
 1

Abstract—Automated machine learning and predictive

maintenance have both become prominent terms in recent
years. Combining these two fields of research by conducting
log analysis using automated machine learning techniques
to fuel predictive maintenance algorithms holds multiple
advantages, especially when applied in a production line
setting. This approach can be used for multiple applications
in the industry, e.g., in semiconductor, automotive, metal,
and many other industrial applications to improve the
maintenance and production costs and quality. In this
paper, we investigate the possibility to create a predictive
maintenance framework using only easily available log data
based on a neural network framework for predictive
maintenance tasks. We outline the advantages of the ALFA
(AutoML for Log File Analysis) approach, which are high
efficiency in combination with a low entry border for
novices, among others. In a production line setting, one
would also be able to cope with concept drift and even with
data of a new quality in a gradual manner. In the presented
production line context, we also show the superior
performance of multiple neural networks over a
comprehensive neural network in practice. The proposed
software architecture allows not only for the automated
adaption to concept drift and even data of new quality but
also gives access to the current performance of the used
neural networks.

Index Terms—Arrowhead Tools, AutoML, Log Analysis,
Neuronal Architecture Search, Predictive Maintenance
Framework

This work was submitted for review on the 14th of June 2021.
This research work has been funded by the European Commission, through

the European H2020 research and innovation programme, ECSEL Joint
Undertaking, and National Funding Authorities from 18 involved countries
under the research project Arrowhead Tools with Grant Agreement no. 826452.
The publication was written at Virtual Vehicle Research GmbH in Graz and
partially funded within COMET Competence Centers for Excellent
Technologies from the Austrian Federal Ministry for Climate Action, the
Austrian Federal Ministry for Digital and Economic Affairs, the Province of
Styria (Dept. 12) and the Styrian Business Promotion Agency (SFG). The
Austrian Research Promotion Agency (FFG) has been authorised for the
programme management.

I. INTRODUCTION
redictive Maintenance (PdM), which roots can be traced
back to 1940, gained more and more attention with the rise

of automated data acquisition and data processing in decision
making [30]. By monitoring system parameters, such as
performance, vibrations, temperature development, oil
conditions, noise generation, or the like, a useful purpose
should be derived. The promises associated with using PdM are
diverse, starting with management control, reduction of
overtimes, reduction of downtimes, higher quality output,
higher user support, etc. [27]. As diverse as the desired benefits
of PdM are, the systems’ type, under which predictive
maintenance is applied, might even be more diverse. This type,
besides general principles of PdM, needs to be considered when
designing an appropriate PdM approach.

One of the regarded system types, under which PdM is
applied, includes an ever-changing production line in a System
of Systems (SoSs). An SoS, as a construct of systems, where
each was designed and can be used for a main purpose other
than being part of this SoS [2, 25], usually brings along non
harmonized log messages and uncoordinated behaviour. When
combining these different systems with an everchanging
environment, e.g., due to a replacement of certain subsystems
or because of a changing system load, a highly untransparent
and difficult to predict SoS is created. Depending on the
concrete setup of the system, different PdM approaches can be
applied, among these are log analysis approaches.

Log analysis is a rather easy approach to apply to predictive

maintenance [31] since in most cases log data, as a basis for the

Matthias Maurer is with the ‘Contextual Information Systems & Operational
Insights’ group at the Virtual Vehicle Research GmbH, Graz, Austria (email:
matthias.maurer@v2c2.at).

Andreas Festl is Senior Researcher for Data Science at Virtual Vehicle
Research GmbH, Graz, Austria.

Bor Bricelj is a Senior Researcher and Data Scientist, working with the
"Information Network Extraction Systems" group at the Virtual Vehicle
Research GmbH, Graz, Austria. His work is focused on domains of computer
vision and data enrichment.

Germar Schneider is Senior Expert for Factory Integration at Infineon
Technologies Dresden GmbH & Co. KG and work package leader in the
Arrowhead Tools project, Dresden Germany.

Michael Schmeja is the Area Manager for Safety and Security at the Virtual
Vehicle Research GmbH, Graz, Austria.

AutoML for Log File Analysis (ALFA) in a
Production Line System of Systems pointed

towards Predictive Maintenance
Matthias Maurer, Andreas Festl, Bor Bricelj, Germar Schneider, and Michael Schmeja

P

AutoML for Log File Analysis (ALFA) in a Production Line System
of Systems pointed towards Predictive Maintenance

 1

Abstract—Automated machine learning and predictive

maintenance have both become prominent terms in recent
years. Combining these two fields of research by conducting
log analysis using automated machine learning techniques
to fuel predictive maintenance algorithms holds multiple
advantages, especially when applied in a production line
setting. This approach can be used for multiple applications
in the industry, e.g., in semiconductor, automotive, metal,
and many other industrial applications to improve the
maintenance and production costs and quality. In this
paper, we investigate the possibility to create a predictive
maintenance framework using only easily available log data
based on a neural network framework for predictive
maintenance tasks. We outline the advantages of the ALFA
(AutoML for Log File Analysis) approach, which are high
efficiency in combination with a low entry border for
novices, among others. In a production line setting, one
would also be able to cope with concept drift and even with
data of a new quality in a gradual manner. In the presented
production line context, we also show the superior
performance of multiple neural networks over a
comprehensive neural network in practice. The proposed
software architecture allows not only for the automated
adaption to concept drift and even data of new quality but
also gives access to the current performance of the used
neural networks.

Index Terms—Arrowhead Tools, AutoML, Log Analysis,
Neuronal Architecture Search, Predictive Maintenance
Framework

This work was submitted for review on the 14th of June 2021.
This research work has been funded by the European Commission, through

the European H2020 research and innovation programme, ECSEL Joint
Undertaking, and National Funding Authorities from 18 involved countries
under the research project Arrowhead Tools with Grant Agreement no. 826452.
The publication was written at Virtual Vehicle Research GmbH in Graz and
partially funded within COMET Competence Centers for Excellent
Technologies from the Austrian Federal Ministry for Climate Action, the
Austrian Federal Ministry for Digital and Economic Affairs, the Province of
Styria (Dept. 12) and the Styrian Business Promotion Agency (SFG). The
Austrian Research Promotion Agency (FFG) has been authorised for the
programme management.

I. INTRODUCTION
redictive Maintenance (PdM), which roots can be traced
back to 1940, gained more and more attention with the rise

of automated data acquisition and data processing in decision
making [30]. By monitoring system parameters, such as
performance, vibrations, temperature development, oil
conditions, noise generation, or the like, a useful purpose
should be derived. The promises associated with using PdM are
diverse, starting with management control, reduction of
overtimes, reduction of downtimes, higher quality output,
higher user support, etc. [27]. As diverse as the desired benefits
of PdM are, the systems’ type, under which predictive
maintenance is applied, might even be more diverse. This type,
besides general principles of PdM, needs to be considered when
designing an appropriate PdM approach.

One of the regarded system types, under which PdM is
applied, includes an ever-changing production line in a System
of Systems (SoSs). An SoS, as a construct of systems, where
each was designed and can be used for a main purpose other
than being part of this SoS [2, 25], usually brings along non
harmonized log messages and uncoordinated behaviour. When
combining these different systems with an everchanging
environment, e.g., due to a replacement of certain subsystems
or because of a changing system load, a highly untransparent
and difficult to predict SoS is created. Depending on the
concrete setup of the system, different PdM approaches can be
applied, among these are log analysis approaches.

Log analysis is a rather easy approach to apply to predictive

maintenance [31] since in most cases log data, as a basis for the

Matthias Maurer is with the ‘Contextual Information Systems & Operational
Insights’ group at the Virtual Vehicle Research GmbH, Graz, Austria (email:
matthias.maurer@v2c2.at).

Andreas Festl is Senior Researcher for Data Science at Virtual Vehicle
Research GmbH, Graz, Austria.

Bor Bricelj is a Senior Researcher and Data Scientist, working with the
"Information Network Extraction Systems" group at the Virtual Vehicle
Research GmbH, Graz, Austria. His work is focused on domains of computer
vision and data enrichment.

Germar Schneider is Senior Expert for Factory Integration at Infineon
Technologies Dresden GmbH & Co. KG and work package leader in the
Arrowhead Tools project, Dresden Germany.

Michael Schmeja is the Area Manager for Safety and Security at the Virtual
Vehicle Research GmbH, Graz, Austria.

AutoML for Log File Analysis (ALFA) in a
Production Line System of Systems pointed

towards Predictive Maintenance
Matthias Maurer, Andreas Festl, Bor Bricelj, Germar Schneider, and Michael Schmeja

P

2

predictive maintenance intervention, is produced automatically
and no further adjustments to the system are needed. They get
collected anyway and, hence, only need processing to yield
useful predictive maintenance findings. Log analysis
approaches can be found for software [1, 12, 13, 15, 24, 28] or
hardware SoSs [32], following different PdM objectives with
different means. Among these, one can find visual tree
representation [15], prediction heuristics, such as the so-called
Dispersion Frame Technique [24], or machine learning
methods [4, 13].

Machine learning, as one approach to log analysis, is itself a
well-researched academic area with application in nearly every
imaginable area, especially in autonomous driving, health care,
finance, manufacturing, and energy harvesting [3]. It is
generally divided into supervised, unsupervised, and
reinforcement learning [19]. Supervised learning uses features
to predict labels, unsupervised learning uses features to get an
insight about their statistical properties, and reinforcement
learning uses a reward system for the current model behaviour
to optimize the model’s behaviour. Depending on the
maintenance task in mind, an appropriate approach needs to be
identified. In terms of identifying situations that need
maintenance actions in advance, one can use the system’s logs
as features and the maintenance situations as labels, which are
expressed by certain log entries. This would suggest supervised
learning as a suitable method approach. Supervised learning
methods include logistic regression, decision trees, support
vector machines, and neural networks, among others [4].

A special fascination holds automated machine learning
(AutoML) in this context since it could enable a PdM system to
adapt to a changing environment. AutoML, which is mainly
used in natural language processing (NLP) and computer vision
(CV), aims at automating the entire pipeline of machine
learning. Although there have been major achievements in NLP
and CV, other areas are neglected [14]. This is also true for log
analysis, which would benefit twice from such an approach.
Firstly, such an automatization would provide access to this
technology for a wider audience and, in general, support the
creation of better ML systems. Secondly, besides these general
advantages, this would allow the PdM system to update its
outdated ML components automatically whenever it is
necessary due to the changing environment.

The contributions of this paper are the following: a PdM
framework for a steadily changing production line is introduced
and different NN architectures are evaluated against each other
within this framework using a proof-of-concept
implementation. The practical relevance and automated nature
of the approach allow for wide applicability, especially for
novices in the area of machine learning.

We will now show in this paper the high potential of AutoML
in the context of a production line system of systems. Therefore,
we first discuss general AutoML techniques in Section 2, before
we discuss the applications of AutoML in production systems

of systems in Section 3. Section 4 shows the first
implementation of the theoretical ideas of Section 3. Finally,
Section 5 discusses the conclusions based on this work and
possible further work in this context.

II. GENERAL AUTOML TECHNIQUES

An extensive review of the state-of-the-art regarding
AutoML in the context of neuronal networks (NN) was done by
Xin He, Kaiyong Zhao, and Xiaowen Chu [14]. They describe
the AutoML pipeline consisting of four stages: data preparation,
feature engineering, model generation, and model evaluation.
Data preparation, as a means to obtain useful data, is composed
of data collection, cleaning, and augmentation. Based on these
steps, feature selection, extraction, and construction are used
during feature engineering to obtain the features from the data,
which are later used for model generation. This model
generation can itself be divided into search space, where the ML
model’s structure is defined (e.g. support vector machine, k-
nearest neighbours, neural networks) and optimization
methods, which are concerned with optimizing hyperparameter
and architecture of the previously defined model. Model
evaluation, as the last described stage, is used to evaluate a
model’s performance. The AutoML pipeline is shown in Fig. 1.

Parts of this AutoML pipeline are referred to as neural
architecture search (NAS), a sub-topic of AutoML gaining
increased attention most recently [14]. NAS includes
architecture optimization in the case of a neural network search
space from the area of model generation in combination with
model evaluation. The idea is to create a basic NN ML model
based on the considered search space by applying architecture
optimization to this structure and to create the final model by
hyperparameter optimization. Evaluation during this procedure
is inevitable. The search space describes how candidates for the
model’s basic structure are found and can be entire-structured,
cell-based, hierarchical, and morphism-based. Entire-structured
approaches create a structure by selecting layers and their order
from a pool of layer candidates. Cell-based approaches use a
fixed number of repeating cell structures, consisting of different
blocks, which are concatenated afterward and consist itself of
different layers combined at the end. One can tune the model
by selecting the number of blocks, the operations of the layers
in a block, and the combination method at the end of a block
(e.g. addition, concatenation, etc.) and cell. An exemplary cell
structure is shown in Fig. 2.

SEPTEMBER 2021 • VOLUME XIII • NUMBER 376

INFOCOMMUNICATIONS JOURNAL

AutoML for Log File Analysis (ALFA) in a
Production Line System of Systems pointed

towards Predictive Maintenance
Matthias Maurer, Andreas Festl, Bor Bricelj, Germar Schneider, and Michael Schmeja

Abstract—Automated machine learning and predictive
maintenance have both become prominent terms in recent years.
Combining these two fields of research by conducting log analysis
using automated machine learning techniques to fuel predictive
maintenance algorithms holds multiple advantages, especially
when applied in a production line setting. This approach
can be used for multiple applications in the industry, e.g., in
semiconductor, automotive, metal, and many other industrial
applications to improve the maintenance and production costs
and quality. In this paper, we investigate the possibility to
create a predictive maintenance framework using only easily
available log data based on a neural network framework for
predictive maintenance tasks. We outline the advantages of
the ALFA (AutoML for Log File Analysis) approach, which
are high efficiency in combination with a low entry border for
novices, among others. In a production line setting, one would
also be able to cope with concept drift and even with data of a
new quality in a gradual manner. In the presented production
line context, we also show the superior performance of multiple
neural networks over a comprehensive neural network in
practice. The proposed software architecture allows not only for
the automated adaption to concept drift and even data of new
quality but also gives access to the current performance of the
used neural networks.

Index Terms—Arrowhead Tools, AutoML, Log Analysis,
Neuronal Architecture Search, Predictive Maintenance
Framework

DOI: 10.36244/ICJ.2021.3.8

This work was submitted for review on the 14th of June 2021.
This research work has been funded by the European Commission, through

the European H2020 research and innovation programme, ECSEL Joint
Undertaking, and National Funding Authorities from 18 involved countries
under the research project Arrowhead Tools with Grant Agreement no.
826452. The publication was written at Virtual Vehicle Research GmbH in
Graz and partially funded within COMET Competence Centers for Excellent
Technologies from the Austrian Federal Ministry for Climate Action, the
Austrian Federal Ministry for Digital and Economic Affairs, the Province of
Styria (Dept. 12) and the Styrian Business Promotion Agency (SFG). The
Austrian Research Promotion Agency (FFG) has been authorised for the
programme management.

Matthias Maurer is with the ‘Contextual Information Systems & Operational
Insights’ group at the Virtual Vehicle Research GmbH, Graz, Austria (email:
matthias.maurer@v2c2.at).

Andreas Festl is Senior Researcher for Data Science at Virtual Vehicle
Research GmbH, Graz, Austria.

Bor Bricelj is a Senior Researcher and Data Scientist, working with the
"Information Network Extraction Systems" group at the Virtual Vehicle
Research GmbH, Graz, Austria. His work is focused on domains of computer
vision and data enrichment.

Germar Schneider is Senior Expert for Factory Integration at Infineon
Technologies Dresden GmbH & Co. KG and work package leader in the
Arrowhead Tools project, Dresden Germany.

Michael Schmeja is the Area Manager for Safety and Security at the Virtual
Vehicle Research GmbH, Graz, Austria.

2

predictive maintenance intervention, is produced automatically
and no further adjustments to the system are needed. They get
collected anyway and, hence, only need processing to yield
useful predictive maintenance findings. Log analysis
approaches can be found for software [1, 12, 13, 15, 24, 28] or
hardware SoSs [32], following different PdM objectives with
different means. Among these, one can find visual tree
representation [15], prediction heuristics, such as the so-called
Dispersion Frame Technique [24], or machine learning
methods [4, 13].

Machine learning, as one approach to log analysis, is itself a
well-researched academic area with application in nearly every
imaginable area, especially in autonomous driving, health care,
finance, manufacturing, and energy harvesting [3]. It is
generally divided into supervised, unsupervised, and
reinforcement learning [19]. Supervised learning uses features
to predict labels, unsupervised learning uses features to get an
insight about their statistical properties, and reinforcement
learning uses a reward system for the current model behaviour
to optimize the model’s behaviour. Depending on the
maintenance task in mind, an appropriate approach needs to be
identified. In terms of identifying situations that need
maintenance actions in advance, one can use the system’s logs
as features and the maintenance situations as labels, which are
expressed by certain log entries. This would suggest supervised
learning as a suitable method approach. Supervised learning
methods include logistic regression, decision trees, support
vector machines, and neural networks, among others [4].

A special fascination holds automated machine learning
(AutoML) in this context since it could enable a PdM system to
adapt to a changing environment. AutoML, which is mainly
used in natural language processing (NLP) and computer vision
(CV), aims at automating the entire pipeline of machine
learning. Although there have been major achievements in NLP
and CV, other areas are neglected [14]. This is also true for log
analysis, which would benefit twice from such an approach.
Firstly, such an automatization would provide access to this
technology for a wider audience and, in general, support the
creation of better ML systems. Secondly, besides these general
advantages, this would allow the PdM system to update its
outdated ML components automatically whenever it is
necessary due to the changing environment.

The contributions of this paper are the following: a PdM
framework for a steadily changing production line is introduced
and different NN architectures are evaluated against each other
within this framework using a proof-of-concept
implementation. The practical relevance and automated nature
of the approach allow for wide applicability, especially for
novices in the area of machine learning.

We will now show in this paper the high potential of AutoML
in the context of a production line system of systems. Therefore,
we first discuss general AutoML techniques in Section 2, before
we discuss the applications of AutoML in production systems

of systems in Section 3. Section 4 shows the first
implementation of the theoretical ideas of Section 3. Finally,
Section 5 discusses the conclusions based on this work and
possible further work in this context.

