algorithms have been

introduced [1,2,3] to solve linear optimalization
problems, and which have proven to be effective.
Some of the methods were generalized to linear
complementarity problems (LCPs) [4], which are
often used to solve engineering problems. There
are two types of path-following interior-point
algorithms, namely the short and long step ver-
sions. as it turns out the theoretical efficiency of
short step algorithms is generally better, but the
long step ones perform better in practice. ai [5]
introduced the first large update algorithm for
linear optimalization (aPF) which has the same
theoretical complexity as the best short step
methods.

ai and Zhang [6] generalized ai’s method to
LCP. Ma, Liu, Zhang and Cong [7] extended the
above algorithm (aPF+) by introducing two dif-
ferent steps. They called the first one fast step and
the second one safe step. Both work in the wide
neighborhood specified by ai, but in the case of
fast step, the analyzed neighborhood is modified
by changing the parameters. In the following sec-
tions we investigate this algorithm and discuss
the possibilities for its implementation.

2. the description of the problem
The LCP can be formulated in the following way:

where q ϵ ℝn and M ∊ ℝn×n. Furthermore, we as-
sume that matrix M+MT is positive semidefinite,
i.e. xT Mx ≥ 0 for any x ϵ ℝn. The matrix M and the
vector q are given, and x, s are the variables of
the problem.

Primal-dual interior-point methods have prov-
en to be very effective for solving LCPs.

We assume that Ƒ++ the set of feasible solutions
of the LCP is nonempty:

The following set defines the central path,
which is a basic concept for primal-dual interi-
or-point methods:

where xs denotes the componentwise product of
x ϵ ℝn and s ϵ ℝn.

Other notations used in the paper are: xi-de-
notes the i-th element of the vector x ϵ ℝn; e is

Darvay Zs., Orbán A. Sz. – Műszaki Tudományos Közlemények 11. (2019)48

the n-dimensional all-one vector; for any number
a ϵ ℝn a+ := max{a, 0} and a– := min{a, 0}; ‖x‖ is
the l2 norm, ‖x‖1 is the l1 norm. We extend the
notations a+ and a– for vectors as well.

3. The modified algorithm
ai defined the wide neighborhood for the aPF

algorithm as follows:

where 0 < β < 1 and μ = (xT s) / n. For the aPF+
algorithm we need to introduce the following pa-
rameters:

assume that the pair of current iterates (x, s) be-
longs to the wide neighborhood Ɲ(τ, β). We use
a fast step to solve the following system of equa-
tions:

 (1)

after determining Δxa and Δsa we try to calcu-
late the step size α, such that the new vectors
x(α) = x + α Δxa and s(α) = s + α Δsa reside in the
wider neighborhood Ɲ(τ, θβ + (1 - θ) βmax). This
is achieved by slightly increasing the value of β,
which is one of the defining characteristics of the
aPF+ algorithm. The normalized duality gap is
calculated using the formula μ(α)=(x(α)T s(α)) / n.

In [7] the authors intorduce a threshold val-
ue named κ and decide with the help of the in-
equality μ(α) ≤ κ μ if the safe step is needed. If
the inequality holds, the new value of β will be
θ β + (1 - θ) βmax . Otherwise, we take a safe step,
such that the resulting points will be in the origi-
nal neighborhood N(τ,β). In case of a safe step, we
solve the following system of equations:

 (2)

where ,

λeT (τμe - xs)– + eT (τμe - xs)+ = 0. However, the spec-
ified pair (Δxp, Δsp) does not give the direction of
the safe step, so we must also include (Δxa, Δsa).
Unlike the article [7] we don’t work with a linear
combination of directions (Δxa, Δsa) and (Δxp, Δsp),

but we introduce a 0 < γ < 1 constant, which will
be used for weighting the safe step. So the step of
size α results in:

x(α) = x + α (γ Δxp + Δxa) and
s(α) = s + α (γ Δsp + Δsa).

4. The algorithm

In the following we present the algorithm pub-
lished in [7], modified by us using the parameter γ.

