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Abstract
The manufacturing precision of involute worms constitutes a major requirement. On the one hand, the worm 
constitutes the input element of the worm drive; secondly, the involute helical surface is the basic surface of 
an involute worm-hob. This paper presents an analytic comparison between the involute surfaces obtained 
using theoretical equations, kinematic simulation of the cutting and the surface charged with errors. The sur-
face error is considered the distance along the normal direction to the theoretical surface, measured between 
this and the surface charged with simulated manufacturing errors. The main sources of errors are consid-
ered the center-error of the edge plane, the edge profile error and deviation of the axial feed direction from 
the axis of the worm. The theoretical results allow us to conclude that the influence of the edge profile error 
is the largest. It is followed by the parallelism error between the feed direction and the axis of the worm, and 
finally, the center error of the tool edge.
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1. The role of involute worm 
As is well known, manufacturing processes con-

sist of a series of physical and chemical process-
es and, due to this, process parameters vary in a 
stochastic mode. As a consequence, the process 
parameter vertex slides away from the set point, 
even in the case of very high precision processes 
and modern infrastructure [1]. Manufacturing 
errors arise from the process. Constraining them 
between acceptable limits becomes possible only 
if the peculiarities of the operation are very well 
understood. 

Here, it is necessary to emphasize the impor-
tance of manufacturing process modeling. Pos-
sible manufacturing errors must be anticipated, 
together with their qualitative and quantitative 
influences. Based on this, the success or the fail-
ure of a given operation can be predicted. 

An eternal challenge in the field of machine part 
manufacturing is that of compliance regarding 
geometric precision. The harder the requirements 

referring to a given machine part, the more im-
portant the prediction of possible manufacturing 
errors; this constitutes an efficient procedure in 
order to discover the possible errors and develop 
the methods required to decrease or even elimi-
nate them.

It is also well known that the manufacturing 
process of involute worms requires an infrastruc-
ture and corresponding control of exceptional 
precision. The load capacity, wear, and the func-
tional heating result directly from the geometry 
of the bearing flanks and also from the relative 
position of these to the base surface [2, 3]. 

Involute worm flank surfaces are ruled surfac-
es, requiring relative low manufacturing costs 
and a not very sophisticated infrastructure. Al-
though high power worm drives present profile 
modification [4, 5], involute worm drives inherit 
all the advantages of involute gear drives that jus-
tify their use in specific assemblies. 

The study of the precision of the involute worm 
is also important because the flank surface is the 
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origin surface of the involute gear hob edges. In-
tense research interest in this direction has been 
seen over the last two decades [6, 7, 8].

The involute worm is commonly obtained by a 
threading operation, using a pair of straight edged 
threading cutters, where the flank meshing edges 
lie in two parallel planes that are tangential to the 
basic cylinder. This arrangement could potential-
ly be a source of two types of error: the position of 
the edge plain relative to the basic cylinder, and 
the edge profile angle. The latter is the summative 
effect of the positioning and the manufacturing 
errors. A third source of error is supposed to arise 
from the parallelism deviation of the turning pad 
axis to the direction of the longitudinal motion.

Although the modern high-power worm drive’s 
bearing surfaces are ground, here exists another 
possibility for fine cutting. This arises from the 
incredibly large variety of high performance cut-
ting inserts, able to realize surface roughness and 
precision comparable with ground surfaces. Us-
ing them, the well-known expensive and environ-
ment-damaging grinding can be substituted with 
turning. Considering only the finishing operation, 
cutting forces will not increase over an accept-
able limit, even in the case of hardened surface 
machining. Thus, the dimensions will be kept 
between the limits of tolerance. All these can be 
realized only if using modern machine-tools with 
increased rigidity.

The arguments given before, justify the necessi-
ty for the modeling of manufacturing errors.

2. The helical involute surface
Equations of the helical involute surface will be 

given here using two different parametric forms: 
the first is based on mathematical meshing, while 
the second uses the geometric and the motion pa-
rameters of the real cutting edge.

2.1. The theoretical involute helix surface
The theoretical involute helix is meshed by an 

involute curve of plane (y0 z0) which executes a 
roto-translation about axis x0 of a helix pitch that 
equals max π. The parametric equations are written 
considering the geometric dependences shown in 
Figure 1. The form of equations differs from the 
classic one. Here the curve starts on the pitch cir-
cle, thereby omitting the unnecessary arc situated 
between the basic and the dedendum circle. 

From Figure 1 the following parametric equa-
tions result:

(1)
The interval of the parameter θ is obtained by 

setting the limits of the radius length:

  (2)

Figure 2 shows the profile of the involute worm 
in a radial section.