II. GENERAL AUTOML TECHNIQUES

An extensive review of the state-of-the-art regarding
AutoML in the context of neuronal networks (NN) was done by
Xin He, Kaiyong Zhao, and Xiaowen Chu [14]. They describe
the AutoML pipeline consisting of four stages: data preparation,
feature engineering, model generation, and model evaluation.
Data preparation, as a means to obtain useful data, is composed
of data collection, cleaning, and augmentation. Based on these
steps, feature selection, extraction, and construction are used
during feature engineering to obtain the features from the data,
which are later used for model generation. This model
generation can itself be divided into search space, where the ML
model’s structure is defined (e.g. support vector machine, k-
nearest neighbours, neural networks) and optimization
methods, which are concerned with optimizing hyperparameter
and architecture of the previously defined model. Model
evaluation, as the last described stage, is used to evaluate a
model’s performance. The AutoML pipeline is shown in Fig. 1.

Parts of this AutoML pipeline are referred to as neural
architecture search (NAS), a sub-topic of AutoML gaining
increased attention most recently [14]. NAS includes
architecture optimization in the case of a neural network search
space from the area of model generation in combination with
model evaluation. The idea is to create a basic NN ML model
based on the considered search space by applying architecture
optimization to this structure and to create the final model by
hyperparameter optimization. Evaluation during this procedure
is inevitable. The search space describes how candidates for the
model’s basic structure are found and can be entire-structured,
cell-based, hierarchical, and morphism-based. Entire-structured
approaches create a structure by selecting layers and their order
from a pool of layer candidates. Cell-based approaches use a
fixed number of repeating cell structures, consisting of different
blocks, which are concatenated afterward and consist itself of
different layers combined at the end. One can tune the model
by selecting the number of blocks, the operations of the layers
in a block, and the combination method at the end of a block
(e.g. addition, concatenation, etc.) and cell. An exemplary cell
structure is shown in Fig. 2.

AutoML for Log File Analysis (ALFA) in a Production Line System
of Systems pointed towards Predictive Maintenance

2

predictive maintenance intervention, is produced automatically
and no further adjustments to the system are needed. They get
collected anyway and, hence, only need processing to yield
useful predictive maintenance findings. Log analysis
approaches can be found for software [1, 12, 13, 15, 24, 28] or
hardware SoSs [32], following different PdM objectives with
different means. Among these, one can find visual tree
representation [15], prediction heuristics, such as the so-called
Dispersion Frame Technique [24], or machine learning
methods [4, 13].

Machine learning, as one approach to log analysis, is itself a
well-researched academic area with application in nearly every
imaginable area, especially in autonomous driving, health care,
finance, manufacturing, and energy harvesting [3]. It is
generally divided into supervised, unsupervised, and
reinforcement learning [19]. Supervised learning uses features
to predict labels, unsupervised learning uses features to get an
insight about their statistical properties, and reinforcement
learning uses a reward system for the current model behaviour
to optimize the model’s behaviour. Depending on the
maintenance task in mind, an appropriate approach needs to be
identified. In terms of identifying situations that need
maintenance actions in advance, one can use the system’s logs
as features and the maintenance situations as labels, which are
expressed by certain log entries. This would suggest supervised
learning as a suitable method approach. Supervised learning
methods include logistic regression, decision trees, support
vector machines, and neural networks, among others [4].

A special fascination holds automated machine learning
(AutoML) in this context since it could enable a PdM system to
adapt to a changing environment. AutoML, which is mainly
used in natural language processing (NLP) and computer vision
(CV), aims at automating the entire pipeline of machine
learning. Although there have been major achievements in NLP
and CV, other areas are neglected [14]. This is also true for log
analysis, which would benefit twice from such an approach.
Firstly, such an automatization would provide access to this
technology for a wider audience and, in general, support the
creation of better ML systems. Secondly, besides these general
advantages, this would allow the PdM system to update its
outdated ML components automatically whenever it is
necessary due to the changing environment.

The contributions of this paper are the following: a PdM
framework for a steadily changing production line is introduced
and different NN architectures are evaluated against each other
within this framework using a proof-of-concept
implementation. The practical relevance and automated nature
of the approach allow for wide applicability, especially for
novices in the area of machine learning.

We will now show in this paper the high potential of AutoML
in the context of a production line system of systems. Therefore,
we first discuss general AutoML techniques in Section 2, before
we discuss the applications of AutoML in production systems

of systems in Section 3. Section 4 shows the first
implementation of the theoretical ideas of Section 3. Finally,
Section 5 discusses the conclusions based on this work and
possible further work in this context.

II. GENERAL AUTOML TECHNIQUES

An extensive review of the state-of-the-art regarding
AutoML in the context of neuronal networks (NN) was done by
Xin He, Kaiyong Zhao, and Xiaowen Chu [14]. They describe
the AutoML pipeline consisting of four stages: data preparation,
feature engineering, model generation, and model evaluation.
Data preparation, as a means to obtain useful data, is composed
of data collection, cleaning, and augmentation. Based on these
steps, feature selection, extraction, and construction are used
during feature engineering to obtain the features from the data,
which are later used for model generation. This model
generation can itself be divided into search space, where the ML
model’s structure is defined (e.g. support vector machine, k-
nearest neighbours, neural networks) and optimization
methods, which are concerned with optimizing hyperparameter
and architecture of the previously defined model. Model
evaluation, as the last described stage, is used to evaluate a
model’s performance. The AutoML pipeline is shown in Fig. 1.

Parts of this AutoML pipeline are referred to as neural
architecture search (NAS), a sub-topic of AutoML gaining
increased attention most recently [14]. NAS includes
architecture optimization in the case of a neural network search
space from the area of model generation in combination with
model evaluation. The idea is to create a basic NN ML model
based on the considered search space by applying architecture
optimization to this structure and to create the final model by
hyperparameter optimization. Evaluation during this procedure
is inevitable. The search space describes how candidates for the
model’s basic structure are found and can be entire-structured,
cell-based, hierarchical, and morphism-based. Entire-structured
approaches create a structure by selecting layers and their order
from a pool of layer candidates. Cell-based approaches use a
fixed number of repeating cell structures, consisting of different
blocks, which are concatenated afterward and consist itself of
different layers combined at the end. One can tune the model
by selecting the number of blocks, the operations of the layers
in a block, and the combination method at the end of a block
(e.g. addition, concatenation, etc.) and cell. An exemplary cell
structure is shown in Fig. 2.

2

predictive maintenance intervention, is produced automatically
and no further adjustments to the system are needed. They get
collected anyway and, hence, only need processing to yield
useful predictive maintenance findings. Log analysis
approaches can be found for software [1, 12, 13, 15, 24, 28] or
hardware SoSs [32], following different PdM objectives with
different means. Among these, one can find visual tree
representation [15], prediction heuristics, such as the so-called
Dispersion Frame Technique [24], or machine learning
methods [4, 13].

Machine learning, as one approach to log analysis, is itself a
well-researched academic area with application in nearly every
imaginable area, especially in autonomous driving, health care,
finance, manufacturing, and energy harvesting [3]. It is
generally divided into supervised, unsupervised, and
reinforcement learning [19]. Supervised learning uses features
to predict labels, unsupervised learning uses features to get an
insight about their statistical properties, and reinforcement
learning uses a reward system for the current model behaviour
to optimize the model’s behaviour. Depending on the
maintenance task in mind, an appropriate approach needs to be
identified. In terms of identifying situations that need
maintenance actions in advance, one can use the system’s logs
as features and the maintenance situations as labels, which are
expressed by certain log entries. This would suggest supervised
learning as a suitable method approach. Supervised learning
methods include logistic regression, decision trees, support
vector machines, and neural networks, among others [4].

A special fascination holds automated machine learning
(AutoML) in this context since it could enable a PdM system to
adapt to a changing environment. AutoML, which is mainly
used in natural language processing (NLP) and computer vision
(CV), aims at automating the entire pipeline of machine
learning. Although there have been major achievements in NLP
and CV, other areas are neglected [14]. This is also true for log
analysis, which would benefit twice from such an approach.
Firstly, such an automatization would provide access to this
technology for a wider audience and, in general, support the
creation of better ML systems. Secondly, besides these general
advantages, this would allow the PdM system to update its
outdated ML components automatically whenever it is
necessary due to the changing environment.

The contributions of this paper are the following: a PdM
framework for a steadily changing production line is introduced
and different NN architectures are evaluated against each other
within this framework using a proof-of-concept
implementation. The practical relevance and automated nature
of the approach allow for wide applicability, especially for
novices in the area of machine learning.

We will now show in this paper the high potential of AutoML
in the context of a production line system of systems. Therefore,
we first discuss general AutoML techniques in Section 2, before
we discuss the applications of AutoML in production systems

of systems in Section 3. Section 4 shows the first
implementation of the theoretical ideas of Section 3. Finally,
Section 5 discusses the conclusions based on this work and
possible further work in this context.

II. GENERAL AUTOML TECHNIQUES

An extensive review of the state-of-the-art regarding
AutoML in the context of neuronal networks (NN) was done by
Xin He, Kaiyong Zhao, and Xiaowen Chu [14]. They describe
the AutoML pipeline consisting of four stages: data preparation,
feature engineering, model generation, and model evaluation.
Data preparation, as a means to obtain useful data, is composed
of data collection, cleaning, and augmentation. Based on these
steps, feature selection, extraction, and construction are used
during feature engineering to obtain the features from the data,
which are later used for model generation. This model
generation can itself be divided into search space, where the ML
model’s structure is defined (e.g. support vector machine, k-
nearest neighbours, neural networks) and optimization
methods, which are concerned with optimizing hyperparameter
and architecture of the previously defined model. Model
evaluation, as the last described stage, is used to evaluate a
model’s performance. The AutoML pipeline is shown in Fig. 1.

Parts of this AutoML pipeline are referred to as neural
architecture search (NAS), a sub-topic of AutoML gaining
increased attention most recently [14]. NAS includes
architecture optimization in the case of a neural network search
space from the area of model generation in combination with
model evaluation. The idea is to create a basic NN ML model
based on the considered search space by applying architecture
optimization to this structure and to create the final model by
hyperparameter optimization. Evaluation during this procedure
is inevitable. The search space describes how candidates for the
model’s basic structure are found and can be entire-structured,
cell-based, hierarchical, and morphism-based. Entire-structured
approaches create a structure by selecting layers and their order
from a pool of layer candidates. Cell-based approaches use a
fixed number of repeating cell structures, consisting of different
blocks, which are concatenated afterward and consist itself of
different layers combined at the end. One can tune the model
by selecting the number of blocks, the operations of the layers
in a block, and the combination method at the end of a block
(e.g. addition, concatenation, etc.) and cell. An exemplary cell
structure is shown in Fig. 2.

3

In comparison to cell-based approaches, hierarchical search
also focuses on the network structure and not only on the cell
structure. There are different approaches, all allowing for a
fitting on a cell level and a network level [20, 21, 22].
Morphism-based search space uses already existing model
structures to improve already existing networks and, hence,
create new networks [33].

After defining the NN based on the search space, architecture
optimization is used to find the best-performing architecture,
which always includes the evaluation of different NNs. This
search for the best architecture can be regarded as a search for
a hyperparameter, where human expertise is needed. Different
algorithms aim at automating this process, such as grid/random
search, the evolutionary algorithm, reinforcement learning,
gradient descent, surrogate model-based optimization, and
hybrid methods. Grid and random search are two very basic
optimization methods not considering any feedback from the
current state of the architecture and might be considered a
baseline approach for comparison. The evolutionary algorithm
is a heuristic optimization algorithm, which uses an evaluation
procedure until a stopping criterion is met. Starting with a set
of NN, the evaluation procedure, inspired by biological
evolution, selects a subset based on the NNs’ performance,
generates a new network from every two previously selected
NNs, mutates the resulting NN a bit, and removes the worst-
performing new NNs. Another recognized approach,
reinforcement learning [37], usually uses a recurrent neural
network (RNN) to incrementally improve the architecture by
executing certain actions leading to a so-called reward
influencing the next action and moving in that manner through
the search space. This is shown in Fig. 3.

In comparison to these already mentioned methods to search
for the best-performing architecture, gradient descent is an
approach allowing for a continuous search space [14, 23]. For
that reason, it uses a continuous relaxation of the architecture
representation, which is then used for optimization for the
operations used in one node of the architecture’s cell and leads
to one architecture. Surrogate model-based optimization is a
broadly used approach for architecture optimize by building a
surrogate model to predict the best performing architecture [8,
17, 26]. Of course, all mentioned methods might be combined
in a hybrid approach.

After deciding on the architecture to use, which is done with
the same set of hyperparameters in most cases, one can turn to
the optimization of the hyperparameters for the used
architecture [14]. Therefore, different approaches are used,
such as grid/random search, Bayesian optimization, and
gradient-based optimization. Alternatively, hyperparameter and
architecture optimization (HAO) can be used to optimize
hyperparameter and architecture in combination [34].

All NAS approaches share one mutual problem, which is the
need for frequent evaluation of architectures, leading to a high
need for time and computing resources [14]. Different
approaches, such as weight sharing [29], surrogate methods [9],
early stopping [7], and low fidelity methods [18], aim at
reducing this need for resources.

III. ADVANTAGES OF AUTOML IN A PRODUCTION SETTING

AutoML has proven its usefulness in the context of NLP [5,
16] and CV [11, 35], other areas have been neglected [14].
Especially in a production setting, applying AutoML
approaches to log data might be useful, since they not only bring
along the known advantages, such as easy access to NNs and
improvement of ML models but also advantages specific to a
production setting. Since there is a wide variation in production
settings, we will now describe one rather generic production
setting to show the usefulness of AutoML approaches when
working with log data in this context.

One aspect of the production line setting is the usage of log
data, which is produced by the subsystems and generally easily
accessible - merely a central collection of this already existing
and accessible data is required for the proposed utilization in a
NN. Naturally, one can collect a unique ID for a specific log
entry, a unique ID for a specific subsystem where the log entry
originated, the time of occurrence, and possibly a duration.
Depending on the actual setup further data might be recorded.
In this setting, some log IDs might have an informing character,
others might indicate a critical or interesting situation in the
overall system. It is of utmost importance to prevent the cause
of critical log entries from happening or, if this is not possible,
to quickly react to the negative influences associated with such
a critical log entry. In a predictive maintenance manner, a NN
can be trained to predict upcoming log entries of interest-based
on the observed log entries to allow for appropriate
intervention.

Fig. 1. AutoML pipeline as described by Xin He, Kaiyong Zhao, and
Xiaowen Chu [14]. The elements shown in grey describe NAS elements.

Fig. 2. Exemplary cell structure as shown by Xin He, Kaiyong Zhao, and
Xiaowen Chu [14].

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2021 • VOLUME XIII • NUMBER 3 77

3

In comparison to cell-based approaches, hierarchical search
also focuses on the network structure and not only on the cell
structure. There are different approaches, all allowing for a
fitting on a cell level and a network level [20, 21, 22].
Morphism-based search space uses already existing model
structures to improve already existing networks and, hence,
create new networks [33].

After defining the NN based on the search space, architecture
optimization is used to find the best-performing architecture,
which always includes the evaluation of different NNs. This
search for the best architecture can be regarded as a search for
a hyperparameter, where human expertise is needed. Different
algorithms aim at automating this process, such as grid/random
search, the evolutionary algorithm, reinforcement learning,
gradient descent, surrogate model-based optimization, and
hybrid methods. Grid and random search are two very basic
optimization methods not considering any feedback from the
current state of the architecture and might be considered a
baseline approach for comparison. The evolutionary algorithm
is a heuristic optimization algorithm, which uses an evaluation
procedure until a stopping criterion is met. Starting with a set
of NN, the evaluation procedure, inspired by biological
evolution, selects a subset based on the NNs’ performance,
generates a new network from every two previously selected
NNs, mutates the resulting NN a bit, and removes the worst-
performing new NNs. Another recognized approach,
reinforcement learning [37], usually uses a recurrent neural
network (RNN) to incrementally improve the architecture by
executing certain actions leading to a so-called reward
influencing the next action and moving in that manner through
the search space. This is shown in Fig. 3.

In comparison to these already mentioned methods to search
for the best-performing architecture, gradient descent is an
approach allowing for a continuous search space [14, 23]. For
that reason, it uses a continuous relaxation of the architecture
representation, which is then used for optimization for the
operations used in one node of the architecture’s cell and leads
to one architecture. Surrogate model-based optimization is a
broadly used approach for architecture optimize by building a
surrogate model to predict the best performing architecture [8,
17, 26]. Of course, all mentioned methods might be combined
in a hybrid approach.

After deciding on the architecture to use, which is done with
the same set of hyperparameters in most cases, one can turn to
the optimization of the hyperparameters for the used
architecture [14]. Therefore, different approaches are used,
such as grid/random search, Bayesian optimization, and
gradient-based optimization. Alternatively, hyperparameter and
architecture optimization (HAO) can be used to optimize
hyperparameter and architecture in combination [34].

All NAS approaches share one mutual problem, which is the
need for frequent evaluation of architectures, leading to a high
need for time and computing resources [14]. Different
approaches, such as weight sharing [29], surrogate methods [9],
early stopping [7], and low fidelity methods [18], aim at
reducing this need for resources.

III. ADVANTAGES OF AUTOML IN A PRODUCTION SETTING

AutoML has proven its usefulness in the context of NLP [5,
16] and CV [11, 35], other areas have been neglected [14].
Especially in a production setting, applying AutoML
approaches to log data might be useful, since they not only bring
along the known advantages, such as easy access to NNs and
improvement of ML models but also advantages specific to a
production setting. Since there is a wide variation in production
settings, we will now describe one rather generic production
setting to show the usefulness of AutoML approaches when
working with log data in this context.

One aspect of the production line setting is the usage of log
data, which is produced by the subsystems and generally easily
accessible - merely a central collection of this already existing
and accessible data is required for the proposed utilization in a
NN. Naturally, one can collect a unique ID for a specific log
entry, a unique ID for a specific subsystem where the log entry
originated, the time of occurrence, and possibly a duration.
Depending on the actual setup further data might be recorded.
In this setting, some log IDs might have an informing character,
others might indicate a critical or interesting situation in the
overall system. It is of utmost importance to prevent the cause
of critical log entries from happening or, if this is not possible,
to quickly react to the negative influences associated with such
a critical log entry. In a predictive maintenance manner, a NN
can be trained to predict upcoming log entries of interest-based
on the observed log entries to allow for appropriate
intervention.