Input parameters: required precision ε > 0,
0 < β0 < βmax ≤ 1/3, τ < 1/2, 0 < θ ≤ 1/2, 0 < κ < θ,

γ ϵ (0,1) and the initial point (x0, s0) ϵ Ɲ(τ, β0).

(x, s) = (x0, s0); β = β0;
while xT s > ε do begin

Calculate (Δxa, Δsa) based on (1).
fast step:
α = alphaFast(x, s, Δxa, Δsa, β, βmax)
x(α) = x + α Δxa; s(α) = s + α Δsa;
μ(α) = (x (α)T s(α)) / n;
if μ(α) ≤ κ μ then

β = θ β + (1 - θ) βmax;
else begin

safe step:
Calculate (Δxp, Δsp) based on (2).
α = alphaSafe(x, s, Δxa, Δsa, Δxp, Δsp, β);
x(α) = x + α (γ Δxp + Δxa);
s(α) = s + α (γ Δsp + Δsa);
μ(α) = (x(α)T s(α)) / n;

end if
(x, s) = (x(α), s(α)); μ = μ(α);

end.

We mention that functions alphaFast and
alphaSafe calculate the step length, such that the
pair of vectors (x(α), s(α)) will be in neighbor-
hoods Ɲ (τ, θ β + (1 - θ) βmax) and Ɲ (τ, β).

5. Implementation

We implemented the algorithm in the C++ pro-
gramming language, using the visual Studio de-
velopment environment and the code introduced
in [8].

During the implementation of both steps we
faced the question of how the maximum step-size
can be determined so that the obtained iterates
remain in the wide neighborhood.

Darvay Zs., Orbán A. Sz. – Műszaki Tudományos Közlemények 11. (2019) 49

The best step-size α can be computed by solving
the optimalization problem min μ(α), (x(α), s(α)) ϵ
Ɲ(τ,β), 0 < α ≤ 1 in each iteration [7].

Instead of this we calculated the step-size as
follows: first we determined the maximum step
length, which satisfies the feasibility conditions.
Then we checked whether the new iterates were
in the neighborhood. If the condition was not met,
we halved the step and checked again whether
the obtained points were in the neighborhood.
We repeated this procedure until the correspond-
ing step-size was obtained.

6. numerical tests
The algorithm was tested on two monotone

LCPs.
The first is the following (lcp01, see [9]):

The second LCP’s matrix can be found in [10].
The problem, which was investigated by us is the
following (lcp02):

n = 10, q = [1, 5, 3, 6, 1, -7, 1, 8, 9, 1]T.

6.1. Analyzing the change of θ
at each iteration of the algorithm, we change

the neighborhood of the central path, which is
characterized by the parameter β. Its value may
vary between a predetermined lower and upper
bound. The modification is made using parame-
ter θ, which is positive and does not exceed 1/2
(see table 1. and 2.).

We can observe that using lower values of θ gen-
erally results in a lower number of iterations.

6.2. Analyzing the change of γ

In the safe step, we introduced the parameter
γ, which is responsible for weighting (Δxp, Δsp).
Thus, we can modify the new iterates x(α) = x +
α (γ Δxp + Δxa) and s(α) = s + α (γ Δsp + Δsa). In the
following, we study the effect of changing the pa-
rameter γ on the results determined by the algo-
rithm.

It can be stated that if γ is very small then the
effect of the safe step will be reduced so that more
iterations are performed (see table 3. and 4.).

7. conclusions

In this article we investigated the algorithm of
Ma, Liu, Zhang and Cong, which uses two differ-
ent steps to achieve the theoretical efficiency of
short-step algorithms.

We modified the algorithm from the implemen-
tation point of view, by weighting the safe step
using a parameter γ.

The efficiency of the algorithm was proved us-
ing a code written in the C++ programming lan-
guage. In the case of various monotone LCPs, we
analyzed the change in the number of iterations
depending on the θ and γ parameters.

