
Műszaki Tudományos Közlemények vol. 15. (2021) 61–64.
DOI: Hungarian: https://doi.org/10.33895/mtk-2021.15.12

English: https://doi.org/10.33894/mtk-2021.15.12

Comparative Analysis of Native and Cross-Platform iOS
Application Development
Márk Kovács,1 Zsolt Csaba Johanyák 2

Neumann János Egyetem, GAMF Műszaki és Informatikai Kar, Informatika Tanszék, Kecskemét, Magyarország
1 kovacs.mark@gamf.uni-neumann.hu
2 johanyak.csaba@gamf.uni-neumann.hu

Abstract
Nowadays, mobile applications are developed for more and more areas, providing great help for our every-
day lives. When designing a mobile application, the first important decision to make is to choose the targeted
platform. Is it only phone or tablet as well? Should the app run on Android or iOS, or should it be available on
both mobile operating systems? In the latter case, besides the native development environments, it is worth
considering a cross-platform development environment to write the software. This study investigates both
the development and performance aspects of some possibilities for iOS application development, namely,
native iOS development in Xcode, Xamarin.iOS, and Xamarin.Forms frameworks.

Keywords: iOS, native, cross platform, Xamarin, Xamarin.iOS, Xamarin.Forms.

1. Introduction
There is an increasing demand for more com-

plex applications in the dynamically expanding
technology market. Developers face several chal-
lenges that can be met with different solutions. If
an application needs to run on both the most pop-
ular mobile operating systems, namely, Android
and iOS, one might want to consider some dif-
ferent options available for development frame-
works. Additionally, one needs to be aware of the
advantages and disadvantages of the chosen envi-
ronment and framework.

This paper investigates some differences be-
tween the functioning of the apps created by
native and cross-platform iOS application devel-
opment using Xcode and Xamarin development
systems.

In the case of Xamarin, two options are exam-
ined. The first is Xamarin.iOS, which can be used
only for the development of applications target-
ing a device running the iOS operating system. Its
interface editor is very similar to the Storyboard
editor interface used in Xcode. The other option
is Xamarin.Forms, with which can be used for the

development of applications running on both iOS
and Android operating systems.

1.1. Development environments
Smartphone applications can be divided into

three major categories based on the technologies
and environments used in development, namely,
native applications, web applications, and hybrid
or cross-platform applications. Native applica-
tions are developed in specific environments and
frameworks for a particular group of operating
systems. For example, Android Studio and Xcode
IDE are such software offering the necessary tools
for developing apps for iOS and Android, respec-
tively. In contrast, applications targeting more
than one operating system are developed using
so-called cross-platform development tools.[1]

1.1.1. Xcode
Xcode is an IDE developed by Apple that allows

building native applications for any Apple-relat-
ed operating system, like iOS, iPadOS, watchOS,
macOS, or even tvOS. The most common scenar-
io is developing applications for iOS or iPadOS.
When working in Xcode, Interface Builder is used
for designing the interface that includes a Story-

https://doi.org/10.33895/mtk-2021.15.12
https://doi.org/10.33894/mtk-2021.15.12

Kovács M., Johanyák Zs. Cs. – Műszaki Tudományos Közlemények 15. (2021)62

board. The interface is built up using visual tools.
Apple previously supported the Objective-C pro-
gramming language, but since 2014, it has devel-
oped its own programming language called Swift.
[2]

1.1.2. Visual Studio 2019 and Xamarin
Nowadays, Visual Studio is one of the most pop-

ular development environments. It facilitates the
creation of multi-layered software targeting mul-
tiple platforms. Its basic programming languag-
es are C-type languages, including C#, which is
based on .NET.

Microsoft provides Xamarin for the mobile ap-
plication development workload targeting mul-
tiple platforms. Xamarin is an open-source tool
developed by the Xamarin company acquired by
Microsoft in 2016. It provides two options for the
creation of iOS- and Android-related cross-plat-
form applications. [3]

The first one is Xamarin Native, which supports
developing applications in C# using Android and
iOS SDKs. One of our test programs was also de-
veloped in one of its subsystems (Xamarin.iOS).
Here one is able to create the user interface in a
very similar way to the Interface Builder used in
Xcode. This option can be an alternative for those
who for some reason do not want to develop it in
Xcode in Swift. In fact, when working on a Mac,
Visual Studio also offers the option of designing
the user interface by Xcode Interface Builder. [4, 5]