AutoML for Log File Analysis (ALFA) in a Production Line System
of Systems pointed towards Predictive Maintenance

3

In comparison to cell-based approaches, hierarchical search
also focuses on the network structure and not only on the cell
structure. There are different approaches, all allowing for a
fitting on a cell level and a network level [20, 21, 22].
Morphism-based search space uses already existing model
structures to improve already existing networks and, hence,
create new networks [33].

After defining the NN based on the search space, architecture
optimization is used to find the best-performing architecture,
which always includes the evaluation of different NNs. This
search for the best architecture can be regarded as a search for
a hyperparameter, where human expertise is needed. Different
algorithms aim at automating this process, such as grid/random
search, the evolutionary algorithm, reinforcement learning,
gradient descent, surrogate model-based optimization, and
hybrid methods. Grid and random search are two very basic
optimization methods not considering any feedback from the
current state of the architecture and might be considered a
baseline approach for comparison. The evolutionary algorithm
is a heuristic optimization algorithm, which uses an evaluation
procedure until a stopping criterion is met. Starting with a set
of NN, the evaluation procedure, inspired by biological
evolution, selects a subset based on the NNs’ performance,
generates a new network from every two previously selected
NNs, mutates the resulting NN a bit, and removes the worst-
performing new NNs. Another recognized approach,
reinforcement learning [37], usually uses a recurrent neural
network (RNN) to incrementally improve the architecture by
executing certain actions leading to a so-called reward
influencing the next action and moving in that manner through
the search space. This is shown in Fig. 3.

In comparison to these already mentioned methods to search
for the best-performing architecture, gradient descent is an
approach allowing for a continuous search space [14, 23]. For
that reason, it uses a continuous relaxation of the architecture
representation, which is then used for optimization for the
operations used in one node of the architecture’s cell and leads
to one architecture. Surrogate model-based optimization is a
broadly used approach for architecture optimize by building a
surrogate model to predict the best performing architecture [8,
17, 26]. Of course, all mentioned methods might be combined
in a hybrid approach.

After deciding on the architecture to use, which is done with
the same set of hyperparameters in most cases, one can turn to
the optimization of the hyperparameters for the used
architecture [14]. Therefore, different approaches are used,
such as grid/random search, Bayesian optimization, and
gradient-based optimization. Alternatively, hyperparameter and
architecture optimization (HAO) can be used to optimize
hyperparameter and architecture in combination [34].

All NAS approaches share one mutual problem, which is the
need for frequent evaluation of architectures, leading to a high
need for time and computing resources [14]. Different
approaches, such as weight sharing [29], surrogate methods [9],
early stopping [7], and low fidelity methods [18], aim at
reducing this need for resources.

III. ADVANTAGES OF AUTOML IN A PRODUCTION SETTING

AutoML has proven its usefulness in the context of NLP [5,
16] and CV [11, 35], other areas have been neglected [14].
Especially in a production setting, applying AutoML
approaches to log data might be useful, since they not only bring
along the known advantages, such as easy access to NNs and
improvement of ML models but also advantages specific to a
production setting. Since there is a wide variation in production
settings, we will now describe one rather generic production
setting to show the usefulness of AutoML approaches when
working with log data in this context.

One aspect of the production line setting is the usage of log
data, which is produced by the subsystems and generally easily
accessible - merely a central collection of this already existing
and accessible data is required for the proposed utilization in a
NN. Naturally, one can collect a unique ID for a specific log
entry, a unique ID for a specific subsystem where the log entry
originated, the time of occurrence, and possibly a duration.
Depending on the actual setup further data might be recorded.
In this setting, some log IDs might have an informing character,
others might indicate a critical or interesting situation in the
overall system. It is of utmost importance to prevent the cause
of critical log entries from happening or, if this is not possible,
to quickly react to the negative influences associated with such
a critical log entry. In a predictive maintenance manner, a NN
can be trained to predict upcoming log entries of interest-based
on the observed log entries to allow for appropriate
intervention.

Fig. 3. Basic functionality of reinforcement learning as shown by Xin He,
Kaiyong Zhao, and Xiaowen Chu [14].

3

In comparison to cell-based approaches, hierarchical search
also focuses on the network structure and not only on the cell
structure. There are different approaches, all allowing for a
fitting on a cell level and a network level [20, 21, 22].
Morphism-based search space uses already existing model
structures to improve already existing networks and, hence,
create new networks [33].

After defining the NN based on the search space, architecture
optimization is used to find the best-performing architecture,
which always includes the evaluation of different NNs. This
search for the best architecture can be regarded as a search for
a hyperparameter, where human expertise is needed. Different
algorithms aim at automating this process, such as grid/random
search, the evolutionary algorithm, reinforcement learning,
gradient descent, surrogate model-based optimization, and
hybrid methods. Grid and random search are two very basic
optimization methods not considering any feedback from the
current state of the architecture and might be considered a
baseline approach for comparison. The evolutionary algorithm
is a heuristic optimization algorithm, which uses an evaluation
procedure until a stopping criterion is met. Starting with a set
of NN, the evaluation procedure, inspired by biological
evolution, selects a subset based on the NNs’ performance,
generates a new network from every two previously selected
NNs, mutates the resulting NN a bit, and removes the worst-
performing new NNs. Another recognized approach,
reinforcement learning [37], usually uses a recurrent neural
network (RNN) to incrementally improve the architecture by
executing certain actions leading to a so-called reward
influencing the next action and moving in that manner through
the search space. This is shown in Fig. 3.

In comparison to these already mentioned methods to search
for the best-performing architecture, gradient descent is an
approach allowing for a continuous search space [14, 23]. For
that reason, it uses a continuous relaxation of the architecture
representation, which is then used for optimization for the
operations used in one node of the architecture’s cell and leads
to one architecture. Surrogate model-based optimization is a
broadly used approach for architecture optimize by building a
surrogate model to predict the best performing architecture [8,
17, 26]. Of course, all mentioned methods might be combined
in a hybrid approach.

After deciding on the architecture to use, which is done with
the same set of hyperparameters in most cases, one can turn to
the optimization of the hyperparameters for the used
architecture [14]. Therefore, different approaches are used,
such as grid/random search, Bayesian optimization, and
gradient-based optimization. Alternatively, hyperparameter and
architecture optimization (HAO) can be used to optimize
hyperparameter and architecture in combination [34].

All NAS approaches share one mutual problem, which is the
need for frequent evaluation of architectures, leading to a high
need for time and computing resources [14]. Different
approaches, such as weight sharing [29], surrogate methods [9],
early stopping [7], and low fidelity methods [18], aim at
reducing this need for resources.

III. ADVANTAGES OF AUTOML IN A PRODUCTION SETTING

AutoML has proven its usefulness in the context of NLP [5,
16] and CV [11, 35], other areas have been neglected [14].
Especially in a production setting, applying AutoML
approaches to log data might be useful, since they not only bring
along the known advantages, such as easy access to NNs and
improvement of ML models but also advantages specific to a
production setting. Since there is a wide variation in production
settings, we will now describe one rather generic production
setting to show the usefulness of AutoML approaches when
working with log data in this context.

One aspect of the production line setting is the usage of log
data, which is produced by the subsystems and generally easily
accessible - merely a central collection of this already existing
and accessible data is required for the proposed utilization in a
NN. Naturally, one can collect a unique ID for a specific log
entry, a unique ID for a specific subsystem where the log entry
originated, the time of occurrence, and possibly a duration.
Depending on the actual setup further data might be recorded.
In this setting, some log IDs might have an informing character,
others might indicate a critical or interesting situation in the
overall system. It is of utmost importance to prevent the cause
of critical log entries from happening or, if this is not possible,
to quickly react to the negative influences associated with such
a critical log entry. In a predictive maintenance manner, a NN
can be trained to predict upcoming log entries of interest-based
on the observed log entries to allow for appropriate
intervention.

4

Another aspect of the hereinafter regarded production line
setting is its SoS nature, which determines its composition of
distinct, changing subsystems working on a changing
production load. Both addressed circumstances, a changing
system and a changing production load are realistic due to
continuous improvements of the production line and variations
in the production demands, and they impact heavily on the log
data. An altered production load influences the statistic
properties of the log data and, hence, might render a trained NN
unsuitable. These changing statistical properties, denoted as
concept drift [10], are not necessarily happening incremental
but might happen suddenly without any further indication on
how the change might unfold, due to an unforeseen change in
production. An even greater influence is exhibited by a new
subsystem, which might introduce a new quality of log data,
which cannot be handled by a trained NN.

The described problems of a sudden concept drift change and
the introduction of a new quality of log data, specific to the
described production line setting, can be addressed by AutoML
approaches. Concept drift, as the first addressed problem, is
already a discussed topic in literature [10]. Forgetting
mechanisms, for example, allow to incorporate data with
different emphasis, depending on how recent they are. In
combination with change detection based on sequential
analysis, statistical process control, distribution comparison, or
contextual approaches, the software can react to concept drift
and an adjustment of the model can be initiated. This
adjustment, or learning, can be divided into two approaches:
retraining, where the current model is discarded, and
incremental adaption, where the current model is updated.
Hence, concept drift is a phenomenon one can cope with,
whereas an introduction of a new quality of log data, as the
second addressed problem, is not yet discussed on a wide basis.
When working with an embedding layer to map the log IDs to
n-dimensional vectors, for example, one would have to adjust
the vocable size (number of different log IDs) as input to this
layer. This would require the creation and training of a new
model.

One alternative approach for introducing new log IDs to a
NN, without adapting the NN, is feature hashing [6]. This
would lead to classes of IDs, which are used in the model. These
classes would be indistinguishable for the model, new IDs
would be assigned to one of the already existing classes. Over
the course of time, when new ids occur and old IDs vanish, this
might lead to a situation where log entries of one ID are used to
predict the occurrence of an entirely other log ID. Also, two
IDs, which are very different in their behavior, might be
bundled together in one class. Such a bundling would, hence,
be problematic in certain cases.

By introducing NNs for each log ID of interest, one would be
able to create an overall ML model capable to adapt to concept
drift concerning individual log IDs and it would be able to
introduce a NN based on a new log ID as soon as enough data

has been recorded to train such a NN. This allows for an
incremental adaption of the overall model, even if new log IDs
are introduced. However, each NN would need to accept
unknown log IDs as feature values in a residual category. As
soon as the respective NN gets retrained, this alarm ID does not
receive a separate appearance in the NN. In the background, the
active NNs need to be evaluated, replacement candidates are
trained using AutoML methods and compared to the active
NNs. Whenever a replacement candidate outperforms an active
NN, the replacement candidate is incorporated into the overall
model. The described workflow can be found in Fig. 4.

Another advantage of using log data in the described setup is
that labels can be calculated directly based on the features. Input
features of the NNs are log IDs, device IDs, times, and so on,
output labels are log IDs of interest. This means that the true
labels are received sometime after the prediction, which allows
for an evaluation of the current NNs and training of replacement
candidates.

IV. ANALYSIS OF PROOF-OF-CONCEPT IMPLEMENTATION

Automated decision-making by predictive diagnosis and
machine learning is a main topic within the Arrowhead Tools
project, a Horizon 2020 project aiming for digitalization and
automation solutions for the European industry. In this project
different partners from the industry develop new tools to
improve the European industry by creating many different new
tools e.g., the Arrowhead Framework, but also tools based on
new algorithms or neuronal networks which are used in
different use cases. One important use case for complex
maintenance tasks is the work on equipment data in the
semiconductor industry. We worked together with the company
Infineon Technologies Dresden on a use case using neuronal
networks for a better understanding of the failure in a highly
complex wafer transportation system to create predictive
maintenance solutions saving time and high personal efforts.
Another goal is, that this setup could be used in many different
other industrial applications showing high potentials for
interoperability. A first implementation of the theoretical ideas
discussed in the previous section is implemented. We will first

SEPTEMBER 2021 • VOLUME XIII • NUMBER 378

INFOCOMMUNICATIONS JOURNAL

4

Another aspect of the hereinafter regarded production line
setting is its SoS nature, which determines its composition of
distinct, changing subsystems working on a changing
production load. Both addressed circumstances, a changing
system and a changing production load are realistic due to
continuous improvements of the production line and variations
in the production demands, and they impact heavily on the log
data. An altered production load influences the statistic
properties of the log data and, hence, might render a trained NN
unsuitable. These changing statistical properties, denoted as
concept drift [10], are not necessarily happening incremental
but might happen suddenly without any further indication on
how the change might unfold, due to an unforeseen change in
production. An even greater influence is exhibited by a new
subsystem, which might introduce a new quality of log data,
which cannot be handled by a trained NN.

The described problems of a sudden concept drift change and
the introduction of a new quality of log data, specific to the
described production line setting, can be addressed by AutoML
approaches. Concept drift, as the first addressed problem, is
already a discussed topic in literature [10]. Forgetting
mechanisms, for example, allow to incorporate data with
different emphasis, depending on how recent they are. In
combination with change detection based on sequential
analysis, statistical process control, distribution comparison, or
contextual approaches, the software can react to concept drift
and an adjustment of the model can be initiated. This
adjustment, or learning, can be divided into two approaches:
retraining, where the current model is discarded, and
incremental adaption, where the current model is updated.
Hence, concept drift is a phenomenon one can cope with,
whereas an introduction of a new quality of log data, as the
second addressed problem, is not yet discussed on a wide basis.
When working with an embedding layer to map the log IDs to
n-dimensional vectors, for example, one would have to adjust
the vocable size (number of different log IDs) as input to this
layer. This would require the creation and training of a new
model.

One alternative approach for introducing new log IDs to a
NN, without adapting the NN, is feature hashing [6]. This
would lead to classes of IDs, which are used in the model. These
classes would be indistinguishable for the model, new IDs
would be assigned to one of the already existing classes. Over
the course of time, when new ids occur and old IDs vanish, this
might lead to a situation where log entries of one ID are used to
predict the occurrence of an entirely other log ID. Also, two
IDs, which are very different in their behavior, might be
bundled together in one class. Such a bundling would, hence,
be problematic in certain cases.

By introducing NNs for each log ID of interest, one would be
able to create an overall ML model capable to adapt to concept
drift concerning individual log IDs and it would be able to
introduce a NN based on a new log ID as soon as enough data

has been recorded to train such a NN. This allows for an
incremental adaption of the overall model, even if new log IDs
are introduced. However, each NN would need to accept
unknown log IDs as feature values in a residual category. As
soon as the respective NN gets retrained, this alarm ID does not
receive a separate appearance in the NN. In the background, the
active NNs need to be evaluated, replacement candidates are
trained using AutoML methods and compared to the active
NNs. Whenever a replacement candidate outperforms an active
NN, the replacement candidate is incorporated into the overall
model. The described workflow can be found in Fig. 4.

Another advantage of using log data in the described setup is
that labels can be calculated directly based on the features. Input
features of the NNs are log IDs, device IDs, times, and so on,
output labels are log IDs of interest. This means that the true
labels are received sometime after the prediction, which allows
for an evaluation of the current NNs and training of replacement
candidates.

IV. ANALYSIS OF PROOF-OF-CONCEPT IMPLEMENTATION

Automated decision-making by predictive diagnosis and
machine learning is a main topic within the Arrowhead Tools
project, a Horizon 2020 project aiming for digitalization and
automation solutions for the European industry. In this project
different partners from the industry develop new tools to
improve the European industry by creating many different new
tools e.g., the Arrowhead Framework, but also tools based on
new algorithms or neuronal networks which are used in
different use cases. One important use case for complex
maintenance tasks is the work on equipment data in the
semiconductor industry. We worked together with the company
Infineon Technologies Dresden on a use case using neuronal
networks for a better understanding of the failure in a highly
complex wafer transportation system to create predictive
maintenance solutions saving time and high personal efforts.
Another goal is, that this setup could be used in many different
other industrial applications showing high potentials for
interoperability. A first implementation of the theoretical ideas
discussed in the previous section is implemented. We will first

3

In comparison to cell-based approaches, hierarchical search
also focuses on the network structure and not only on the cell
structure. There are different approaches, all allowing for a
fitting on a cell level and a network level [20, 21, 22].
Morphism-based search space uses already existing model
structures to improve already existing networks and, hence,
create new networks [33].

After defining the NN based on the search space, architecture
optimization is used to find the best-performing architecture,
which always includes the evaluation of different NNs. This
search for the best architecture can be regarded as a search for
a hyperparameter, where human expertise is needed. Different
algorithms aim at automating this process, such as grid/random
search, the evolutionary algorithm, reinforcement learning,
gradient descent, surrogate model-based optimization, and
hybrid methods. Grid and random search are two very basic
optimization methods not considering any feedback from the
current state of the architecture and might be considered a
baseline approach for comparison. The evolutionary algorithm
is a heuristic optimization algorithm, which uses an evaluation
procedure until a stopping criterion is met. Starting with a set
of NN, the evaluation procedure, inspired by biological
evolution, selects a subset based on the NNs’ performance,
generates a new network from every two previously selected
NNs, mutates the resulting NN a bit, and removes the worst-
performing new NNs. Another recognized approach,
reinforcement learning [37], usually uses a recurrent neural
network (RNN) to incrementally improve the architecture by
executing certain actions leading to a so-called reward
influencing the next action and moving in that manner through
the search space. This is shown in Fig. 3.

In comparison to these already mentioned methods to search
for the best-performing architecture, gradient descent is an
approach allowing for a continuous search space [14, 23]. For
that reason, it uses a continuous relaxation of the architecture
representation, which is then used for optimization for the
operations used in one node of the architecture’s cell and leads
to one architecture. Surrogate model-based optimization is a
broadly used approach for architecture optimize by building a
surrogate model to predict the best performing architecture [8,
17, 26]. Of course, all mentioned methods might be combined
in a hybrid approach.

After deciding on the architecture to use, which is done with
the same set of hyperparameters in most cases, one can turn to
the optimization of the hyperparameters for the used
architecture [14]. Therefore, different approaches are used,
such as grid/random search, Bayesian optimization, and
gradient-based optimization. Alternatively, hyperparameter and
architecture optimization (HAO) can be used to optimize
hyperparameter and architecture in combination [34].

All NAS approaches share one mutual problem, which is the
need for frequent evaluation of architectures, leading to a high
need for time and computing resources [14]. Different
approaches, such as weight sharing [29], surrogate methods [9],
early stopping [7], and low fidelity methods [18], aim at
reducing this need for resources.

