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Abstract
We study a predictor-corrector interior-point algorithm for solving general linear complementarity prob-
lems from the implementation point of view. We analyze the method proposed by Illés, Nagy and Terlaky [1] 
that extends the algorithm published by Potra and Liu [2] to general linear complementarity problems.  
A new method for determining the step size of the corrector direction is presented. Using the code imple-
mented in the C++ programming language, we can solve large-scale problems based on sufficient matrices.
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1. Introduction 
Linear complementarity problems (LCP) can be 

encountered when solving various technical or 
economic problems. The problem is defined by a 
matrix M that appears in a linear equation, but 
in addition a complementarity condition must be 
met.

The LCP is an NP-complete problem, so it is very 
difficult to give an efficient general solution for 
it. There are algorithms that solve LCPs within 
polynomial time if the matrix M is positive semi- 
definite. As an extension of positive semidefinite 
matrices, the concept of sufficient matrices was 
introduced and it was proved that in the case of 
an input matrix M with this property the problem 
can be solved in polynomial time.

Algorithms introduced for solving the general 
linear complementarity problem (GLCP) can de-
cide whether the matrix of the GLCP is P*(κ) or 
not. It should be mentioned, that the P*(κ) proper-
ty is equivalent to sufficiency.

With the method introduced by Tibor Illés, Ma- 
rianna Nagy and Tamás Terlaky [1, 3, 4] interi-
or-point algorithms solve the GLCP in polynomial 
time using different built-in checks while run-
ning.

We have previously implemented a short-step 
interior-point algorithm to solve GLCPs [5]. since 
predictor-corrector methods are generally more 
efficient, we further investigate the implementa-
tion of a variant of them.

2. The linear complementarity problem 
In the case of  LCPs we wish to find vectors 

 such that:

 (1)

where  and xs denotes the 
componentwise product of the two vectors.

3. The P*(κ) property
As defined by Kojima et al. [6] a matrix 

 has the P*(κ) property (κ ≥ 0), if for 
any  the following holds:

 (2)

where  and 

 .
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A matrix is P* if it is P*(κ) for some 
κ ≥ 0. We mention that if κ = 0 then we obtain the 
class of positive semidefinite matrices.

4. Local  κ values
In the predictor and corrector steps of each it-

eration, we calculate a local κ [1, 4], using the fol-
lowing function, and then select the maximum of 
all such values and determine a lower bound for 
the κ of the matrix M:

. (3)

5. The concept of the neighborhood
Let γ ∈ (0, 1) and 

. 

Potra and Liu [2] defined the neighborhood as 
follows:

 , (4)

where e denotes the n-dimensional all-one vector.

6. Newton's method
The algorithm starts from an initial point (x0 , s0)  

and the following Newton system is solved in or-
der to calculate the predictor and corrector direc-
tions:  

 (5)

where rq = Mx + q − s was introduced to preserve 
the feasibility.

Note that in the predictor step a = −xs and in the 
corrector one a = μe − xs. Moreover, the following 
notations are used in the algorithm:

x(α) = x + α Δx, s(α) = s + α Δs,  (6)
where α > 0 gives the size of the step.

7. The algorithm
starting from the algorithm introduced by Illés,  

Nagy and Terlaky [1], the predictor-corrector  
algorithm solving the GLCP is given as follows:

Input parameters:
 > 0 upper bound for κ;

ε > 0 accuracy parameter;
γ ∈ (0, 1) neighborhood parameter;
(x0, s0) ∈ D(γ) initial point;
σ ∈ (0,1] barrier update parameter;
ρ ∈ (0,1) step size reduction parameter;
β, βmax > 0 control parameters for the step size 

accuracy of the corrector step;

Output: 
(x, s) – the solution of the LCP –  or a message 
confirming that the P*(κ) property is not satis-
fied.  