The second option is Xamarin.Forms. This al-
lows for a platform-independent solution that
allows us to develop on both platforms, usually
with less programming. Here the development
environment generates a separate project for
each targeted platform as well as a project for
the shared codebase. Usually, most of the coding
can be done working only in the shared codebase.
Unlike in Android Studio and Xcode, here there
are no visual tools supporting the user interface
design. This task has to be done manually using
the XAML language. [6, 7]

1.2. Programming languages

1.2.1. Swift
The programming language Swift was devel-

oped by Apple and has gained popularity among
application developers recently. Besides mobile
application development, it also can be used for
the creation of desktop programs and cloud-based
services. Swift is a dynamic type language (the
compiler has the ability to detect type automati-

cally) and at the same time, it is a strongly typed
language (type should be used strictly). These two
features ensure that Swift is more secure and fast-
er than many C-based languages. It also contains
some characteristic features of C-type languages.
The code written in it is easily readable and can
be learned quickly. [4, 8]

1.2.2. C#
C# is a popular programming language devel-

oped by Microsoft for .NET. It is a general-purpose
high-level object-oriented language that possess-
es several similar features to C++and Java. How-
ever, writing code in C# is more comfortable than
in C++ as well as it supports rapid application de-
velopment. C# is also a dynamic type and strongly
typed language. Although currently it ranks only
eighth on the IEEE ranking list of the top pro-
gramming languages for mobile development [9],
its clear advantage compared to all the languages
preceding it on the list is that it supports applica-
tion development for all the four main platform
families (web, desktop, mobile and embedded).

2. Comparisons, tests

2.1. Demonstration of a test application
In the course of our investigation, we developed

in all three environments (Xcode, Xamarin.iOS,
and Xamarin.Forms) a relatively simple appli-
cation. The program contains a list with 20 pre-
defined items on it. The user can select an item
followed by popping up an alert window. The se-
lected item can be deleted as well. A new item can
be added with the help of a textbox and a button.
The goal of the investigation was the comparison
of the three apps by means of loading (starting
up) time and CPU usage in the course of the dif-
ferent operations.

The user interface (UI) (see Figures 1 and 2)
could be created in a quite short time in all cases
and the resulting appearance was similar as well.
In this example, the list items were food names. In
the case of native iOS and Xamarin.iOS one could
easily create an almost identical UI while the us-
age of XAML in the case of Xamarin.Forms result-
ed in a slightly different appearance. Figure 1
illustrates clearly the interface and operation of
the application in Xcode. In our example, the list
stores the names of foods.

2.2. Software and tools used for testing
Tests were carried out using the Xcode tester

software called Instruments. It provides several

Kovács M., Johanyák Zs. Cs. – Műszaki Tudományos Közlemények 15. (2021) 63

cessor requirements for each operation and the
number of cores used are indicated.

2.3.1. Application developed in Xcode
The application started in 384 ms. Processor re-

quirements are shown in Table 1.
While the application was running without user

interaction (app was in foreground but none of its
functions were used) it did not use any measura-
ble processor resource.

2.3.2. Application developed in Xamarin.iOS
Processor requirements are shown in Table 2.

The application started in 2.4 seconds, which is
quite high for an application of this size. Like the
native application, it required almost no measur-
able processor resources when it did not receive
any user interaction.

2.3.3. Application developed in Xamarin.Forms
Processor requirements are shown in Table 3.

The application started in 665 ms, which is good

Figure 1. Application developed in Xcode. Figure 2. Application interface written in Xamarin.
iOS (left) and Xamarin.Forms (right).

Table 1. Nativ iOS application processor require-
ments

Function Min % Max % CPU core
starting 10 170 6

scrolling 10 120 5

selecting 10 110 5

deleting 10 110 5

adding 10 120 6

options for testing. One can measure the startup
time of the application, and the hardware re-
quirements of the developed application can be
seen and recorded during usage. Processor re-
quirements can be tracked, which greatly affects
the speed of the application.

During testing, we examined five main func-
tions of the app:

–– starting
–– scrolling
–– row selection
–– delete a row
–– add a new item.
The test device was an iPhone XS 64GB a six-

core device with 2 × 2.5 GHz and 4 × 1.59 GHz
frequencies. All three applications were tested in
the order listed above.

2.3. Test results
The results of the tests are presented in the ta-

bles below. The minimum and maximum pro-

Table 2. Xamarin.iOS application processor require-
ments

Function Min % Max % CPU core

starting 10 120 6

scrolling 10 90 4

selecting 10 110 5

deleting 10 110 4

adding 10 130 6

Kovács M., Johanyák Zs. Cs. – Műszaki Tudományos Közlemények 15. (2021)64

compared to the native iOS application. However,
even at rest (when it did not receive any user inter-
action), a constant 10% CPU usage was measured.