III. ADVANTAGES OF AUTOML IN A PRODUCTION SETTING

AutoML has proven its usefulness in the context of NLP [5,
16] and CV [11, 35], other areas have been neglected [14].
Especially in a production setting, applying AutoML
approaches to log data might be useful, since they not only bring
along the known advantages, such as easy access to NNs and
improvement of ML models but also advantages specific to a
production setting. Since there is a wide variation in production
settings, we will now describe one rather generic production
setting to show the usefulness of AutoML approaches when
working with log data in this context.

One aspect of the production line setting is the usage of log
data, which is produced by the subsystems and generally easily
accessible - merely a central collection of this already existing
and accessible data is required for the proposed utilization in a
NN. Naturally, one can collect a unique ID for a specific log
entry, a unique ID for a specific subsystem where the log entry
originated, the time of occurrence, and possibly a duration.
Depending on the actual setup further data might be recorded.
In this setting, some log IDs might have an informing character,
others might indicate a critical or interesting situation in the
overall system. It is of utmost importance to prevent the cause
of critical log entries from happening or, if this is not possible,
to quickly react to the negative influences associated with such
a critical log entry. In a predictive maintenance manner, a NN
can be trained to predict upcoming log entries of interest-based
on the observed log entries to allow for appropriate
intervention.

AutoML for Log File Analysis (ALFA) in a Production Line System
of Systems pointed towards Predictive Maintenance

Fig. 4. Overall concept of a prediction model based on multiple NNs, each
concerned with predicting one ID.

4

Another aspect of the hereinafter regarded production line
setting is its SoS nature, which determines its composition of
distinct, changing subsystems working on a changing
production load. Both addressed circumstances, a changing
system and a changing production load are realistic due to
continuous improvements of the production line and variations
in the production demands, and they impact heavily on the log
data. An altered production load influences the statistic
properties of the log data and, hence, might render a trained NN
unsuitable. These changing statistical properties, denoted as
concept drift [10], are not necessarily happening incremental
but might happen suddenly without any further indication on
how the change might unfold, due to an unforeseen change in
production. An even greater influence is exhibited by a new
subsystem, which might introduce a new quality of log data,
which cannot be handled by a trained NN.

The described problems of a sudden concept drift change and
the introduction of a new quality of log data, specific to the
described production line setting, can be addressed by AutoML
approaches. Concept drift, as the first addressed problem, is
already a discussed topic in literature [10]. Forgetting
mechanisms, for example, allow to incorporate data with
different emphasis, depending on how recent they are. In
combination with change detection based on sequential
analysis, statistical process control, distribution comparison, or
contextual approaches, the software can react to concept drift
and an adjustment of the model can be initiated. This
adjustment, or learning, can be divided into two approaches:
retraining, where the current model is discarded, and
incremental adaption, where the current model is updated.
Hence, concept drift is a phenomenon one can cope with,
whereas an introduction of a new quality of log data, as the
second addressed problem, is not yet discussed on a wide basis.
When working with an embedding layer to map the log IDs to
n-dimensional vectors, for example, one would have to adjust
the vocable size (number of different log IDs) as input to this
layer. This would require the creation and training of a new
model.

One alternative approach for introducing new log IDs to a
NN, without adapting the NN, is feature hashing [6]. This
would lead to classes of IDs, which are used in the model. These
classes would be indistinguishable for the model, new IDs
would be assigned to one of the already existing classes. Over
the course of time, when new ids occur and old IDs vanish, this
might lead to a situation where log entries of one ID are used to
predict the occurrence of an entirely other log ID. Also, two
IDs, which are very different in their behavior, might be
bundled together in one class. Such a bundling would, hence,
be problematic in certain cases.

By introducing NNs for each log ID of interest, one would be
able to create an overall ML model capable to adapt to concept
drift concerning individual log IDs and it would be able to
introduce a NN based on a new log ID as soon as enough data

has been recorded to train such a NN. This allows for an
incremental adaption of the overall model, even if new log IDs
are introduced. However, each NN would need to accept
unknown log IDs as feature values in a residual category. As
soon as the respective NN gets retrained, this alarm ID does not
receive a separate appearance in the NN. In the background, the
active NNs need to be evaluated, replacement candidates are
trained using AutoML methods and compared to the active
NNs. Whenever a replacement candidate outperforms an active
NN, the replacement candidate is incorporated into the overall
model. The described workflow can be found in Fig. 4.

Another advantage of using log data in the described setup is
that labels can be calculated directly based on the features. Input
features of the NNs are log IDs, device IDs, times, and so on,
output labels are log IDs of interest. This means that the true
labels are received sometime after the prediction, which allows
for an evaluation of the current NNs and training of replacement
candidates.

IV. ANALYSIS OF PROOF-OF-CONCEPT IMPLEMENTATION

Automated decision-making by predictive diagnosis and
machine learning is a main topic within the Arrowhead Tools
project, a Horizon 2020 project aiming for digitalization and
automation solutions for the European industry. In this project
different partners from the industry develop new tools to
improve the European industry by creating many different new
tools e.g., the Arrowhead Framework, but also tools based on
new algorithms or neuronal networks which are used in
different use cases. One important use case for complex
maintenance tasks is the work on equipment data in the
semiconductor industry. We worked together with the company
Infineon Technologies Dresden on a use case using neuronal
networks for a better understanding of the failure in a highly
complex wafer transportation system to create predictive
maintenance solutions saving time and high personal efforts.
Another goal is, that this setup could be used in many different
other industrial applications showing high potentials for
interoperability. A first implementation of the theoretical ideas
discussed in the previous section is implemented. We will first

4

Another aspect of the hereinafter regarded production line
setting is its SoS nature, which determines its composition of
distinct, changing subsystems working on a changing
production load. Both addressed circumstances, a changing
system and a changing production load are realistic due to
continuous improvements of the production line and variations
in the production demands, and they impact heavily on the log
data. An altered production load influences the statistic
properties of the log data and, hence, might render a trained NN
unsuitable. These changing statistical properties, denoted as
concept drift [10], are not necessarily happening incremental
but might happen suddenly without any further indication on
how the change might unfold, due to an unforeseen change in
production. An even greater influence is exhibited by a new
subsystem, which might introduce a new quality of log data,
which cannot be handled by a trained NN.

The described problems of a sudden concept drift change and
the introduction of a new quality of log data, specific to the
described production line setting, can be addressed by AutoML
approaches. Concept drift, as the first addressed problem, is
already a discussed topic in literature [10]. Forgetting
mechanisms, for example, allow to incorporate data with
different emphasis, depending on how recent they are. In
combination with change detection based on sequential
analysis, statistical process control, distribution comparison, or
contextual approaches, the software can react to concept drift
and an adjustment of the model can be initiated. This
adjustment, or learning, can be divided into two approaches:
retraining, where the current model is discarded, and
incremental adaption, where the current model is updated.
Hence, concept drift is a phenomenon one can cope with,
whereas an introduction of a new quality of log data, as the
second addressed problem, is not yet discussed on a wide basis.
When working with an embedding layer to map the log IDs to
n-dimensional vectors, for example, one would have to adjust
the vocable size (number of different log IDs) as input to this
layer. This would require the creation and training of a new
model.

One alternative approach for introducing new log IDs to a
NN, without adapting the NN, is feature hashing [6]. This
would lead to classes of IDs, which are used in the model. These
classes would be indistinguishable for the model, new IDs
would be assigned to one of the already existing classes. Over
the course of time, when new ids occur and old IDs vanish, this
might lead to a situation where log entries of one ID are used to
predict the occurrence of an entirely other log ID. Also, two
IDs, which are very different in their behavior, might be
bundled together in one class. Such a bundling would, hence,
be problematic in certain cases.

By introducing NNs for each log ID of interest, one would be
able to create an overall ML model capable to adapt to concept
drift concerning individual log IDs and it would be able to
introduce a NN based on a new log ID as soon as enough data

has been recorded to train such a NN. This allows for an
incremental adaption of the overall model, even if new log IDs
are introduced. However, each NN would need to accept
unknown log IDs as feature values in a residual category. As
soon as the respective NN gets retrained, this alarm ID does not
receive a separate appearance in the NN. In the background, the
active NNs need to be evaluated, replacement candidates are
trained using AutoML methods and compared to the active
NNs. Whenever a replacement candidate outperforms an active
NN, the replacement candidate is incorporated into the overall
model. The described workflow can be found in Fig. 4.

Another advantage of using log data in the described setup is
that labels can be calculated directly based on the features. Input
features of the NNs are log IDs, device IDs, times, and so on,
output labels are log IDs of interest. This means that the true
labels are received sometime after the prediction, which allows
for an evaluation of the current NNs and training of replacement
candidates.

IV. ANALYSIS OF PROOF-OF-CONCEPT IMPLEMENTATION

Automated decision-making by predictive diagnosis and
machine learning is a main topic within the Arrowhead Tools
project, a Horizon 2020 project aiming for digitalization and
automation solutions for the European industry. In this project
different partners from the industry develop new tools to
improve the European industry by creating many different new
tools e.g., the Arrowhead Framework, but also tools based on
new algorithms or neuronal networks which are used in
different use cases. One important use case for complex
maintenance tasks is the work on equipment data in the
semiconductor industry. We worked together with the company
Infineon Technologies Dresden on a use case using neuronal
networks for a better understanding of the failure in a highly
complex wafer transportation system to create predictive
maintenance solutions saving time and high personal efforts.
Another goal is, that this setup could be used in many different
other industrial applications showing high potentials for
interoperability. A first implementation of the theoretical ideas
discussed in the previous section is implemented. We will first

4

Another aspect of the hereinafter regarded production line
setting is its SoS nature, which determines its composition of
distinct, changing subsystems working on a changing
production load. Both addressed circumstances, a changing
system and a changing production load are realistic due to
continuous improvements of the production line and variations
in the production demands, and they impact heavily on the log
data. An altered production load influences the statistic
properties of the log data and, hence, might render a trained NN
unsuitable. These changing statistical properties, denoted as
concept drift [10], are not necessarily happening incremental
but might happen suddenly without any further indication on
how the change might unfold, due to an unforeseen change in
production. An even greater influence is exhibited by a new
subsystem, which might introduce a new quality of log data,
which cannot be handled by a trained NN.

The described problems of a sudden concept drift change and
the introduction of a new quality of log data, specific to the
described production line setting, can be addressed by AutoML
approaches. Concept drift, as the first addressed problem, is
already a discussed topic in literature [10]. Forgetting
mechanisms, for example, allow to incorporate data with
different emphasis, depending on how recent they are. In
combination with change detection based on sequential
analysis, statistical process control, distribution comparison, or
contextual approaches, the software can react to concept drift
and an adjustment of the model can be initiated. This
adjustment, or learning, can be divided into two approaches:
retraining, where the current model is discarded, and
incremental adaption, where the current model is updated.
Hence, concept drift is a phenomenon one can cope with,
whereas an introduction of a new quality of log data, as the
second addressed problem, is not yet discussed on a wide basis.
When working with an embedding layer to map the log IDs to
n-dimensional vectors, for example, one would have to adjust
the vocable size (number of different log IDs) as input to this
layer. This would require the creation and training of a new
model.

One alternative approach for introducing new log IDs to a
NN, without adapting the NN, is feature hashing [6]. This
would lead to classes of IDs, which are used in the model. These
classes would be indistinguishable for the model, new IDs
would be assigned to one of the already existing classes. Over
the course of time, when new ids occur and old IDs vanish, this
might lead to a situation where log entries of one ID are used to
predict the occurrence of an entirely other log ID. Also, two
IDs, which are very different in their behavior, might be
bundled together in one class. Such a bundling would, hence,
be problematic in certain cases.

By introducing NNs for each log ID of interest, one would be
able to create an overall ML model capable to adapt to concept
drift concerning individual log IDs and it would be able to
introduce a NN based on a new log ID as soon as enough data

has been recorded to train such a NN. This allows for an
incremental adaption of the overall model, even if new log IDs
are introduced. However, each NN would need to accept
unknown log IDs as feature values in a residual category. As
soon as the respective NN gets retrained, this alarm ID does not
receive a separate appearance in the NN. In the background, the
active NNs need to be evaluated, replacement candidates are
trained using AutoML methods and compared to the active
NNs. Whenever a replacement candidate outperforms an active
NN, the replacement candidate is incorporated into the overall
model. The described workflow can be found in Fig. 4.

Another advantage of using log data in the described setup is
that labels can be calculated directly based on the features. Input
features of the NNs are log IDs, device IDs, times, and so on,
output labels are log IDs of interest. This means that the true
labels are received sometime after the prediction, which allows
for an evaluation of the current NNs and training of replacement
candidates.

IV. ANALYSIS OF PROOF-OF-CONCEPT IMPLEMENTATION

Automated decision-making by predictive diagnosis and
machine learning is a main topic within the Arrowhead Tools
project, a Horizon 2020 project aiming for digitalization and
automation solutions for the European industry. In this project
different partners from the industry develop new tools to
improve the European industry by creating many different new
tools e.g., the Arrowhead Framework, but also tools based on
new algorithms or neuronal networks which are used in
different use cases. One important use case for complex
maintenance tasks is the work on equipment data in the
semiconductor industry. We worked together with the company
Infineon Technologies Dresden on a use case using neuronal
networks for a better understanding of the failure in a highly
complex wafer transportation system to create predictive
maintenance solutions saving time and high personal efforts.
Another goal is, that this setup could be used in many different
other industrial applications showing high potentials for
interoperability. A first implementation of the theoretical ideas
discussed in the previous section is implemented. We will first

5

explain the available data, continue with the chosen NN
structure, and finish with the used software design.
Available Data Quantities

The log entries in this AHT use case exhibit unique IDs, a
start timestamp, an end timestamp, and a spatial location
expressed as a segment of spatially close positions. This
information is available for all entries, except for the segment,
which is available only for around 50% of the data. Therefore,
an additional category was introduced, expressing that no
location information is available.

Based on these available log data quantities, different derived
quantities can be constructed, such as observed log IDs, time
since log occurrence, the active state of a log entry, and the
segment of occurrence. For a given point in time, these
quantities can be fed into a NN – the last log entries, each

expressed as ID, time since the occurrence, the information, if
it is still active, and the segment of occurrence. This can either
be done for a fixed number of past log entries or, more
accurately, for a fixed time in the past. To ensure a fixed-size
input length to the NN in the latter case, such a fixed number of
considered log entries need to be defined. If there are more log
entries falling in the designated timeframe, they are ignored and
if there are fewer log entries falling in this timeframe, place-
holder values need to be introduced. These placeholder values
can be zero for the log ID, expressing that no log entry occurred.
For the time since log occurrence, it can be one, when the time
since occurrence is expressed as a number between zero and
one – zero standing for right now and one stands for before or
at the beginning of the designated timeframe. When decoding
the still active state, it can be zero for not active and for the
segment, the no-location-available value is used. A graphical
representation of the data quantities is shown in Fig. 5.

Comprehensive NN VS. Multiple NNs

The theoretical advantages of using multiple NNs, one for
each log ID of interest, were already discussed at the end of
section III and can be extended by practical advantages. Besides
the ability to gradually adapt the overall model to the concept
drift and new log IDs, the possibility to create a well-
performing overall model seems more easily achievable.
Although a comprehensive NN predicting all log IDs of interest
is theoretically equivalent to a combination of multiple NNs
predicting a certain log ID, the computational effort can be
reduced by following a divide-and-conquer approach and
splitting the comprehensive NN into multiple NNs. This hard to
quantify assumption was also observed during our
experimentation.

We created a comparison between a comprehensive NN to
multiple NNs in our production line setting. Therefore, we
aimed to predict log IDs of special interest (based on domain
experts’ rating) which occur with a relative frequency of at least
0.11%. Furthermore, we used a weighted version of the cross-
entropy loss [36] to account for the unbalanced nature of the
data, where the weights are inversely proportional to the
relative frequency of the corresponding log ID. The used
architecture was the same for both cases and is shown in Fig.

6. The features were constructed from the last 100 log entries
within the last 45 minutes, the labels were created based on the
next 15 minutes. Each embedding layer is of dimension 8, each
hidden dense layer consists out of 32 neurons, the drop layer
features a dropout rate of 50%.

5

explain the available data, continue with the chosen NN
structure, and finish with the used software design.
Available Data Quantities

The log entries in this AHT use case exhibit unique IDs, a
start timestamp, an end timestamp, and a spatial location
expressed as a segment of spatially close positions. This
information is available for all entries, except for the segment,
which is available only for around 50% of the data. Therefore,
an additional category was introduced, expressing that no
location information is available.

Based on these available log data quantities, different derived
quantities can be constructed, such as observed log IDs, time
since log occurrence, the active state of a log entry, and the
segment of occurrence. For a given point in time, these
quantities can be fed into a NN – the last log entries, each

expressed as ID, time since the occurrence, the information, if
it is still active, and the segment of occurrence. This can either
be done for a fixed number of past log entries or, more
accurately, for a fixed time in the past. To ensure a fixed-size
input length to the NN in the latter case, such a fixed number of
considered log entries need to be defined. If there are more log
entries falling in the designated timeframe, they are ignored and
if there are fewer log entries falling in this timeframe, place-
holder values need to be introduced. These placeholder values
can be zero for the log ID, expressing that no log entry occurred.
For the time since log occurrence, it can be one, when the time
since occurrence is expressed as a number between zero and
one – zero standing for right now and one stands for before or
at the beginning of the designated timeframe. When decoding
the still active state, it can be zero for not active and for the
segment, the no-location-available value is used. A graphical
representation of the data quantities is shown in Fig. 5.

Comprehensive NN VS. Multiple NNs

The theoretical advantages of using multiple NNs, one for
each log ID of interest, were already discussed at the end of
section III and can be extended by practical advantages. Besides
the ability to gradually adapt the overall model to the concept
drift and new log IDs, the possibility to create a well-
performing overall model seems more easily achievable.
Although a comprehensive NN predicting all log IDs of interest
is theoretically equivalent to a combination of multiple NNs
predicting a certain log ID, the computational effort can be
reduced by following a divide-and-conquer approach and
splitting the comprehensive NN into multiple NNs. This hard to
quantify assumption was also observed during our
experimentation.

We created a comparison between a comprehensive NN to
multiple NNs in our production line setting. Therefore, we
aimed to predict log IDs of special interest (based on domain
experts’ rating) which occur with a relative frequency of at least
0.11%. Furthermore, we used a weighted version of the cross-
entropy loss [36] to account for the unbalanced nature of the
data, where the weights are inversely proportional to the
relative frequency of the corresponding log ID. The used
architecture was the same for both cases and is shown in Fig.