Using the well-known dependences between the 
normal and axial module [4], the helix parameter 
can be primed as follows

Figure 1. Definition of the involute curve in the case 
of an involute worm.

Figure 2. Radial section of an involute worm.
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	 (3)

Omitting the computation, the surface obtained 
by applying a roto-translation of parameter p to 
the involute (1), results in the following paramet-
ric equations:

	 (4)

2.2. The helical involute surface, meshed by 
the cutting edge 

The cutting-edge generated helical-involute par-
ametric equations are obtained by applying to the 
cutting edges the same roto-translation of param-
eter p given by (2), applied before. Cutting edges 
are situated in two parallel planes, each of them 
tangent to the basic cylinder. The mathematical 
form obtained here is of emphasized importance 
because it represents the errorless reference 
surface. It is compulsory to set the position of 
the edges in such way that the surfaces meshed 
by them include point E and its diametric oppo-
site. Both points are situated on axis z (Figure 3). 
These points also fit the pitch circle. 

The profile angles are the angles comprised be-
tween the edges and a perpendicular to the worm 
axis [1, 7, 8]:

	 (5)

Because of the profile angle, a helical effect 
occurs (Figure 3), In order to overlap the math-
ematical and the kinematic involute surfaces, a 
translation of the edge along axis x is necessary. 

The correction depends on angular correction ψ 
expressed as:

	 (6)

The correction is based on a geometric peculi-
arity presented below. The left tooth gap surface 
(i.e. the right tooth surface) is meshed by the edge 
situated under the axis x0, and it intersects the 
pitch cylinder in O20. 

The edge is at a distance Rb from the (x0 z0) plane. 
Due to this, it must be rotated by the angle ψ about 
the axis Ox0 to force point O20 to overlap E.

The matrix form of the cutting edge related to 
the frame (x2 y2 z2) linked to the cutter body is as 
follows:

	 (7)

Moving the edge along the pitch helix of axis x 
and parameter p discussed before, it will mesh a 
helical surface described with the following par-
ametric equations (here the calculus is omitted):

   	

(8)

2.3. The comparison of the theoretical heli-
cal involute surfaces

The theoretically perfect, errorless helical sur-
faces are coincident. This can be mathematical-
ly proven by deducting a bijective dependence 
(ϕ, θ)↔(ϕ1, u) between the independent parame-
ters of coordinate functions (4) and (8).

Equalizing the x-coordinates, results in

	 (9)

By the other side, if equalizing the polar radii we 
get:

	 (10)

Considering the right side with the minus sign 
and substituting expression (9) in the left side, 
equation (10) takes the following form:

	 (11)

The last equation can be considered an inter-
esting approach of the equivalence of the con-
sidered helical surface meshing procedures. The 
role of the parameter θ in expression (4) consists Figure 3. The positioning of the cutting edge.
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in the generating of the involute curve as can 
be observed from equations (1). On the other 
hand, parameter ϕ1 from equation (8) expresses 
the quantum of the rotational component of the 
helical generating motion. Despite the fact that 
the functional role of the mentioned parameters 
differs, the correspondence can be accepted. In 
the first case where the involute is used as gen-
erating curve, all surface points corresponding to 
an arbitrary value of the rotation parameter are 
comprised in the same radial plane. In the second 
case, where the generating curve is the cutting 
edge, surface points having the same rotational 
parameter value are situated on the edge, not in a 
common radial plane as before. 

On the other hand, condition (9) expresses the 
equality of the x-coordinates. Thus, the consid-
ered points are constrained to fit the same radial 
plane. Furthermore, these points can overlap if, 
and only if, expression (11) involving θ and ϕ1 is 
true.

Conditions (9) and (10) involving surface par-
ametric equations (4) and (8) were numerically 
computed. The simulation shows a difference of 
a 10–15 magnitude between the x, y ,z coordinates 
computed with formulae (4) and (8).

3. The simulation of the manufacturing 
errors

The manufacturing errors arise from the posi-
tioning of the cutter, the geometric errors of the 
machine tool and the edge profile error. The ef-
fect of each of them is separately studied because 
they are independent statistical variables.

3.1. The center error of the cutter
The center error of the cutter can be defined as 

the deviation of the distance between the rotation 
axis and the edge holding plane, from the basic 
radius value. To express this deviation a weight-
ing coefficient f is introduced. Applying it to the 
edge coordinate y expressed by matrix (7), val-
ue R_b is replaced with f Rb. If f > 0, the edge is 
pushed down, while for f < 0, it is raised up. 