BEGIN

while  or  do begin

Predictor step
a = −xs;
calculate (Δx, Δs) from (5) 
if M  is singular then

return M is not P0;
end if
α = predictorStepSize(γ);
if α < α*

p(κ) then
calculate κ(Δx) from (3) ;
if κ(Δx)  is not defined  then

return M is not P* ;
end if
if κ(Δx) > then

return M is not P*( );
end if
κ = κ(Δx);

end if
x = x + ρ α Δx; 
s = s + ρ α Δs;
μ = σ (xT s) / n;
rq = Mx + q − s;

Corrector step
a = μe − xs;
calculate (Δx, Δs) from (5);
if M is singular then

return M is not P0;
end if
if (x(αc*(κ)), s(αc*(κ)) ∉ D(γ) then

calculate κ(Δx) from (3);
if κ(Δx) is not defined  then
return M is not P* ;

end if
if κ(Δx) >  then

return M is not P*( );
end if
κ = κ(Δx);      
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end if
α = correctorStepSize(γ, β, βmax);
x = x + ρ α Δx; 
s = s + ρ α Δs;
μ = σ (xT s) / n;
rq = Mx + q − s;

end
END

7.1. Determining the step sizes
During the implementation of the algorithm, 

specific methods for calculating the step sizes 
were given.

7.1.1. Calculation of the predictor step size
In the predictor step, we calculated the step size 

α using the method given by Potra and Liu [2], 
but we also took into account that the step length 
should preserve the conditions x > 0, s > 0. The 
following function illustrates this:

function predictorStepSize(γ):

 

for i = 1 to n do begin
b = vi − (1 − t)γeT v/n;
c = ui − (1 − t)γ;
Δ = c2 − 4bc;
if Δ > 0 and b ≠ 0 then

;

end if
end
return α;

end

7.1.2. Calculation of the corrector step size 
We propose a new method for determining the 

size of the corrector step, which is different from 
the one presented in [2]. The function gives the 
maximum possible step length α, which main-
tains the condition x, s > 0. Then we divide the in-
terval [0, α] into β equal parts and verify whether 
the step size taken for the values at the endpoints 

of the subintervals is in the D (γ) neighborhood or 
not. If so, we calculate

  

for the new point (x, s) and then select the mini-
mum of all these μ(α) values as the final step size.

If no such point is found, which is in the neigh-
borhood, the value of β is multiplied by 2 and the 
above procedure is repeated. For the value of β 
we have introduced an upper limit βmax, and if it 
is reached, the algorithm is stopped with an error. 
The method can be described using the following 
function:

function correctorStepSize(γ, β, βmax):

α = min{α1, α2}; 
notfound = true;
while β < βmax  and notfound do begin

for i = 1 to n do begin

if  then
α = ;   
notfound = false;

end if
end
β = 2β;

end
if β ≥ βmax then return ”error”;
return α;

end

8. Numerical results
The algorithm was implemented in the C++ pro-

gramming language, in the Visual studio integrat-
ed development environment under Windows 
operating system on a computer with a 1.9 GHz 
processor.

We used the following parameters: ρ = 0.95, 
σ = 0.1, ε = 10-5, γ = 0.9, β = 100, βmax = 1000, 

 = 1040 and chose x0 = e and s0 = e as the initial 
point.

8.1. Sufficient matrices
For the problems based on sufficient matrices 

generated by the method described in [7], our al-
gorithm found the solution in at most 6 iterations. 
Table 1 shows the average running time (in sec-
onds) for problems of the same size.
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8.2. Csizmadia's matrix
In case of the matrices introduced by Zsolt Csiz-

madia, it has been theoretically proven [8], that 
the maximal κ increases exponentially depending 
on the size of the problem. The obtained local κ 
values confirm this theoretical result (see Table 2).

The obtained κ values vary similar to the results 
published in [9].

9. Conclusions 
In this paper, we presented our implementa-

tion of the predictor-corrector algorithm, which 
can solve the GLCP introduced by Illés, Nagy and 
Terlaky [1]. We introduced a new method for 
calculating the step size of the corrector step in 
the implemented version of the algorithm. We 
summarized the obtained numerical results for 
inputs based on sufficient matrices. In case of the 
matrices introduced by Zsolt Csizmadia, the expo-
nential growth of κ depending on the size of the 
matrix was observed.
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Table 1. Average running time for LCPs presented in 
[7] depending on the size of the matrix

n 10 20 50

CPU 0.1209 0.1941 0.5876

n 100 200 500

CPU 2.0456 9.9068 131.9007

Table 2. Variation of maximum local κ values de-
pending on the size of the matrix

n 10 50 100

κ 347.53 4.65∙1016 1.89∙1034
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