6. The features were constructed from the last 100 log entries
within the last 45 minutes, the labels were created based on the
next 15 minutes. Each embedding layer is of dimension 8, each
hidden dense layer consists out of 32 neurons, the drop layer
features a dropout rate of 50%.

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2021 • VOLUME XIII • NUMBER 3 79

5

explain the available data, continue with the chosen NN
structure, and finish with the used software design.
Available Data Quantities

The log entries in this AHT use case exhibit unique IDs, a
start timestamp, an end timestamp, and a spatial location
expressed as a segment of spatially close positions. This
information is available for all entries, except for the segment,
which is available only for around 50% of the data. Therefore,
an additional category was introduced, expressing that no
location information is available.

Based on these available log data quantities, different derived
quantities can be constructed, such as observed log IDs, time
since log occurrence, the active state of a log entry, and the
segment of occurrence. For a given point in time, these
quantities can be fed into a NN – the last log entries, each

expressed as ID, time since the occurrence, the information, if
it is still active, and the segment of occurrence. This can either
be done for a fixed number of past log entries or, more
accurately, for a fixed time in the past. To ensure a fixed-size
input length to the NN in the latter case, such a fixed number of
considered log entries need to be defined. If there are more log
entries falling in the designated timeframe, they are ignored and
if there are fewer log entries falling in this timeframe, place-
holder values need to be introduced. These placeholder values
can be zero for the log ID, expressing that no log entry occurred.
For the time since log occurrence, it can be one, when the time
since occurrence is expressed as a number between zero and
one – zero standing for right now and one stands for before or
at the beginning of the designated timeframe. When decoding
the still active state, it can be zero for not active and for the
segment, the no-location-available value is used. A graphical
representation of the data quantities is shown in Fig. 5.

Comprehensive NN VS. Multiple NNs

The theoretical advantages of using multiple NNs, one for
each log ID of interest, were already discussed at the end of
section III and can be extended by practical advantages. Besides
the ability to gradually adapt the overall model to the concept
drift and new log IDs, the possibility to create a well-
performing overall model seems more easily achievable.
Although a comprehensive NN predicting all log IDs of interest
is theoretically equivalent to a combination of multiple NNs
predicting a certain log ID, the computational effort can be
reduced by following a divide-and-conquer approach and
splitting the comprehensive NN into multiple NNs. This hard to
quantify assumption was also observed during our
experimentation.

We created a comparison between a comprehensive NN to
multiple NNs in our production line setting. Therefore, we
aimed to predict log IDs of special interest (based on domain
experts’ rating) which occur with a relative frequency of at least
0.11%. Furthermore, we used a weighted version of the cross-
entropy loss [36] to account for the unbalanced nature of the
data, where the weights are inversely proportional to the
relative frequency of the corresponding log ID. The used
architecture was the same for both cases and is shown in Fig.

6. The features were constructed from the last 100 log entries
within the last 45 minutes, the labels were created based on the
next 15 minutes. Each embedding layer is of dimension 8, each
hidden dense layer consists out of 32 neurons, the drop layer
features a dropout rate of 50%.

AutoML for Log File Analysis (ALFA) in a Production Line System
of Systems pointed towards Predictive Maintenance

Fig. 5. Visualization of the AHT data. It contains a start and an end timestamp, a log ID, and a segment. Log IDs of interest are shown in a black rectangle.
By introducing a relevant past, a relevant future, one can create input vectors for NNs.

Fig. 6. NN architecture used for comparing a comprehensive NN to
multiple NNs.

5

explain the available data, continue with the chosen NN
structure, and finish with the used software design.
Available Data Quantities

The log entries in this AHT use case exhibit unique IDs, a
start timestamp, an end timestamp, and a spatial location
expressed as a segment of spatially close positions. This
information is available for all entries, except for the segment,
which is available only for around 50% of the data. Therefore,
an additional category was introduced, expressing that no
location information is available.

Based on these available log data quantities, different derived
quantities can be constructed, such as observed log IDs, time
since log occurrence, the active state of a log entry, and the
segment of occurrence. For a given point in time, these
quantities can be fed into a NN – the last log entries, each

expressed as ID, time since the occurrence, the information, if
it is still active, and the segment of occurrence. This can either
be done for a fixed number of past log entries or, more
accurately, for a fixed time in the past. To ensure a fixed-size
input length to the NN in the latter case, such a fixed number of
considered log entries need to be defined. If there are more log
entries falling in the designated timeframe, they are ignored and
if there are fewer log entries falling in this timeframe, place-
holder values need to be introduced. These placeholder values
can be zero for the log ID, expressing that no log entry occurred.
For the time since log occurrence, it can be one, when the time
since occurrence is expressed as a number between zero and
one – zero standing for right now and one stands for before or
at the beginning of the designated timeframe. When decoding
the still active state, it can be zero for not active and for the
segment, the no-location-available value is used. A graphical
representation of the data quantities is shown in Fig. 5.

Comprehensive NN VS. Multiple NNs

The theoretical advantages of using multiple NNs, one for
each log ID of interest, were already discussed at the end of
section III and can be extended by practical advantages. Besides
the ability to gradually adapt the overall model to the concept
drift and new log IDs, the possibility to create a well-
performing overall model seems more easily achievable.
Although a comprehensive NN predicting all log IDs of interest
is theoretically equivalent to a combination of multiple NNs
predicting a certain log ID, the computational effort can be
reduced by following a divide-and-conquer approach and
splitting the comprehensive NN into multiple NNs. This hard to
quantify assumption was also observed during our
experimentation.

We created a comparison between a comprehensive NN to
multiple NNs in our production line setting. Therefore, we
aimed to predict log IDs of special interest (based on domain
experts’ rating) which occur with a relative frequency of at least
0.11%. Furthermore, we used a weighted version of the cross-
entropy loss [36] to account for the unbalanced nature of the
data, where the weights are inversely proportional to the
relative frequency of the corresponding log ID. The used
architecture was the same for both cases and is shown in Fig.

6. The features were constructed from the last 100 log entries
within the last 45 minutes, the labels were created based on the
next 15 minutes. Each embedding layer is of dimension 8, each
hidden dense layer consists out of 32 neurons, the drop layer
features a dropout rate of 50%.

5

explain the available data, continue with the chosen NN
structure, and finish with the used software design.
Available Data Quantities

The log entries in this AHT use case exhibit unique IDs, a
start timestamp, an end timestamp, and a spatial location
expressed as a segment of spatially close positions. This
information is available for all entries, except for the segment,
which is available only for around 50% of the data. Therefore,
an additional category was introduced, expressing that no
location information is available.

Based on these available log data quantities, different derived
quantities can be constructed, such as observed log IDs, time
since log occurrence, the active state of a log entry, and the
segment of occurrence. For a given point in time, these
quantities can be fed into a NN – the last log entries, each

expressed as ID, time since the occurrence, the information, if
it is still active, and the segment of occurrence. This can either
be done for a fixed number of past log entries or, more
accurately, for a fixed time in the past. To ensure a fixed-size
input length to the NN in the latter case, such a fixed number of
considered log entries need to be defined. If there are more log
entries falling in the designated timeframe, they are ignored and
if there are fewer log entries falling in this timeframe, place-
holder values need to be introduced. These placeholder values
can be zero for the log ID, expressing that no log entry occurred.
For the time since log occurrence, it can be one, when the time
since occurrence is expressed as a number between zero and
one – zero standing for right now and one stands for before or
at the beginning of the designated timeframe. When decoding
the still active state, it can be zero for not active and for the
segment, the no-location-available value is used. A graphical
representation of the data quantities is shown in Fig. 5.

Comprehensive NN VS. Multiple NNs

The theoretical advantages of using multiple NNs, one for
each log ID of interest, were already discussed at the end of
section III and can be extended by practical advantages. Besides
the ability to gradually adapt the overall model to the concept
drift and new log IDs, the possibility to create a well-
performing overall model seems more easily achievable.
Although a comprehensive NN predicting all log IDs of interest
is theoretically equivalent to a combination of multiple NNs
predicting a certain log ID, the computational effort can be
reduced by following a divide-and-conquer approach and
splitting the comprehensive NN into multiple NNs. This hard to
quantify assumption was also observed during our
experimentation.

We created a comparison between a comprehensive NN to
multiple NNs in our production line setting. Therefore, we
aimed to predict log IDs of special interest (based on domain
experts’ rating) which occur with a relative frequency of at least
0.11%. Furthermore, we used a weighted version of the cross-
entropy loss [36] to account for the unbalanced nature of the
data, where the weights are inversely proportional to the
relative frequency of the corresponding log ID. The used
architecture was the same for both cases and is shown in Fig.

6. The features were constructed from the last 100 log entries
within the last 45 minutes, the labels were created based on the
next 15 minutes. Each embedding layer is of dimension 8, each
hidden dense layer consists out of 32 neurons, the drop layer
features a dropout rate of 50%.

5

explain the available data, continue with the chosen NN
structure, and finish with the used software design.
Available Data Quantities

The log entries in this AHT use case exhibit unique IDs, a
start timestamp, an end timestamp, and a spatial location
expressed as a segment of spatially close positions. This
information is available for all entries, except for the segment,
which is available only for around 50% of the data. Therefore,
an additional category was introduced, expressing that no
location information is available.

Based on these available log data quantities, different derived
quantities can be constructed, such as observed log IDs, time
since log occurrence, the active state of a log entry, and the
segment of occurrence. For a given point in time, these
quantities can be fed into a NN – the last log entries, each

expressed as ID, time since the occurrence, the information, if
it is still active, and the segment of occurrence. This can either
be done for a fixed number of past log entries or, more
accurately, for a fixed time in the past. To ensure a fixed-size
input length to the NN in the latter case, such a fixed number of
considered log entries need to be defined. If there are more log
entries falling in the designated timeframe, they are ignored and
if there are fewer log entries falling in this timeframe, place-
holder values need to be introduced. These placeholder values
can be zero for the log ID, expressing that no log entry occurred.
For the time since log occurrence, it can be one, when the time
since occurrence is expressed as a number between zero and
one – zero standing for right now and one stands for before or
at the beginning of the designated timeframe. When decoding
the still active state, it can be zero for not active and for the
segment, the no-location-available value is used. A graphical
representation of the data quantities is shown in Fig. 5.

Comprehensive NN VS. Multiple NNs

The theoretical advantages of using multiple NNs, one for
each log ID of interest, were already discussed at the end of
section III and can be extended by practical advantages. Besides
the ability to gradually adapt the overall model to the concept
drift and new log IDs, the possibility to create a well-
performing overall model seems more easily achievable.
Although a comprehensive NN predicting all log IDs of interest
is theoretically equivalent to a combination of multiple NNs
predicting a certain log ID, the computational effort can be
reduced by following a divide-and-conquer approach and
splitting the comprehensive NN into multiple NNs. This hard to
quantify assumption was also observed during our
experimentation.

We created a comparison between a comprehensive NN to
multiple NNs in our production line setting. Therefore, we
aimed to predict log IDs of special interest (based on domain
experts’ rating) which occur with a relative frequency of at least
0.11%. Furthermore, we used a weighted version of the cross-
entropy loss [36] to account for the unbalanced nature of the
data, where the weights are inversely proportional to the
relative frequency of the corresponding log ID. The used
architecture was the same for both cases and is shown in Fig.

6. The features were constructed from the last 100 log entries
within the last 45 minutes, the labels were created based on the
next 15 minutes. Each embedding layer is of dimension 8, each
hidden dense layer consists out of 32 neurons, the drop layer
features a dropout rate of 50%.

5

explain the available data, continue with the chosen NN
structure, and finish with the used software design.
Available Data Quantities

The log entries in this AHT use case exhibit unique IDs, a
start timestamp, an end timestamp, and a spatial location
expressed as a segment of spatially close positions. This
information is available for all entries, except for the segment,
which is available only for around 50% of the data. Therefore,
an additional category was introduced, expressing that no
location information is available.

Based on these available log data quantities, different derived
quantities can be constructed, such as observed log IDs, time
since log occurrence, the active state of a log entry, and the
segment of occurrence. For a given point in time, these
quantities can be fed into a NN – the last log entries, each

expressed as ID, time since the occurrence, the information, if
it is still active, and the segment of occurrence. This can either
be done for a fixed number of past log entries or, more
accurately, for a fixed time in the past. To ensure a fixed-size
input length to the NN in the latter case, such a fixed number of
considered log entries need to be defined. If there are more log
entries falling in the designated timeframe, they are ignored and
if there are fewer log entries falling in this timeframe, place-
holder values need to be introduced. These placeholder values
can be zero for the log ID, expressing that no log entry occurred.
For the time since log occurrence, it can be one, when the time
since occurrence is expressed as a number between zero and
one – zero standing for right now and one stands for before or
at the beginning of the designated timeframe. When decoding
the still active state, it can be zero for not active and for the
segment, the no-location-available value is used. A graphical
representation of the data quantities is shown in Fig. 5.

Comprehensive NN VS. Multiple NNs

The theoretical advantages of using multiple NNs, one for
each log ID of interest, were already discussed at the end of
section III and can be extended by practical advantages. Besides
the ability to gradually adapt the overall model to the concept
drift and new log IDs, the possibility to create a well-
performing overall model seems more easily achievable.
Although a comprehensive NN predicting all log IDs of interest
is theoretically equivalent to a combination of multiple NNs
predicting a certain log ID, the computational effort can be
reduced by following a divide-and-conquer approach and
splitting the comprehensive NN into multiple NNs. This hard to
quantify assumption was also observed during our
experimentation.

We created a comparison between a comprehensive NN to
multiple NNs in our production line setting. Therefore, we
aimed to predict log IDs of special interest (based on domain
experts’ rating) which occur with a relative frequency of at least
0.11%. Furthermore, we used a weighted version of the cross-
entropy loss [36] to account for the unbalanced nature of the
data, where the weights are inversely proportional to the
relative frequency of the corresponding log ID. The used
architecture was the same for both cases and is shown in Fig.

6. The features were constructed from the last 100 log entries
within the last 45 minutes, the labels were created based on the
next 15 minutes. Each embedding layer is of dimension 8, each
hidden dense layer consists out of 32 neurons, the drop layer
features a dropout rate of 50%.

5

explain the available data, continue with the chosen NN
structure, and finish with the used software design.
Available Data Quantities

The log entries in this AHT use case exhibit unique IDs, a
start timestamp, an end timestamp, and a spatial location
expressed as a segment of spatially close positions. This
information is available for all entries, except for the segment,
which is available only for around 50% of the data. Therefore,
an additional category was introduced, expressing that no
location information is available.

Based on these available log data quantities, different derived
quantities can be constructed, such as observed log IDs, time
since log occurrence, the active state of a log entry, and the
segment of occurrence. For a given point in time, these
quantities can be fed into a NN – the last log entries, each

expressed as ID, time since the occurrence, the information, if
it is still active, and the segment of occurrence. This can either
be done for a fixed number of past log entries or, more
accurately, for a fixed time in the past. To ensure a fixed-size
input length to the NN in the latter case, such a fixed number of
considered log entries need to be defined. If there are more log
entries falling in the designated timeframe, they are ignored and
if there are fewer log entries falling in this timeframe, place-
holder values need to be introduced. These placeholder values
can be zero for the log ID, expressing that no log entry occurred.
For the time since log occurrence, it can be one, when the time
since occurrence is expressed as a number between zero and
one – zero standing for right now and one stands for before or
at the beginning of the designated timeframe. When decoding
the still active state, it can be zero for not active and for the
segment, the no-location-available value is used. A graphical
representation of the data quantities is shown in Fig. 5.

Comprehensive NN VS. Multiple NNs

The theoretical advantages of using multiple NNs, one for
each log ID of interest, were already discussed at the end of
section III and can be extended by practical advantages. Besides
the ability to gradually adapt the overall model to the concept
drift and new log IDs, the possibility to create a well-
performing overall model seems more easily achievable.
Although a comprehensive NN predicting all log IDs of interest
is theoretically equivalent to a combination of multiple NNs
predicting a certain log ID, the computational effort can be
reduced by following a divide-and-conquer approach and
splitting the comprehensive NN into multiple NNs. This hard to
quantify assumption was also observed during our
experimentation.

We created a comparison between a comprehensive NN to
multiple NNs in our production line setting. Therefore, we
aimed to predict log IDs of special interest (based on domain
experts’ rating) which occur with a relative frequency of at least
0.11%. Furthermore, we used a weighted version of the cross-
entropy loss [36] to account for the unbalanced nature of the
data, where the weights are inversely proportional to the
relative frequency of the corresponding log ID. The used
architecture was the same for both cases and is shown in Fig.

6. The features were constructed from the last 100 log entries
within the last 45 minutes, the labels were created based on the
next 15 minutes. Each embedding layer is of dimension 8, each
hidden dense layer consists out of 32 neurons, the drop layer
features a dropout rate of 50%.

5

explain the available data, continue with the chosen NN
structure, and finish with the used software design.
Available Data Quantities

The log entries in this AHT use case exhibit unique IDs, a
start timestamp, an end timestamp, and a spatial location
expressed as a segment of spatially close positions. This
information is available for all entries, except for the segment,
which is available only for around 50% of the data. Therefore,
an additional category was introduced, expressing that no
location information is available.

Based on these available log data quantities, different derived
quantities can be constructed, such as observed log IDs, time
since log occurrence, the active state of a log entry, and the
segment of occurrence. For a given point in time, these
quantities can be fed into a NN – the last log entries, each

expressed as ID, time since the occurrence, the information, if
it is still active, and the segment of occurrence. This can either
be done for a fixed number of past log entries or, more
accurately, for a fixed time in the past. To ensure a fixed-size
input length to the NN in the latter case, such a fixed number of
considered log entries need to be defined. If there are more log
entries falling in the designated timeframe, they are ignored and
if there are fewer log entries falling in this timeframe, place-
holder values need to be introduced. These placeholder values
can be zero for the log ID, expressing that no log entry occurred.
For the time since log occurrence, it can be one, when the time
since occurrence is expressed as a number between zero and
one – zero standing for right now and one stands for before or
at the beginning of the designated timeframe. When decoding
the still active state, it can be zero for not active and for the
segment, the no-location-available value is used. A graphical
representation of the data quantities is shown in Fig. 5.