3. Summary and conclusions
In general, all three applications performed well;

however, there are differences in some respects,
which are summarized below.

In terms of development steps, native and Xama-
rin.iOS are very close to each other. Functions can
be implemented similarly in both of them, and the
UI design is facilitated by a WYSIWYG-like (What
You See Is What You Get) visual tool. On the other
hand, when developing the app in Xamarin.Forms,
the interface must be written in XAML without a
visual aid. Thus, one can see the appearance of
the UI only at runtime. This increases the time de-
mand of the development especially for those pro-
grammers who are used to the visual design.

At the launch, both the native and Xamarin. Forms
applications provided similar good performance,
namely, the shorter time necessary for startup,
while Xamarin.iOS performed much worse. Al-
though using the most resources, the native applica-
tion was able to start the fastest. For all three appli-
cations, the biggest resource requirement appeared
at startup. However, there was no significant mem-
ory consumption in any of the cases.

It can be considered a shortcoming that the Xama-
rin.Forms app ran at a minimum but constant 10 %
CPU load even at rest. In terms of the functions of
the test application, each performed with different
values, but overall, they performed similarly.

Acknowledgement
This research is supported by EFOP-3.6.1-16-2016-
00006 "The development and enhancement of the re-
search potential at Pallas Athena University" project.
The Project is supported by the Hungarian Govern-
ment and co-financed by the European Social Fund.

References
[1] Molenda, D., Skublewska-Paszkowska M.: Analy-

sis of the Possibility of Shortening the Time of Cre-
ating a Mobile Application for Android and iOS
Systems Using Xamarin Technology. Journal of
Computer Sciences Institute, 12. (2019) 226–231.
https://doi.org/10.35784/jcsi.493

[2] Swift, About Swift. (accessed on: 2021. 02. 26.)
https://swift.org/about/

[3] Prajapati M., Phadake D., Poddar A.: Study on
Xamarin cross-platform framwork. International
Journal of Technical Research and Applications,
4/4. (2016) 13–18.

[4] Vishal K., Kushwaha A. S.: Mobile Application
Development Research Based on Xamarin Plat-
form. 4th International Conference on Computing
Sciences (ICCS), Jalandhar, India, 2018, 115–118.
https://doi.org/10.1109/ICCS.2018.00027

[5] Ebone A., Tan Y., Jia X.: A Performance Evaluation
of Cross-Platform Mobile Application Develop-
ment Approaches" IEEE/ACM 5th International
Conference on Mobile Software Engineering and
Systems (MOBILESoft), Gothenburg, Sweden,
2018, 92–93.

[6] Pawel G., Maria S.-P., Edyta L., Jakab S.: Perfor-
mance Analysis of Native and Cross-Platforms
Mobile Applications, IAPGOŚ 2/2017, (2017) 50–53.
https://doi.org/10.5604/01.3001.0010.4838

[7] Altersoft, The Good and The Bad of Xamarin Mo-
bile Development, 2020. (letöltve: 2021. 02. 28.)
https://www.altexsoft.com/blog/mobile/pros-and-
cons-of-xamarin-vs-native/

[8] Bilberg D.: Comparing Performance between React
Native and Natively Developed Smartphone Appli-
cations in Swif., A Comparative Analysis and Evol-
uation of the React Native Framework.
https://www.diva-portal.org/smash/get/
diva2:1215717/FULLTEXT01.pdf

[9] IEEE Spectrum Interactive: The Top Programming
Languages. [Megtekintve: 2021.03.14.]
https://spectrum.ieee.org/static/interactive-the-
top-programming-languages-2020

Table 3. Xamarin.Forms application processor re-
quirements

Function Min % Max % CPU core
starting 50 130 6

scrolling 10 100 6

selecting 10 130 6

deleting 10 110 4

adding 10 120 6

https://doi.org/10.35784/jcsi.493
https://swift.org/about/
https://doi.org/10.1109/ICCS.2018.00027
https://doi.org/10.5604/01.3001.0010.4838
https://www.altexsoft.com/blog/mobile/pros-and-cons-of-xamarin-vs-native/
https://www.altexsoft.com/blog/mobile/pros-and-cons-of-xamarin-vs-native/
https://www.diva-portal.org/smash/get/diva2:1215717/FULLTEXT01.pdf%20
https://www.diva-portal.org/smash/get/diva2:1215717/FULLTEXT01.pdf%20
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020

