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Abstract
The three-roll bending process is a simple procedure, commonly used in the industry, through which a cylin-
drical surface can be produced from a sheet plate. This process is mainly controlled through experience and 
it is described with the finite element method, except for a very few numerical and analytical investigations. 
The topic of this article is to present a numerical method, through which the curvature function along the 
rolling direction can be calculated. This article presents the proposed numerical method and its verification 
with the finite element method. The results of the two numerical methods are in good agreement.
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1. Introduction  

The three-roll bending process is a simple three-
point bending, with the difference that here the 
plate is moved through the device so that each 
part of it suffers bending. The device consists of 
two lower and one upper roller -  the upper one 
lying between the two lower ones. First, the plate 
is placed between the rollers, and then it is load-
ed by the vertical movement of the upper roller. 
After this the sheet metal can be moved by rotat-
ing the lower rollers simultaneously; however, 
in extreme cases a proper rotation of the upper 
roller may be necessary. By the continuous dis-
placement of the plate each segment will be bent 
along a line, and thus a cylindrical surface will be 
formed. The different states of the plate (at the 
end of the loading process, and during the mov-
ing phase) can be seen on Figure 1.

2. Modeling the sheet metal

To model the material’s behavior, I chose an 
elastic- isotropic hardening plastic model, known 
as the von Mises bilinear model. Its stress-strain 

curve can be seen in Figure 2. This model is good 
for small plastic strains, or almost linear plastic 
characteristics. Building the calculations on it, the 
algorithm can be adapted later for a multilinear 
plastic stress-strain curve. 

The relation between the stress and the strain 
is given by Hooke’s law, and can be found in 
equation (1) which is adapted here for the plastic 
region in equation (2), by offsetting the starting 
point into (σF; εF). Further on, the Kirchhoff-Love 
theory of plates will be used. The stress and strain 
parameters of the constitutional equation are 
defined in a coordinate system connected to the 
plate’s mid-surface. The plate will undergo pure 
bending, as shown in Figure 3.  

The strain in the x direction, present in the plate, 
proportional to the z coordinate, is described by 
the equation εx=κ∙z.

	 (1)

	 (2)
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To obtain the parameters of the yielding point, 
the von Mises yield criterion will be used. The 
stress state on the elastic region’s boundary is 
presented in equation (3).

	 (3)

Furthermore, it is necessary to know the bound-
ary inside the plate between the elastic and plas-
tic zones, and the curvature at which the yielding 
of the material occurs. For this the border cur-
vature (κH) and the region border (zH) along the 
thickness will be defined. They are presented in 
equations (4) and (5).

 	 (4)

 	 (5)

The bending moment needed for a given curva-
ture is obtained from the integration of the stress 
field. The required bending moments for the elas-
tic- (Me) and elastic-plastic (Mp) states are given 
in equations (6) and (7), respectively. These mo-
ments as functions of the curvature can be seen 
on Figure 4.

 	 (6)

 	 (7)

The a, b, c, λ parameters are material and ge-
ometric constants, as given by equations (8)-(11)..

 	 (8)

Figure 3. Plate bending and stress distribution along 
the thickness. Figure 4. The bending curve of the plate.

Figure 1. The structure’s sketch: first load (upper) and 
the displacement (lower)

Figure 2. The stress-strain curve of the bilinear mate-
rial model.
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	 (9)

	 (10)

	 (11)

2.1. The plastic Poisson’s ratio
It is a commonly accepted assumption that the 

plastic part of the strain does not contribute to the 
dilatation [1]. If this assumption is applied to the 
bilinear model, equation (12) can be written. The 
function was derived for a unidirectional pull, 
but I assume further on, that this plastic Poisson’s 
ratio (νp) will be valid for any strain state. . 

	
(12)

Considering that the Poisson’s ratio from the 
constitutive equation refers only to the region af-
ter the yielding point, I define  with the help of 
equation (13).