Comprehensive NN VS. Multiple NNs

The theoretical advantages of using multiple NNs, one for
each log ID of interest, were already discussed at the end of
section III and can be extended by practical advantages. Besides
the ability to gradually adapt the overall model to the concept
drift and new log IDs, the possibility to create a well-
performing overall model seems more easily achievable.
Although a comprehensive NN predicting all log IDs of interest
is theoretically equivalent to a combination of multiple NNs
predicting a certain log ID, the computational effort can be
reduced by following a divide-and-conquer approach and
splitting the comprehensive NN into multiple NNs. This hard to
quantify assumption was also observed during our
experimentation.

We created a comparison between a comprehensive NN to
multiple NNs in our production line setting. Therefore, we
aimed to predict log IDs of special interest (based on domain
experts’ rating) which occur with a relative frequency of at least
0.11%. Furthermore, we used a weighted version of the cross-
entropy loss [36] to account for the unbalanced nature of the
data, where the weights are inversely proportional to the
relative frequency of the corresponding log ID. The used
architecture was the same for both cases and is shown in Fig.

6. The features were constructed from the last 100 log entries
within the last 45 minutes, the labels were created based on the
next 15 minutes. Each embedding layer is of dimension 8, each
hidden dense layer consists out of 32 neurons, the drop layer
features a dropout rate of 50%.

6

To compare the performance of the NNs, two widely used
performance indicators are introduced – the positive predictive
value (PPV) and the sensitivity. Both indicators are empirical
probabilities. The indicator PPV can be calculated as the
number of correct predictions of a log ID divided by the total
number of predictions of this ID. The higher this value is, the
more reliable is a gained prediction of this log ID. The indicator
sensitivity can be calculated as the number of correct
predictions of a log ID divided by the total number of
occurrences of this log ID. The higher this indicator is, the
fewer occurrences of this log ID are ‘overlooked’ by the NN. A
reliable prediction system requires both values to be high.

Comparing the performance of a comprehensive NN to
multiple NNs in our production line setting speaks for the usage
of multiple NNs over a comprehensive NN. Table I shows the
two introduced performance indicators, observed when
predicted and predicted when observed, for both discussed
cases. Except for log ID 4 and 8, both indicators speak
consistently for using multiple NNs over a comprehensive NN.
Although the log IDs 4 and 8 lead to contradicting indicators to
some extent, the overall results speak clearly for using multiple
NNs over a comprehensive NN.

LOG
ID

PPV Sensitivity
ComNN MNNs ComNN MNNs

1 79 92 1 63
2 34 92 46 70
3 65 71 32 78
4 58 79 68 66

5 54 97 13 95
6 47 80 50 93
7 71 76 16 39
8 70 44 68 89
9 65 70 8 32

The superior practical performance of multiple NNs over a
comprehensive NN might be based on different circumstances.
One such circumstance is that, instead of working with only one
set of hyperparameters, each NN predicting only one log ID of
interest allows for its own set of hyperparameters, such as
relevant past (see Fig. 5) or the number of neurons in a certain
layer. Another contributing factor might be the more complex
structure of the comprehensive NN, which might induce a
worse performance of the optimization algorithm used for the
training procedure, leading to a suboptimal trained NN.
Another factor is the design of the used labels, which allow for
only one next log ID of interest to be predicted. This might
distort the NN’s performance, since one log ID of interest might
be concealed by another log ID of interest, leading to inferior
performance.

To set the performance of the NNs from the multiple NNs
approach into relation, one can compare it to trivial prediction
models. A suitable base model can be obtained by always
predicting the most common observed class. Due to the
extremely unbalanced situation, we are facing with the AHT
dataset, this is always clearly the prediction, that there will not
be an ID of interest in the upcoming timeframe. The accuracy
is calculated as the ratio of correct predictions to all predictions.
For the no information rate model, this value is always the ratio
of no-error predictions, which ranges for our situation between
89% to 98.6%. Although these values are quite high, the
obtained NNs outperform this bae-line accuracy in nearly all
cases with accuracies between 94.4% and 99.9%, as shown in
Table II.

LOG
ID

Accuracy
No information rate MNNs

1 96.5 98.6
2 96.2 98.6
3 95.9 97.8
4 89.0 94.2
5 98.6 99.9
6 97.7 99.3
7 93.0 94.9
8 95.4 94.4

9 96.1 96.9

Proposed ALFA Software Design

To benefit from the advantages promoted in the previous
sections, we propose the ALFA (AutoML for Log File
Analysis) software design capable of handling the needed
requirements. The software design contains two main
components, the predictor and the model updater.

The predictor receives the log information as soon as they occur
and creates a prediction based on this information. In the first
step, the data – log ID, time, segment, and type (it is either the
start or the end of a log event) is received and stored in a
database. In a second step, the NNs are loaded from the model
updater if they have not been loaded yet and enough data is
available to do so. Finally, the NNs are used to predict the
occurrence of log IDs of interest if enough data is available.
Furthermore, the received log IDs can be used to calculate the
performance of the previously made predictions, which
guarantees for always present performance indicators for each
NN. This component operates only, and as soon as new log data
is received.

The model updater is used to store, load, and refit the NNs. It
operates on an external trigger, either from the predictor when
loading a NN, or a regular impulse, based on e.g., a certain time
or a certain amount of received and relevant log data, to refit
one or more NNs. When loading the NNs, the model updater
first tries to load already existing NNs from the file system. If
this is not possible, it loads the relevant log data to create and

SEPTEMBER 2021 • VOLUME XIII • NUMBER 380

INFOCOMMUNICATIONS JOURNAL

6

To compare the performance of the NNs, two widely used
performance indicators are introduced – the positive predictive
value (PPV) and the sensitivity. Both indicators are empirical
probabilities. The indicator PPV can be calculated as the
number of correct predictions of a log ID divided by the total
number of predictions of this ID. The higher this value is, the
more reliable is a gained prediction of this log ID. The indicator
sensitivity can be calculated as the number of correct
predictions of a log ID divided by the total number of
occurrences of this log ID. The higher this indicator is, the
fewer occurrences of this log ID are ‘overlooked’ by the NN. A
reliable prediction system requires both values to be high.

Comparing the performance of a comprehensive NN to
multiple NNs in our production line setting speaks for the usage
of multiple NNs over a comprehensive NN. Table I shows the
two introduced performance indicators, observed when
predicted and predicted when observed, for both discussed
cases. Except for log ID 4 and 8, both indicators speak
consistently for using multiple NNs over a comprehensive NN.
Although the log IDs 4 and 8 lead to contradicting indicators to
some extent, the overall results speak clearly for using multiple
NNs over a comprehensive NN.

LOG
ID

PPV Sensitivity
ComNN MNNs ComNN MNNs

1 79 92 1 63
2 34 92 46 70
3 65 71 32 78
4 58 79 68 66

5 54 97 13 95
6 47 80 50 93
7 71 76 16 39
8 70 44 68 89
9 65 70 8 32

The superior practical performance of multiple NNs over a
comprehensive NN might be based on different circumstances.
One such circumstance is that, instead of working with only one
set of hyperparameters, each NN predicting only one log ID of
interest allows for its own set of hyperparameters, such as
relevant past (see Fig. 5) or the number of neurons in a certain
layer. Another contributing factor might be the more complex
structure of the comprehensive NN, which might induce a
worse performance of the optimization algorithm used for the
training procedure, leading to a suboptimal trained NN.
Another factor is the design of the used labels, which allow for
only one next log ID of interest to be predicted. This might
distort the NN’s performance, since one log ID of interest might
be concealed by another log ID of interest, leading to inferior
performance.

To set the performance of the NNs from the multiple NNs
approach into relation, one can compare it to trivial prediction
models. A suitable base model can be obtained by always
predicting the most common observed class. Due to the
extremely unbalanced situation, we are facing with the AHT
dataset, this is always clearly the prediction, that there will not
be an ID of interest in the upcoming timeframe. The accuracy
is calculated as the ratio of correct predictions to all predictions.
For the no information rate model, this value is always the ratio
of no-error predictions, which ranges for our situation between
89% to 98.6%. Although these values are quite high, the
obtained NNs outperform this bae-line accuracy in nearly all
cases with accuracies between 94.4% and 99.9%, as shown in
Table II.

LOG
ID

Accuracy
No information rate MNNs

1 96.5 98.6
2 96.2 98.6
3 95.9 97.8
4 89.0 94.2
5 98.6 99.9
6 97.7 99.3
7 93.0 94.9
8 95.4 94.4

9 96.1 96.9

Proposed ALFA Software Design

To benefit from the advantages promoted in the previous
sections, we propose the ALFA (AutoML for Log File
Analysis) software design capable of handling the needed
requirements. The software design contains two main
components, the predictor and the model updater.

The predictor receives the log information as soon as they occur
and creates a prediction based on this information. In the first
step, the data – log ID, time, segment, and type (it is either the
start or the end of a log event) is received and stored in a
database. In a second step, the NNs are loaded from the model
updater if they have not been loaded yet and enough data is
available to do so. Finally, the NNs are used to predict the
occurrence of log IDs of interest if enough data is available.
Furthermore, the received log IDs can be used to calculate the
performance of the previously made predictions, which
guarantees for always present performance indicators for each
NN. This component operates only, and as soon as new log data
is received.

The model updater is used to store, load, and refit the NNs. It
operates on an external trigger, either from the predictor when
loading a NN, or a regular impulse, based on e.g., a certain time
or a certain amount of received and relevant log data, to refit
one or more NNs. When loading the NNs, the model updater
first tries to load already existing NNs from the file system. If
this is not possible, it loads the relevant log data to create and

5

explain the available data, continue with the chosen NN
structure, and finish with the used software design.
Available Data Quantities

The log entries in this AHT use case exhibit unique IDs, a
start timestamp, an end timestamp, and a spatial location
expressed as a segment of spatially close positions. This
information is available for all entries, except for the segment,
which is available only for around 50% of the data. Therefore,
an additional category was introduced, expressing that no
location information is available.

Based on these available log data quantities, different derived
quantities can be constructed, such as observed log IDs, time
since log occurrence, the active state of a log entry, and the
segment of occurrence. For a given point in time, these
quantities can be fed into a NN – the last log entries, each

expressed as ID, time since the occurrence, the information, if
it is still active, and the segment of occurrence. This can either
be done for a fixed number of past log entries or, more
accurately, for a fixed time in the past. To ensure a fixed-size
input length to the NN in the latter case, such a fixed number of
considered log entries need to be defined. If there are more log
entries falling in the designated timeframe, they are ignored and
if there are fewer log entries falling in this timeframe, place-
holder values need to be introduced. These placeholder values
can be zero for the log ID, expressing that no log entry occurred.
For the time since log occurrence, it can be one, when the time
since occurrence is expressed as a number between zero and
one – zero standing for right now and one stands for before or
at the beginning of the designated timeframe. When decoding
the still active state, it can be zero for not active and for the
segment, the no-location-available value is used. A graphical
representation of the data quantities is shown in Fig. 5.

Comprehensive NN VS. Multiple NNs

The theoretical advantages of using multiple NNs, one for
each log ID of interest, were already discussed at the end of
section III and can be extended by practical advantages. Besides
the ability to gradually adapt the overall model to the concept
drift and new log IDs, the possibility to create a well-
performing overall model seems more easily achievable.
Although a comprehensive NN predicting all log IDs of interest
is theoretically equivalent to a combination of multiple NNs
predicting a certain log ID, the computational effort can be
reduced by following a divide-and-conquer approach and
splitting the comprehensive NN into multiple NNs. This hard to
quantify assumption was also observed during our
experimentation.

We created a comparison between a comprehensive NN to
multiple NNs in our production line setting. Therefore, we
aimed to predict log IDs of special interest (based on domain
experts’ rating) which occur with a relative frequency of at least
0.11%. Furthermore, we used a weighted version of the cross-
entropy loss [36] to account for the unbalanced nature of the
data, where the weights are inversely proportional to the
relative frequency of the corresponding log ID. The used
architecture was the same for both cases and is shown in Fig.

6. The features were constructed from the last 100 log entries
within the last 45 minutes, the labels were created based on the
next 15 minutes. Each embedding layer is of dimension 8, each
hidden dense layer consists out of 32 neurons, the drop layer
features a dropout rate of 50%.

AutoML for Log File Analysis (ALFA) in a Production Line System
of Systems pointed towards Predictive Maintenance

TABLE II
Accuracy of the individual models from the multiple NNs

approach compared to the no-information-rate model (never
predicting an upcoming ID).

TABLE I
Performance comparison between a comprehensive NN (ComNN)

and multiple NNs (MNNs) in the described production line setting
with percentage values.

5

explain the available data, continue with the chosen NN
structure, and finish with the used software design.
Available Data Quantities

The log entries in this AHT use case exhibit unique IDs, a
start timestamp, an end timestamp, and a spatial location
expressed as a segment of spatially close positions. This
information is available for all entries, except for the segment,
which is available only for around 50% of the data. Therefore,
an additional category was introduced, expressing that no
location information is available.

Based on these available log data quantities, different derived
quantities can be constructed, such as observed log IDs, time
since log occurrence, the active state of a log entry, and the
segment of occurrence. For a given point in time, these
quantities can be fed into a NN – the last log entries, each

expressed as ID, time since the occurrence, the information, if
it is still active, and the segment of occurrence. This can either
be done for a fixed number of past log entries or, more
accurately, for a fixed time in the past. To ensure a fixed-size
input length to the NN in the latter case, such a fixed number of
considered log entries need to be defined. If there are more log
entries falling in the designated timeframe, they are ignored and
if there are fewer log entries falling in this timeframe, place-
holder values need to be introduced. These placeholder values
can be zero for the log ID, expressing that no log entry occurred.
For the time since log occurrence, it can be one, when the time
since occurrence is expressed as a number between zero and
one – zero standing for right now and one stands for before or
at the beginning of the designated timeframe. When decoding
the still active state, it can be zero for not active and for the
segment, the no-location-available value is used. A graphical
representation of the data quantities is shown in Fig. 5.

Comprehensive NN VS. Multiple NNs

The theoretical advantages of using multiple NNs, one for
each log ID of interest, were already discussed at the end of
section III and can be extended by practical advantages. Besides
the ability to gradually adapt the overall model to the concept
drift and new log IDs, the possibility to create a well-
performing overall model seems more easily achievable.
Although a comprehensive NN predicting all log IDs of interest
is theoretically equivalent to a combination of multiple NNs
predicting a certain log ID, the computational effort can be
reduced by following a divide-and-conquer approach and
splitting the comprehensive NN into multiple NNs. This hard to
quantify assumption was also observed during our
experimentation.

We created a comparison between a comprehensive NN to
multiple NNs in our production line setting. Therefore, we
aimed to predict log IDs of special interest (based on domain
experts’ rating) which occur with a relative frequency of at least
0.11%. Furthermore, we used a weighted version of the cross-
entropy loss [36] to account for the unbalanced nature of the
data, where the weights are inversely proportional to the
relative frequency of the corresponding log ID. The used
architecture was the same for both cases and is shown in Fig.

6. The features were constructed from the last 100 log entries
within the last 45 minutes, the labels were created based on the
next 15 minutes. Each embedding layer is of dimension 8, each
hidden dense layer consists out of 32 neurons, the drop layer
features a dropout rate of 50%.

5

explain the available data, continue with the chosen NN
structure, and finish with the used software design.
Available Data Quantities

The log entries in this AHT use case exhibit unique IDs, a
start timestamp, an end timestamp, and a spatial location
expressed as a segment of spatially close positions. This
information is available for all entries, except for the segment,
which is available only for around 50% of the data. Therefore,
an additional category was introduced, expressing that no
location information is available.

Based on these available log data quantities, different derived
quantities can be constructed, such as observed log IDs, time
since log occurrence, the active state of a log entry, and the
segment of occurrence. For a given point in time, these
quantities can be fed into a NN – the last log entries, each

expressed as ID, time since the occurrence, the information, if
it is still active, and the segment of occurrence. This can either
be done for a fixed number of past log entries or, more
accurately, for a fixed time in the past. To ensure a fixed-size
input length to the NN in the latter case, such a fixed number of
considered log entries need to be defined. If there are more log
entries falling in the designated timeframe, they are ignored and
if there are fewer log entries falling in this timeframe, place-
holder values need to be introduced. These placeholder values
can be zero for the log ID, expressing that no log entry occurred.
For the time since log occurrence, it can be one, when the time
since occurrence is expressed as a number between zero and
one – zero standing for right now and one stands for before or
at the beginning of the designated timeframe. When decoding
the still active state, it can be zero for not active and for the
segment, the no-location-available value is used. A graphical
representation of the data quantities is shown in Fig. 5.

Comprehensive NN VS. Multiple NNs

The theoretical advantages of using multiple NNs, one for
each log ID of interest, were already discussed at the end of
section III and can be extended by practical advantages. Besides
the ability to gradually adapt the overall model to the concept
drift and new log IDs, the possibility to create a well-
performing overall model seems more easily achievable.
Although a comprehensive NN predicting all log IDs of interest
is theoretically equivalent to a combination of multiple NNs
predicting a certain log ID, the computational effort can be
reduced by following a divide-and-conquer approach and
splitting the comprehensive NN into multiple NNs. This hard to
quantify assumption was also observed during our
experimentation.

We created a comparison between a comprehensive NN to
multiple NNs in our production line setting. Therefore, we
aimed to predict log IDs of special interest (based on domain
experts’ rating) which occur with a relative frequency of at least
0.11%. Furthermore, we used a weighted version of the cross-
entropy loss [36] to account for the unbalanced nature of the
data, where the weights are inversely proportional to the
relative frequency of the corresponding log ID. The used
architecture was the same for both cases and is shown in Fig.

6. The features were constructed from the last 100 log entries
within the last 45 minutes, the labels were created based on the
next 15 minutes. Each embedding layer is of dimension 8, each
hidden dense layer consists out of 32 neurons, the drop layer
features a dropout rate of 50%.

6

To compare the performance of the NNs, two widely used
performance indicators are introduced – the positive predictive
value (PPV) and the sensitivity. Both indicators are empirical
probabilities. The indicator PPV can be calculated as the
number of correct predictions of a log ID divided by the total
number of predictions of this ID. The higher this value is, the
more reliable is a gained prediction of this log ID. The indicator
sensitivity can be calculated as the number of correct
predictions of a log ID divided by the total number of
occurrences of this log ID. The higher this indicator is, the
fewer occurrences of this log ID are ‘overlooked’ by the NN. A
reliable prediction system requires both values to be high.