The parametric coordinates result in the follow-
ing matrix equation:

	 (12)

	

	 (13)

	 (14)

The helical surface written with the expressions 
(12)..(14), becomes a perfect helical involute sur-
face only if parameter f = 0. The border positions 
of the real helical surface, for the maximum value 
of the setting error can be obtained from f Rb= Δh 

equivalent with the f- interval  .

3.2. The parallelism error
The parallelism error is defined as the devia-

tion between the trajectory of the longitudinal 
feed motion and the rotation axis of the turning 
machine, for a motion length of L = 1000 mm. In 
this paper the deviation is particularized by con-
sidering the trajectory of the feed line included 
in the horizontal plane (x z). Thus, the trajectory 
line includes, with the axis, an angle β of magni-
tude tg β ≈ β = δp / 103. A δp = 100 μm parallelism 
deviation value occurs when the machine tool 
reaches its final wear state. This state leads to  
β ≈ 1∙10–4 rad, namely 20.62 sexadecimal seconds. 

Admitting the described feed trajectory devia-
tion, the last column of matrix M02 becomes:

	 (15)

The R3 subspace of the helical involute manifold 
results for –10–4 ≤ β ≤ 10–4 In this model the origin 
of the worm’s frame is placed in the middle point 
of its length. If the tool setting is computed consid-
ering the limiting frontal plane of the worm, the 
frame’s origin must be translated here. 

3.3. The profile error
Profile error is defined as the maximum value 

of the distance between the real edge point to the 
theoretical straight edge line (Figure 4). Profile 
error can be perceived either as the deviation of a 
concave or convex line from its tangent in the ref-
erence point, where the tangent is the theoretical 
edge direction, or as a straight line whose profile 
angle differs from the theoretical, but it intersects 
the theoretical edge segment in the reference 
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point. The reference point discussed before is al-
most the edgepoint acting on the pitch cylinder. 
The profile error is assimilated with the quantity 
Fα defined in gear precision standard and here it 
is considered for an N8 precision class [9]. 

In the first case the error laden edge is expressed 
using a polynomial of 3rd degree. The require-
ments imposed on this refer to the deviation that 
must be smaller than the chosen Fα value, consid-
ering the useful length of edge 2.25 mn / cos αs. An-
other restriction imposed on the polynomial con-
sists in its tangency to the theoretical edge line, in 
the origin (Figure 4). 

The geometric constraints presented before re-
sult in at the most six algebraic equations, thus, 
the simplest polynomial here is a polynomial of 
3rd degree whose graphic crosses the origin; let’s 
define it parametrically, using the following func-
tions:

	 (16)

(the free term of the polynomial is missing be-
cause in the origin u = 0.)

The limits of u are (Figure 3):

	
(17)

The profile error is measured perpendicular to 
the theoretical edge line. Accepting that the in-
flexion point is missing (i.e. the real edge line is 
either concave or convex), the coordinates of the 
endpoints for the convex edge can be written as:

	 (18)

In the same way the concave edge endpoint co-
ordinates result in:

	
(19)

The condition of tangency in the origin becomes:

	 (20)

From condition (20) results obviously in: 

	 (21)

Considering this together with expressions (16), 
(18) and (19), a linear system with unknowns  
a1, a2, b1, b2 builds up. Its solution are the coeffi-
cients of the 3rd degree polynomial. 
The real helical surface equation results by using 
in matrix equation (12) the homogenous coordi-
nate vector  .

4. Numerical evaluation
Numerical evaluation of the model presented 

before follows the steps emphasized below: 
–– writing the equations of the real helical surface 
laden with the considered type of error, fol-
lowed by the computing of surface point coordi-
nates inside a fixed domain (u1, u2) × (ϕ1, ϕ2);
–– computing the  coordinate of the pitch helix 
point comprised in the plane (x0 z0);
–– performing the translation of the coordinates 
along the helix axis, given by  ;
–– computing the length of the normal segment be-
tween the theoretical and the real surface– this 
is the error.
The proofing was performed for an involute 

worm of mn = 5 mm normal module, i = 1 number 
of teeth, λ0 = 4°pith helix angle.

First the center error was analyzed, considering 
the errors defined by f = 0.1 and f = 0.2. The distri-
bution of the errors is shown in Figure 5.  

On the basis of figure 5 it can be stated that by 
doubling the center error value the normal error 
increases more than two times, thus the depend-
ence is not linear. Although it must be empha-
sized that the maximal normal error value, for a 
center error of f = 0.2 -re, meaning Δh = 0.2Rb = 
2.698 mm reaches only Δnh = 1.631 μm. Inspecting 
the shape of the error distribution it can be stated 
that the error is positive signed on the addendum, 

Figure 4. The definition of the profile error
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and negative on the dedendum cylinder. Positive 
error means that the real helical surface is larger 
than the theoretical, including it, while negative 
error means that an undercut occurs.