 Despite the fact that the algorithm applies to
monotone LCPs, we also achieved good results
for some test problems, which does not fulfill this

table 1. Results for lcp01

number of the
test

θ ϵ (0, 1/2] Iterations

1 0.04 19

2 0.07 20

3 0.2 20

4 0.5 20

table 2. Results for lcp02

number of the
test

θ ϵ (0, 1/2] Iterations

1 0.04 30

2 0.07 31

3 0.2 32

4 0.5 33

table 3. Results for lcp01

number of the
test

γ ϵ (0, 1) Iterations

1 0.9 20

2 0.6 20

3 0.3 21

4 0.01 21

table 4. Results for lcp02

number of the
test

γ ϵ (0, 1) Iterations

1 0.9 32

2 0.6 32

3 0.3 33

4 0.01 34

Darvay Zs., Orbán A. Sz. – Műszaki Tudományos Közlemények 11. (2019)50

requirement. We solved the test problems pub-
lished in [11] with matrices of size 10 × 10 and
20 × 20 in, at most, 24 iterations. We mention that
the first numerical results for the problems pre-
sented in [11] were published in [12].

accordingly, in the future it is worth analyzing
the theoretical efficiency of the algorithm for this
more general class of matrices.

Acknowledgement
The authors acknowledge the research support of
the Transylvanian Museum Society (Erdélyi Múze-
um-Egyesület).

references
[1] roos C., Terlaky T., vial. J.-Ph.: Theory and Algo-

rithms for Linear Optimization. Springer, Ny,
USa, 2005.

[2] Wright. S. J.: Primal-Dual Interior-Point Methods.
SIaM, Philadelphia, USa, 1997.

[3] ye. y.: Interior Point Algorithms, Theory and Anal-
ysis. John Wiley & Sons, Chichester, UK, 1997/3.
(1997)

[4] Kojima M., Megiddo N., Noma T., yoshise a.: A
Unifed Approach to Interior Point Algorithms for
Linear Complementarity Problems. Lecture Notes
in Computer Science 538, Springer verlag, Berlin,
Germany, 1991.

[5] ai. W.: Neighborhood-following algorithm for lin-
ear programming. Sci. China serie a, 47. (2004)
812 – 820.

[6] ai W., Zhang S.: An O(√nL) iteration primal-dual
path-following method, based on wide neighbor-
hoods and large updates, for monotone LCP. SIaM
Journal on Optimization 16/2. (2005) 400–417.
https://doi.org/10.1137/040604492

[7] Ma X., Liu H., Zhang J., Cong W.: On superlinear
and O(√nL) convergence of a path-following algo-
rithm for monotone linear complementarity prob-
lems in a wide neighborhood. Numerical Func-
tional analysis and Optimization, 38/5. (2017)
627–640.
https://doi.org/10.1080/01630563.2017.1297824

[8] Darvay Zs., Takó I.: Computational comparison of
primal-dual algorithms based on a new software.
unpublished manuscript. (2012)

[9] Hock W., Shittkowski K.: Test Examples for Non-
linear Programming Codes. Lecture Notes in Eco-
nomics and Mathematical Systems 187. Springer,
Berlin (1981)
https://doi.org/10.1007/978-3-642-48320-2

[10] Harker P. T., Pang J. S.: A damped Newton method
for linear complementarity problem. In: Simula-
tion an Optimization of Large Systems, Lectures
on applied Mathematics, aMS, Providence, rI,
26. (1990) 265–284.

[11] Morapitiye S.: Sufficient Matrices. (accessed on 9
February 2019).
http://math.bme.hu/~sunil/su-matrices/

[12] Darvay Zs., Illés T., Povh J., rigó P. r.: Predic-
tor-corrector interior-point algorithm for suffi-
cient linear complementarity problems based on a
new search direction, manuscript. (2019)

https://doi.org/10.1137/040604492
https://doi.org/10.1080/01630563.2017.1297824%0D
https://doi.org/10.1007/978-3-642-48320-2
http://math.bme.hu/~sunil/su-matrices/