Comparing the performance of a comprehensive NN to
multiple NNs in our production line setting speaks for the usage
of multiple NNs over a comprehensive NN. Table I shows the
two introduced performance indicators, observed when
predicted and predicted when observed, for both discussed
cases. Except for log ID 4 and 8, both indicators speak
consistently for using multiple NNs over a comprehensive NN.
Although the log IDs 4 and 8 lead to contradicting indicators to
some extent, the overall results speak clearly for using multiple
NNs over a comprehensive NN.

LOG
ID

PPV Sensitivity
ComNN MNNs ComNN MNNs

1 79 92 1 63
2 34 92 46 70
3 65 71 32 78
4 58 79 68 66

5 54 97 13 95
6 47 80 50 93
7 71 76 16 39
8 70 44 68 89
9 65 70 8 32

The superior practical performance of multiple NNs over a
comprehensive NN might be based on different circumstances.
One such circumstance is that, instead of working with only one
set of hyperparameters, each NN predicting only one log ID of
interest allows for its own set of hyperparameters, such as
relevant past (see Fig. 5) or the number of neurons in a certain
layer. Another contributing factor might be the more complex
structure of the comprehensive NN, which might induce a
worse performance of the optimization algorithm used for the
training procedure, leading to a suboptimal trained NN.
Another factor is the design of the used labels, which allow for
only one next log ID of interest to be predicted. This might
distort the NN’s performance, since one log ID of interest might
be concealed by another log ID of interest, leading to inferior
performance.

To set the performance of the NNs from the multiple NNs
approach into relation, one can compare it to trivial prediction
models. A suitable base model can be obtained by always
predicting the most common observed class. Due to the
extremely unbalanced situation, we are facing with the AHT
dataset, this is always clearly the prediction, that there will not
be an ID of interest in the upcoming timeframe. The accuracy
is calculated as the ratio of correct predictions to all predictions.
For the no information rate model, this value is always the ratio
of no-error predictions, which ranges for our situation between
89% to 98.6%. Although these values are quite high, the
obtained NNs outperform this bae-line accuracy in nearly all
cases with accuracies between 94.4% and 99.9%, as shown in
Table II.

LOG
ID

Accuracy
No information rate MNNs

1 96.5 98.6
2 96.2 98.6
3 95.9 97.8
4 89.0 94.2
5 98.6 99.9
6 97.7 99.3
7 93.0 94.9
8 95.4 94.4

9 96.1 96.9

Proposed ALFA Software Design

To benefit from the advantages promoted in the previous
sections, we propose the ALFA (AutoML for Log File
Analysis) software design capable of handling the needed
requirements. The software design contains two main
components, the predictor and the model updater.

The predictor receives the log information as soon as they occur
and creates a prediction based on this information. In the first
step, the data – log ID, time, segment, and type (it is either the
start or the end of a log event) is received and stored in a
database. In a second step, the NNs are loaded from the model
updater if they have not been loaded yet and enough data is
available to do so. Finally, the NNs are used to predict the
occurrence of log IDs of interest if enough data is available.
Furthermore, the received log IDs can be used to calculate the
performance of the previously made predictions, which
guarantees for always present performance indicators for each
NN. This component operates only, and as soon as new log data
is received.

The model updater is used to store, load, and refit the NNs. It
operates on an external trigger, either from the predictor when
loading a NN, or a regular impulse, based on e.g., a certain time
or a certain amount of received and relevant log data, to refit
one or more NNs. When loading the NNs, the model updater
first tries to load already existing NNs from the file system. If
this is not possible, it loads the relevant log data to create and

6

To compare the performance of the NNs, two widely used
performance indicators are introduced – the positive predictive
value (PPV) and the sensitivity. Both indicators are empirical
probabilities. The indicator PPV can be calculated as the
number of correct predictions of a log ID divided by the total
number of predictions of this ID. The higher this value is, the
more reliable is a gained prediction of this log ID. The indicator
sensitivity can be calculated as the number of correct
predictions of a log ID divided by the total number of
occurrences of this log ID. The higher this indicator is, the
fewer occurrences of this log ID are ‘overlooked’ by the NN. A
reliable prediction system requires both values to be high.

Comparing the performance of a comprehensive NN to
multiple NNs in our production line setting speaks for the usage
of multiple NNs over a comprehensive NN. Table I shows the
two introduced performance indicators, observed when
predicted and predicted when observed, for both discussed
cases. Except for log ID 4 and 8, both indicators speak
consistently for using multiple NNs over a comprehensive NN.
Although the log IDs 4 and 8 lead to contradicting indicators to
some extent, the overall results speak clearly for using multiple
NNs over a comprehensive NN.

LOG
ID

PPV Sensitivity
ComNN MNNs ComNN MNNs

1 79 92 1 63
2 34 92 46 70
3 65 71 32 78
4 58 79 68 66

5 54 97 13 95
6 47 80 50 93
7 71 76 16 39
8 70 44 68 89
9 65 70 8 32

The superior practical performance of multiple NNs over a
comprehensive NN might be based on different circumstances.
One such circumstance is that, instead of working with only one
set of hyperparameters, each NN predicting only one log ID of
interest allows for its own set of hyperparameters, such as
relevant past (see Fig. 5) or the number of neurons in a certain
layer. Another contributing factor might be the more complex
structure of the comprehensive NN, which might induce a
worse performance of the optimization algorithm used for the
training procedure, leading to a suboptimal trained NN.
Another factor is the design of the used labels, which allow for
only one next log ID of interest to be predicted. This might
distort the NN’s performance, since one log ID of interest might
be concealed by another log ID of interest, leading to inferior
performance.

To set the performance of the NNs from the multiple NNs
approach into relation, one can compare it to trivial prediction
models. A suitable base model can be obtained by always
predicting the most common observed class. Due to the
extremely unbalanced situation, we are facing with the AHT
dataset, this is always clearly the prediction, that there will not
be an ID of interest in the upcoming timeframe. The accuracy
is calculated as the ratio of correct predictions to all predictions.
For the no information rate model, this value is always the ratio
of no-error predictions, which ranges for our situation between
89% to 98.6%. Although these values are quite high, the
obtained NNs outperform this bae-line accuracy in nearly all
cases with accuracies between 94.4% and 99.9%, as shown in
Table II.

LOG
ID

Accuracy
No information rate MNNs

1 96.5 98.6
2 96.2 98.6
3 95.9 97.8
4 89.0 94.2
5 98.6 99.9
6 97.7 99.3
7 93.0 94.9
8 95.4 94.4

9 96.1 96.9

Proposed ALFA Software Design

To benefit from the advantages promoted in the previous
sections, we propose the ALFA (AutoML for Log File
Analysis) software design capable of handling the needed
requirements. The software design contains two main
components, the predictor and the model updater.

The predictor receives the log information as soon as they occur
and creates a prediction based on this information. In the first
step, the data – log ID, time, segment, and type (it is either the
start or the end of a log event) is received and stored in a
database. In a second step, the NNs are loaded from the model
updater if they have not been loaded yet and enough data is
available to do so. Finally, the NNs are used to predict the
occurrence of log IDs of interest if enough data is available.
Furthermore, the received log IDs can be used to calculate the
performance of the previously made predictions, which
guarantees for always present performance indicators for each
NN. This component operates only, and as soon as new log data
is received.

The model updater is used to store, load, and refit the NNs. It
operates on an external trigger, either from the predictor when
loading a NN, or a regular impulse, based on e.g., a certain time
or a certain amount of received and relevant log data, to refit
one or more NNs. When loading the NNs, the model updater
first tries to load already existing NNs from the file system. If
this is not possible, it loads the relevant log data to create and

7

fit new NNs. In case that there is not enough data to fit NNs,
nothing is done – until enough log data is present. Furthermore,
on a regular basis, triggered e.g., by elapsed time or a certain
amount of received data, the currently used NNs are reevaluated
and possibly replaced, in other words, refitted. This includes
loading of the relevant log data, the creation and fitting of new
NNs, the comparison between these new NNs and the currently
active NNs, and replacing the currently active NNs through the
newly created and better performing NNs.

The software description is still lacking an essential piece of
information, that is, what exactly we mean by creating and
fitting a model. Recapitulating the discussions about NAS from
Section II, we make use of architecture optimization in case of
a neural network search space with subsequent hyperparameter
optimization. The precedes tasks of data preparation and feature
engineering, which are usually included into the AutoML
pipeline are not required in the presented setting, since the data
is already well formatted, and features have been predefined.
The mode evaluation, on the other hand, is still a crucial aspect
of the presented workflow and is used whenever a new NN is
created and trained with the data. A schematic depiction of the
described ALFA software architecture can be found in Fig. 7.

This proposed software architecture is currently developed in
the AHT project for industrial applications, especially for
automated decision making by predictive diagnosis and
machine learning in a semiconductor use case. The application
is constantly enhanced. The search space includes the NN
architecture shown in Fig. 6 and slight variations of it, the
hyperparameter optimization uses a grid search approach.
Possible extensions of this first implementation include the
additional prediction of the occurrence segment and the
extension of the currently used search space.

V. CONCLUSION

We have given an overview of the current state regarding log
analysis and AutoML, furthermore, the advantages of

combining these approaches were presented in theory and for
the introduced AHT use case. In this context, the theoretical and
practical predominance of using multiple NNs, each tuned to
predict one log ID, over one comprehensive NN, predicting all
log IDs, was shown. The invoked theoretical advantages are the
possibility to gradually adapt the overall prediction model to the
concept drift or even to a new quality of data, which are new
log IDs in the AHT use case. The invoked practical advantage
in the context at hand is the better results produced by using
multiple NNs in the AHT use case, shown in Table I.

Based on these considerations, the ALFA software architecture
comprised of multiple NNs was proposed, it is shown in Fig. 7.
This architecture allows for the beforehand enumerated
advantages and, beyond that, to also carry along the up-to-date
performance of the used NNs. An automated update of the used
NNs is done in the background, as soon as a better performing
NN for a given log ID or even a new NN for a new log ID is
found, it gets integrated. An expert in the field of NNs is not
required to use this setup, opening the usage of it for a wide
audience. The sole requirement is a suitable data format.

The gained models, from a first, simple implementation show
great potential. Compared to the no-information-rate model,
always predicting the most likely class, good performance was
achieved. On the very unbalanced AHT dataset, assessed by the
accuracy, the obtained NNs outperform the no-information-rate
model in nearly all cases on a very high level, as shown in Table
II.

The ALFA software architecture is currently developed in the
AHT project and is constantly evaluated in this context as a new
tool that will be provided to the Eclipse Arrowhead project.
Although the first results are promising, a long-time evaluation
might hold crucial information for the further development of
the proposed prediction model. This especially concerns the
evaluate the software component’s behavior when confronted
with an unknown concept drift and the introduction of data of
new quality. This, however, requires time for data in the given
setup to be shifted in this direction.

A next step, besides the long-term evaluation, is the extension
of the ALFA software architecture. There are two apparent
extensions, the introduction of an additional label dimension
with the segment of occurrence, additionally to the log ID, and
the improvement of the used NAS approach. The used NAS
approach can be enhanced by extending the search space to
include more NN architectures and by refining the
hyperparameter optimization.

REFERENCES

[1] Bao, L., Li, Q., Lu, P., Lu, J., Ruan, T., & Zhang, K. (2018). Execution
anomaly detection in large-scale systems through console log analysis.
Journal of Systems and Software, 143, 172-186. DOI:
10.1016/j.jss.2018.05.016

[2] Boardman, J., & Sauser, B. (2006, April). System of Systems-the meaning
of of. In 2006 IEEE/SMC International Conference on System of Systems
Engineering (pp. 6-pp). IEEE. DOI: 10.1109/sysose.2006.1652284

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2021 • VOLUME XIII • NUMBER 3 81

7

fit new NNs. In case that there is not enough data to fit NNs,
nothing is done – until enough log data is present. Furthermore,
on a regular basis, triggered e.g., by elapsed time or a certain
amount of received data, the currently used NNs are reevaluated
and possibly replaced, in other words, refitted. This includes
loading of the relevant log data, the creation and fitting of new
NNs, the comparison between these new NNs and the currently
active NNs, and replacing the currently active NNs through the
newly created and better performing NNs.

The software description is still lacking an essential piece of
information, that is, what exactly we mean by creating and
fitting a model. Recapitulating the discussions about NAS from
Section II, we make use of architecture optimization in case of
a neural network search space with subsequent hyperparameter
optimization. The precedes tasks of data preparation and feature
engineering, which are usually included into the AutoML
pipeline are not required in the presented setting, since the data
is already well formatted, and features have been predefined.
The mode evaluation, on the other hand, is still a crucial aspect
of the presented workflow and is used whenever a new NN is
created and trained with the data. A schematic depiction of the
described ALFA software architecture can be found in Fig. 7.

This proposed software architecture is currently developed in
the AHT project for industrial applications, especially for
automated decision making by predictive diagnosis and
machine learning in a semiconductor use case. The application
is constantly enhanced. The search space includes the NN
architecture shown in Fig. 6 and slight variations of it, the
hyperparameter optimization uses a grid search approach.
Possible extensions of this first implementation include the
additional prediction of the occurrence segment and the
extension of the currently used search space.

V. CONCLUSION

We have given an overview of the current state regarding log
analysis and AutoML, furthermore, the advantages of

combining these approaches were presented in theory and for
the introduced AHT use case. In this context, the theoretical and
practical predominance of using multiple NNs, each tuned to
predict one log ID, over one comprehensive NN, predicting all
log IDs, was shown. The invoked theoretical advantages are the
possibility to gradually adapt the overall prediction model to the
concept drift or even to a new quality of data, which are new
log IDs in the AHT use case. The invoked practical advantage
in the context at hand is the better results produced by using
multiple NNs in the AHT use case, shown in Table I.

Based on these considerations, the ALFA software architecture
comprised of multiple NNs was proposed, it is shown in Fig. 7.
This architecture allows for the beforehand enumerated
advantages and, beyond that, to also carry along the up-to-date
performance of the used NNs. An automated update of the used
NNs is done in the background, as soon as a better performing
NN for a given log ID or even a new NN for a new log ID is
found, it gets integrated. An expert in the field of NNs is not
required to use this setup, opening the usage of it for a wide
audience. The sole requirement is a suitable data format.

The gained models, from a first, simple implementation show
great potential. Compared to the no-information-rate model,
always predicting the most likely class, good performance was
achieved. On the very unbalanced AHT dataset, assessed by the
accuracy, the obtained NNs outperform the no-information-rate
model in nearly all cases on a very high level, as shown in Table
II.

The ALFA software architecture is currently developed in the
AHT project and is constantly evaluated in this context as a new
tool that will be provided to the Eclipse Arrowhead project.
Although the first results are promising, a long-time evaluation
might hold crucial information for the further development of
the proposed prediction model. This especially concerns the
evaluate the software component’s behavior when confronted
with an unknown concept drift and the introduction of data of
new quality. This, however, requires time for data in the given
setup to be shifted in this direction.

A next step, besides the long-term evaluation, is the extension
of the ALFA software architecture. There are two apparent
extensions, the introduction of an additional label dimension
with the segment of occurrence, additionally to the log ID, and
the improvement of the used NAS approach. The used NAS
approach can be enhanced by extending the search space to
include more NN architectures and by refining the
hyperparameter optimization.

REFERENCES

[1] Bao, L., Li, Q., Lu, P., Lu, J., Ruan, T., & Zhang, K. (2018). Execution
anomaly detection in large-scale systems through console log analysis.
Journal of Systems and Software, 143, 172-186. DOI:
10.1016/j.jss.2018.05.016

[2] Boardman, J., & Sauser, B. (2006, April). System of Systems-the meaning
of of. In 2006 IEEE/SMC International Conference on System of Systems
Engineering (pp. 6-pp). IEEE. DOI: 10.1109/sysose.2006.1652284

AutoML for Log File Analysis (ALFA) in a Production Line System
of Systems pointed towards Predictive Maintenance

Fig. 7. ALFA software architecture proposed for the AHT use case, consisting
of two main components, predictor and model updater.

7

fit new NNs. In case that there is not enough data to fit NNs,
nothing is done – until enough log data is present. Furthermore,
on a regular basis, triggered e.g., by elapsed time or a certain
amount of received data, the currently used NNs are reevaluated
and possibly replaced, in other words, refitted. This includes
loading of the relevant log data, the creation and fitting of new
NNs, the comparison between these new NNs and the currently
active NNs, and replacing the currently active NNs through the
newly created and better performing NNs.

The software description is still lacking an essential piece of
information, that is, what exactly we mean by creating and
fitting a model. Recapitulating the discussions about NAS from
Section II, we make use of architecture optimization in case of
a neural network search space with subsequent hyperparameter
optimization. The precedes tasks of data preparation and feature
engineering, which are usually included into the AutoML
pipeline are not required in the presented setting, since the data
is already well formatted, and features have been predefined.
The mode evaluation, on the other hand, is still a crucial aspect
of the presented workflow and is used whenever a new NN is
created and trained with the data. A schematic depiction of the
described ALFA software architecture can be found in Fig. 7.

This proposed software architecture is currently developed in
the AHT project for industrial applications, especially for
automated decision making by predictive diagnosis and
machine learning in a semiconductor use case. The application
is constantly enhanced. The search space includes the NN
architecture shown in Fig. 6 and slight variations of it, the
hyperparameter optimization uses a grid search approach.
Possible extensions of this first implementation include the
additional prediction of the occurrence segment and the
extension of the currently used search space.

V. CONCLUSION

We have given an overview of the current state regarding log
analysis and AutoML, furthermore, the advantages of

combining these approaches were presented in theory and for
the introduced AHT use case. In this context, the theoretical and
practical predominance of using multiple NNs, each tuned to
predict one log ID, over one comprehensive NN, predicting all
log IDs, was shown. The invoked theoretical advantages are the
possibility to gradually adapt the overall prediction model to the
concept drift or even to a new quality of data, which are new
log IDs in the AHT use case. The invoked practical advantage
in the context at hand is the better results produced by using
multiple NNs in the AHT use case, shown in Table I.

Based on these considerations, the ALFA software architecture
comprised of multiple NNs was proposed, it is shown in Fig. 7.
This architecture allows for the beforehand enumerated
advantages and, beyond that, to also carry along the up-to-date
performance of the used NNs. An automated update of the used
NNs is done in the background, as soon as a better performing
NN for a given log ID or even a new NN for a new log ID is
found, it gets integrated. An expert in the field of NNs is not
required to use this setup, opening the usage of it for a wide
audience. The sole requirement is a suitable data format.