	 (13)

3. Numerical model
3.1. Modeling tools

Due to the fact that the plate has nonzero curva-
ture only in a single direction, its shape can be de-
scribed by the projection of the mid-plane along 
the rollers’ axes as presented in Figure 5. Here 
I built up the plate from finite, Δs long elements, 

and the parameters of the nodes result from a nu-
merical integration along the sheet. Further on, I 
divide the plate into a left- and a right part, and I 
iterate the forces acting on the sheet, until the two 
parts will form a C2 class continuous curve with 
a proper approximation. The two parts should 
meet at the same K point on the central roller, 
and both should be at a tangent to it. The index of 
the node at the contact point with the central roll-
er is always named „i0”. At the first loading, only 
one side of the plate should be computed because 
of the symmetry. This symmetry vanishes when 
the plate is being moved between the rollers, thus 
both parts should be calculated separately. The 
recursion for the bending moment, curvature, 
tangent angle and coordinates is given by equa-
tions (14)-(18).

The process is driven by the forces acting be-
tween the lower rollers and the plate, so the rela-
tion between the curvature function and the dis-
placement of the central roller will be obtained 
in an indirect way. The movement of the plate is 
modeled by offsetting the position of the loading 
forces always with the same number of nodes [2]. 
The offset of the load and thus the contact point is 
fixed only for point B the other two contact points 
will come from the calculations.

	 (14)
	

	 (15)
	

	 (16)
	

	 (17)
	

	 (18)

In equation (15) the curvature is obtained by 
solving the proper equation (6) or (7), depending 
on which region the material is in. To get the an-
gle of deflection in the yielded region, one must 
fit a second order function on the curvature for 
each element and obtain the change in the angle 
of deflection by integrating that.

3.2. Finding the contact points

At the first loading step, because of the symme-
try, the angle θ0 which can be seen on Figure 5, 
vanishes, and  is true. Given this, search-
ing the contact points with the central roller turns Figure 5. Mechanical model of the plate.
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into finding the point where equation (19) is  
satisfied.

	
(19)

When the plate moves and the symmetry no 
longer exists, point K will shift on the surface of 
the central roller with a θ0 angle. Vector ρ, seen in 
Figure 5 is already considered constant; its coor-
dinates are given in the  ξ – η frame. Here finding 
the a α0' is the main task. Solving this, one calcu-
lates the sine and cosine of angle α0' according to 
equation (20). The solution is there, where they 
satisfy the Pythagorean identity with the smallest 
error along the curve.

	 (20)

4. Conclusions
The comparison of the results with a finite ele-

ment method simulation can be seen in Figure 6.  
The finite element method procedure used sim-
ple, four node, quadratic plane elements in a 
plane stress state. Along the thickness eight ele-
ments were used, as for A. Ktari et al. [3] The cur-
vature function of the final displaced structure at 
a given node is calculated as the excircle of the tri-
angle formed of the node and its two neighbors. 
For this I used nodes from the mid-surface.

In Figure 6 the curvature distribution is plotted 
for certain sheet metal and device parameters, 
without the removal of the plate, as a function of 
the arc length. The  B, K, J points shown on the 
figure are marking the contact points (they can 
be seen in Figure 1) in the moment when the 
movement of the plate stops. Point K0 marks the 
contact point with the central roller after the first 
load step. It can be seen that this point is the peak 
of the curvature, which after that looks as if it 
would be an exponentially decreasing harmonic 
function. 

The data used for the calculations is given in Ta-
ble 1 and 2.

The maximal relative difference between the 
two functions on Figure 6 is only 3.2 %, Thus the 
proposed numerical procedure is proved to be 
useful for further investigations.

Table 1. Data for testing  

E 
[GPa]

ET 
[GPa] ν σF 

[MPa]
zm 

[mm]

210 21 0.3 230 0.08

Table 2. Data for testing   

R 
[mm]

r 
[mm]

Δy 
[mm]

d 
[mm]

Δs 
[mm]

7.5 4 4 13.5 0.001
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Figure 6. Comparison of the numerical procedure 
with the finite element method
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