Practical experience shows that the maximum 
center error value in the case of worm threading 
does not exceed 0.1 mm, thus normal error is lim-
ited to a submicronic magnitude.

Starting from a N8 precision class and the corre-
sponding profile error value of Fα = 27 μm, edge 
profile error induced surface normal errors were 
computed for the same worm. The repartition of 
the computed value is shown in Figure 6. 

The effect of the concave deviation of the cutting 
edge results in the surface located below, while 
the convex deviation in the surface located above. 
It must be emphasized that the error value on the 
pitch cylinder is zero. This proves the correctness 
of the computation and the model, while tangen-
cy of the theoretical and the error laden edge was 
imposed.

In contrast to the center error causing normal 
error repartition, here the error keeps its sign. 
The absolute values shown an approximately par-
abolic evolution. 

The cutting edge’s concave deviance produces a 
real helical surface that includes the theoretical 
involute helical worm surface. Conversely, a con-
vex edge deviance results in a real helical surface 
that undercuts the theoretical. The common enti-
ty of all three is the pitch helix.

In this case, the maximum value of the normal 
error does not exceed Δnp ≈ 13 μm, which is only 
half of the admissible edge profile deviation.

Results obtained by applying the parabolic mod-
el are useful even in the case of a linear edge with 
angular deviation. In this case the theoretical 
edge is placed in the middle of the tolerance field, 
and thus, the maximum error occurs when the 
real edge lies on the diagonal. 

It can be concluded that the previous model must 
set up for Fa / 2 value. The expected normal profile 
error magnitude becomes Δnp ≈ 0.25 Fα = 7 μm.

The cumulative error value is computed con-
sidering the center and the profile errors as inde-
pendent statistical variables. The sign of the error 
is here omitted; only absolute values are taken 
into consideration.

Let us denote with ξ the statistical variable de-
fining the normal error caused by the center er-
ror, and with η the error caused by the edge pro-
file. The variance extends within the zero and the 
maximum error value, thus 

	 (22)

Admitting a reasonable approach, it can be sup-
posed that the average value of the cumulative 
error is:

	
(23)

In a same way a good approach of the standard 
deviation can be considered the 1/6 part of the 
variance [10]. Thus, the standard deviation of the 
cumulative error becomes:

	
(24)

Figure 5. The distribution of the center error. Figure 6. The normal error repartition caused by the 
edge profile error.
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In the spite of the fact that the composition of 
two normally distributed statistical variables 
results in an exponential distribution [10], let 
us consider ζ normal distributed. The differenc-
es can be neglected as well, as it was proven by 
many industrial applications. The statistical com-
puting model of the machining allowances [11] is 
built up admitting the same hypotheses.

Admitting these the maximum value of the cu-
mulative normal error becomes:

	 (25)

5. Conclusions
Mathematical models presented in this paper 

can be used for the estimation of the expected 
manufacturing error value, in the case of involute 
worm threading,

The presented method is notably important 
while having knowledge upon the geometric pre-
cision of the manufacturing infrastructure. With 
this model it can be decided if a given involute 
worm can or cannot be realized within the pre-
scribed limits of tolerance.

The worm error sources were supposed to have 
originated from the center positioning error of 
the edge, the profile error of the cutting edge and 
the parallelism error of the machine tool. The last 
was neglected, thus, the cumulative error was 
computed as the sum of the center and the profile 
errors. 

The center error and the profile error were con-
sidered as independent statistic variables. 

The error was defined as the normal distance 
between the real and the errorless involute helix 
surfaces. 

In our perception, error is plus signed if the real 
surface covers the theoretical, and negative if un-
dercuts it. 

The computing of the normal error was realized 
within a synthetic geometric model that was not 
presented here. 

The numerical evaluation has proven that the 
center error has the least impact on the cumu-
lative error, while its rate is only 11,69% of the 
cumulative error– even in the case of considering 
exaggerated values of the tool center error.

In conclusion it can be stated with a good ap-
proximation that the involute worm manufac-
turing cumulative error equals half of the profile 
error.

The error of the threading kinematic chain was 
neglected because the axial extent of the worm 
will never exceed 6-8 integral pitches. On that 
length, the pitch errors of the leading screw, as 
well as the parallelism error influences are not 
relevant. It must be mentioned here that modern, 
numerical driven machine’s kinematic chains 
present pitch error of micronic magnitude. .
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