The gained models, from a first, simple implementation show
great potential. Compared to the no-information-rate model,
always predicting the most likely class, good performance was
achieved. On the very unbalanced AHT dataset, assessed by the
accuracy, the obtained NNs outperform the no-information-rate
model in nearly all cases on a very high level, as shown in Table
II.

The ALFA software architecture is currently developed in the
AHT project and is constantly evaluated in this context as a new
tool that will be provided to the Eclipse Arrowhead project.
Although the first results are promising, a long-time evaluation
might hold crucial information for the further development of
the proposed prediction model. This especially concerns the
evaluate the software component’s behavior when confronted
with an unknown concept drift and the introduction of data of
new quality. This, however, requires time for data in the given
setup to be shifted in this direction.

A next step, besides the long-term evaluation, is the extension
of the ALFA software architecture. There are two apparent
extensions, the introduction of an additional label dimension
with the segment of occurrence, additionally to the log ID, and
the improvement of the used NAS approach. The used NAS
approach can be enhanced by extending the search space to
include more NN architectures and by refining the
hyperparameter optimization.

REFERENCES

[1] Bao, L., Li, Q., Lu, P., Lu, J., Ruan, T., & Zhang, K. (2018). Execution
anomaly detection in large-scale systems through console log analysis.
Journal of Systems and Software, 143, 172-186. DOI:
10.1016/j.jss.2018.05.016

[2] Boardman, J., & Sauser, B. (2006, April). System of Systems-the meaning
of of. In 2006 IEEE/SMC International Conference on System of Systems
Engineering (pp. 6-pp). IEEE. DOI: 10.1109/sysose.2006.1652284

7

fit new NNs. In case that there is not enough data to fit NNs,
nothing is done – until enough log data is present. Furthermore,
on a regular basis, triggered e.g., by elapsed time or a certain
amount of received data, the currently used NNs are reevaluated
and possibly replaced, in other words, refitted. This includes
loading of the relevant log data, the creation and fitting of new
NNs, the comparison between these new NNs and the currently
active NNs, and replacing the currently active NNs through the
newly created and better performing NNs.

The software description is still lacking an essential piece of
information, that is, what exactly we mean by creating and
fitting a model. Recapitulating the discussions about NAS from
Section II, we make use of architecture optimization in case of
a neural network search space with subsequent hyperparameter
optimization. The precedes tasks of data preparation and feature
engineering, which are usually included into the AutoML
pipeline are not required in the presented setting, since the data
is already well formatted, and features have been predefined.
The mode evaluation, on the other hand, is still a crucial aspect
of the presented workflow and is used whenever a new NN is
created and trained with the data. A schematic depiction of the
described ALFA software architecture can be found in Fig. 7.

This proposed software architecture is currently developed in
the AHT project for industrial applications, especially for
automated decision making by predictive diagnosis and
machine learning in a semiconductor use case. The application
is constantly enhanced. The search space includes the NN
architecture shown in Fig. 6 and slight variations of it, the
hyperparameter optimization uses a grid search approach.
Possible extensions of this first implementation include the
additional prediction of the occurrence segment and the
extension of the currently used search space.

V. CONCLUSION

We have given an overview of the current state regarding log
analysis and AutoML, furthermore, the advantages of

combining these approaches were presented in theory and for
the introduced AHT use case. In this context, the theoretical and
practical predominance of using multiple NNs, each tuned to
predict one log ID, over one comprehensive NN, predicting all
log IDs, was shown. The invoked theoretical advantages are the
possibility to gradually adapt the overall prediction model to the
concept drift or even to a new quality of data, which are new
log IDs in the AHT use case. The invoked practical advantage
in the context at hand is the better results produced by using
multiple NNs in the AHT use case, shown in Table I.

Based on these considerations, the ALFA software architecture
comprised of multiple NNs was proposed, it is shown in Fig. 7.
This architecture allows for the beforehand enumerated
advantages and, beyond that, to also carry along the up-to-date
performance of the used NNs. An automated update of the used
NNs is done in the background, as soon as a better performing
NN for a given log ID or even a new NN for a new log ID is
found, it gets integrated. An expert in the field of NNs is not
required to use this setup, opening the usage of it for a wide
audience. The sole requirement is a suitable data format.

The gained models, from a first, simple implementation show
great potential. Compared to the no-information-rate model,
always predicting the most likely class, good performance was
achieved. On the very unbalanced AHT dataset, assessed by the
accuracy, the obtained NNs outperform the no-information-rate
model in nearly all cases on a very high level, as shown in Table
II.

The ALFA software architecture is currently developed in the
AHT project and is constantly evaluated in this context as a new
tool that will be provided to the Eclipse Arrowhead project.
Although the first results are promising, a long-time evaluation
might hold crucial information for the further development of
the proposed prediction model. This especially concerns the
evaluate the software component’s behavior when confronted
with an unknown concept drift and the introduction of data of
new quality. This, however, requires time for data in the given
setup to be shifted in this direction.

A next step, besides the long-term evaluation, is the extension
of the ALFA software architecture. There are two apparent
extensions, the introduction of an additional label dimension
with the segment of occurrence, additionally to the log ID, and
the improvement of the used NAS approach. The used NAS
approach can be enhanced by extending the search space to
include more NN architectures and by refining the
hyperparameter optimization.

REFERENCES

[1] Bao, L., Li, Q., Lu, P., Lu, J., Ruan, T., & Zhang, K. (2018). Execution
anomaly detection in large-scale systems through console log analysis.
Journal of Systems and Software, 143, 172-186. DOI:
10.1016/j.jss.2018.05.016

[2] Boardman, J., & Sauser, B. (2006, April). System of Systems-the meaning
of of. In 2006 IEEE/SMC International Conference on System of Systems
Engineering (pp. 6-pp). IEEE. DOI: 10.1109/sysose.2006.1652284

7

fit new NNs. In case that there is not enough data to fit NNs,
nothing is done – until enough log data is present. Furthermore,
on a regular basis, triggered e.g., by elapsed time or a certain
amount of received data, the currently used NNs are reevaluated
and possibly replaced, in other words, refitted. This includes
loading of the relevant log data, the creation and fitting of new
NNs, the comparison between these new NNs and the currently
active NNs, and replacing the currently active NNs through the
newly created and better performing NNs.

The software description is still lacking an essential piece of
information, that is, what exactly we mean by creating and
fitting a model. Recapitulating the discussions about NAS from
Section II, we make use of architecture optimization in case of
a neural network search space with subsequent hyperparameter
optimization. The precedes tasks of data preparation and feature
engineering, which are usually included into the AutoML
pipeline are not required in the presented setting, since the data
is already well formatted, and features have been predefined.
The mode evaluation, on the other hand, is still a crucial aspect
of the presented workflow and is used whenever a new NN is
created and trained with the data. A schematic depiction of the
described ALFA software architecture can be found in Fig. 7.

This proposed software architecture is currently developed in
the AHT project for industrial applications, especially for
automated decision making by predictive diagnosis and
machine learning in a semiconductor use case. The application
is constantly enhanced. The search space includes the NN
architecture shown in Fig. 6 and slight variations of it, the
hyperparameter optimization uses a grid search approach.
Possible extensions of this first implementation include the
additional prediction of the occurrence segment and the
extension of the currently used search space.

V. CONCLUSION

We have given an overview of the current state regarding log
analysis and AutoML, furthermore, the advantages of

combining these approaches were presented in theory and for
the introduced AHT use case. In this context, the theoretical and
practical predominance of using multiple NNs, each tuned to
predict one log ID, over one comprehensive NN, predicting all
log IDs, was shown. The invoked theoretical advantages are the
possibility to gradually adapt the overall prediction model to the
concept drift or even to a new quality of data, which are new
log IDs in the AHT use case. The invoked practical advantage
in the context at hand is the better results produced by using
multiple NNs in the AHT use case, shown in Table I.

Based on these considerations, the ALFA software architecture
comprised of multiple NNs was proposed, it is shown in Fig. 7.
This architecture allows for the beforehand enumerated
advantages and, beyond that, to also carry along the up-to-date
performance of the used NNs. An automated update of the used
NNs is done in the background, as soon as a better performing
NN for a given log ID or even a new NN for a new log ID is
found, it gets integrated. An expert in the field of NNs is not
required to use this setup, opening the usage of it for a wide
audience. The sole requirement is a suitable data format.

The gained models, from a first, simple implementation show
great potential. Compared to the no-information-rate model,
always predicting the most likely class, good performance was
achieved. On the very unbalanced AHT dataset, assessed by the
accuracy, the obtained NNs outperform the no-information-rate
model in nearly all cases on a very high level, as shown in Table
II.

The ALFA software architecture is currently developed in the
AHT project and is constantly evaluated in this context as a new
tool that will be provided to the Eclipse Arrowhead project.
Although the first results are promising, a long-time evaluation
might hold crucial information for the further development of
the proposed prediction model. This especially concerns the
evaluate the software component’s behavior when confronted
with an unknown concept drift and the introduction of data of
new quality. This, however, requires time for data in the given
setup to be shifted in this direction.

A next step, besides the long-term evaluation, is the extension
of the ALFA software architecture. There are two apparent
extensions, the introduction of an additional label dimension
with the segment of occurrence, additionally to the log ID, and
the improvement of the used NAS approach. The used NAS
approach can be enhanced by extending the search space to
include more NN architectures and by refining the
hyperparameter optimization.

REFERENCES

[1] Bao, L., Li, Q., Lu, P., Lu, J., Ruan, T., & Zhang, K. (2018). Execution
anomaly detection in large-scale systems through console log analysis.
Journal of Systems and Software, 143, 172-186. DOI:
10.1016/j.jss.2018.05.016

[2] Boardman, J., & Sauser, B. (2006, April). System of Systems-the meaning
of of. In 2006 IEEE/SMC International Conference on System of Systems
Engineering (pp. 6-pp). IEEE. DOI: 10.1109/sysose.2006.1652284

7

fit new NNs. In case that there is not enough data to fit NNs,
nothing is done – until enough log data is present. Furthermore,
on a regular basis, triggered e.g., by elapsed time or a certain
amount of received data, the currently used NNs are reevaluated
and possibly replaced, in other words, refitted. This includes
loading of the relevant log data, the creation and fitting of new
NNs, the comparison between these new NNs and the currently
active NNs, and replacing the currently active NNs through the
newly created and better performing NNs.

The software description is still lacking an essential piece of
information, that is, what exactly we mean by creating and
fitting a model. Recapitulating the discussions about NAS from
Section II, we make use of architecture optimization in case of
a neural network search space with subsequent hyperparameter
optimization. The precedes tasks of data preparation and feature
engineering, which are usually included into the AutoML
pipeline are not required in the presented setting, since the data
is already well formatted, and features have been predefined.
The mode evaluation, on the other hand, is still a crucial aspect
of the presented workflow and is used whenever a new NN is
created and trained with the data. A schematic depiction of the
described ALFA software architecture can be found in Fig. 7.

This proposed software architecture is currently developed in
the AHT project for industrial applications, especially for
automated decision making by predictive diagnosis and
machine learning in a semiconductor use case. The application
is constantly enhanced. The search space includes the NN
architecture shown in Fig. 6 and slight variations of it, the
hyperparameter optimization uses a grid search approach.
Possible extensions of this first implementation include the
additional prediction of the occurrence segment and the
extension of the currently used search space.

V. CONCLUSION

We have given an overview of the current state regarding log
analysis and AutoML, furthermore, the advantages of

combining these approaches were presented in theory and for
the introduced AHT use case. In this context, the theoretical and
practical predominance of using multiple NNs, each tuned to
predict one log ID, over one comprehensive NN, predicting all
log IDs, was shown. The invoked theoretical advantages are the
possibility to gradually adapt the overall prediction model to the
concept drift or even to a new quality of data, which are new
log IDs in the AHT use case. The invoked practical advantage
in the context at hand is the better results produced by using
multiple NNs in the AHT use case, shown in Table I.

Based on these considerations, the ALFA software architecture
comprised of multiple NNs was proposed, it is shown in Fig. 7.
This architecture allows for the beforehand enumerated
advantages and, beyond that, to also carry along the up-to-date
performance of the used NNs. An automated update of the used
NNs is done in the background, as soon as a better performing
NN for a given log ID or even a new NN for a new log ID is
found, it gets integrated. An expert in the field of NNs is not
required to use this setup, opening the usage of it for a wide
audience. The sole requirement is a suitable data format.

The gained models, from a first, simple implementation show
great potential. Compared to the no-information-rate model,
always predicting the most likely class, good performance was
achieved. On the very unbalanced AHT dataset, assessed by the
accuracy, the obtained NNs outperform the no-information-rate
model in nearly all cases on a very high level, as shown in Table
II.

The ALFA software architecture is currently developed in the
AHT project and is constantly evaluated in this context as a new
tool that will be provided to the Eclipse Arrowhead project.
Although the first results are promising, a long-time evaluation
might hold crucial information for the further development of
the proposed prediction model. This especially concerns the
evaluate the software component’s behavior when confronted
with an unknown concept drift and the introduction of data of
new quality. This, however, requires time for data in the given
setup to be shifted in this direction.

A next step, besides the long-term evaluation, is the extension
of the ALFA software architecture. There are two apparent
extensions, the introduction of an additional label dimension
with the segment of occurrence, additionally to the log ID, and
the improvement of the used NAS approach. The used NAS
approach can be enhanced by extending the search space to
include more NN architectures and by refining the
hyperparameter optimization.

REFERENCES

[1] Bao, L., Li, Q., Lu, P., Lu, J., Ruan, T., & Zhang, K. (2018). Execution
anomaly detection in large-scale systems through console log analysis.
Journal of Systems and Software, 143, 172-186. DOI:
10.1016/j.jss.2018.05.016

[2] Boardman, J., & Sauser, B. (2006, April). System of Systems-the meaning
of of. In 2006 IEEE/SMC International Conference on System of Systems
Engineering (pp. 6-pp). IEEE. DOI: 10.1109/sysose.2006.1652284

SEPTEMBER 2021 • VOLUME XIII • NUMBER 382

INFOCOMMUNICATIONS JOURNAL

References

	 [1]	 Bao, L., Li, Q., Lu, P., Lu, J., Ruan, T., & Zhang, K. (2018). Execution
anomaly detection in large-scale systems through console log analysis.
Journal of Systems and Software, 143, 172-186.

		 doi: 10.1016/j.jss.2018.05.016
	 [2]	 Boardman, J., & Sauser, B. (2006, April). System of Systems-the

meaning of of. In 2006 IEEE/SMC International Conference on
System of Systems Engineering (pp. 6-pp). IEEE.

		 doi: 10.1109/SYSOSE.2006.1652284
	 [3]	 Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby,

N., ... & Zdeborová, L. (2019). Machine learning and the physical
sciences. Reviews of Modern Physics, 91(4), 045002.

		 doi: 10.1103/RevModPhys.91.045002
	 [4]	 Carvalho, T. P., Soares, F. A., Vita, R., Francisco, R. D. P., Basto, J.

P., & Alcalá, S. G. (2019). A systematic literature review of machine
learning methods applied to predictive maintenance. Computers &
Industrial Engineering, 137, 106024. doi: 10.1016/j.cie.2019.106024

7

fit new NNs. In case that there is not enough data to fit NNs,
nothing is done – until enough log data is present. Furthermore,
on a regular basis, triggered e.g., by elapsed time or a certain
amount of received data, the currently used NNs are reevaluated
and possibly replaced, in other words, refitted. This includes
loading of the relevant log data, the creation and fitting of new
NNs, the comparison between these new NNs and the currently
active NNs, and replacing the currently active NNs through the
newly created and better performing NNs.

The software description is still lacking an essential piece of
information, that is, what exactly we mean by creating and
fitting a model. Recapitulating the discussions about NAS from
Section II, we make use of architecture optimization in case of
a neural network search space with subsequent hyperparameter
optimization. The precedes tasks of data preparation and feature
engineering, which are usually included into the AutoML
pipeline are not required in the presented setting, since the data
is already well formatted, and features have been predefined.
The mode evaluation, on the other hand, is still a crucial aspect
of the presented workflow and is used whenever a new NN is
created and trained with the data. A schematic depiction of the
described ALFA software architecture can be found in Fig. 7.

This proposed software architecture is currently developed in
the AHT project for industrial applications, especially for
automated decision making by predictive diagnosis and
machine learning in a semiconductor use case. The application
is constantly enhanced. The search space includes the NN
architecture shown in Fig. 6 and slight variations of it, the
hyperparameter optimization uses a grid search approach.
Possible extensions of this first implementation include the
additional prediction of the occurrence segment and the
extension of the currently used search space.

V. CONCLUSION

We have given an overview of the current state regarding log
analysis and AutoML, furthermore, the advantages of

combining these approaches were presented in theory and for
the introduced AHT use case. In this context, the theoretical and
practical predominance of using multiple NNs, each tuned to
predict one log ID, over one comprehensive NN, predicting all
log IDs, was shown. The invoked theoretical advantages are the
possibility to gradually adapt the overall prediction model to the
concept drift or even to a new quality of data, which are new
log IDs in the AHT use case. The invoked practical advantage
in the context at hand is the better results produced by using
multiple NNs in the AHT use case, shown in Table I.

Based on these considerations, the ALFA software architecture
comprised of multiple NNs was proposed, it is shown in Fig. 7.
This architecture allows for the beforehand enumerated
advantages and, beyond that, to also carry along the up-to-date
performance of the used NNs. An automated update of the used
NNs is done in the background, as soon as a better performing
NN for a given log ID or even a new NN for a new log ID is
found, it gets integrated. An expert in the field of NNs is not
required to use this setup, opening the usage of it for a wide
audience. The sole requirement is a suitable data format.

The gained models, from a first, simple implementation show
great potential. Compared to the no-information-rate model,
always predicting the most likely class, good performance was
achieved. On the very unbalanced AHT dataset, assessed by the
accuracy, the obtained NNs outperform the no-information-rate
model in nearly all cases on a very high level, as shown in Table
II.

The ALFA software architecture is currently developed in the
AHT project and is constantly evaluated in this context as a new
tool that will be provided to the Eclipse Arrowhead project.
Although the first results are promising, a long-time evaluation
might hold crucial information for the further development of
the proposed prediction model. This especially concerns the
evaluate the software component’s behavior when confronted
with an unknown concept drift and the introduction of data of
new quality. This, however, requires time for data in the given
setup to be shifted in this direction.

A next step, besides the long-term evaluation, is the extension
of the ALFA software architecture. There are two apparent
extensions, the introduction of an additional label dimension
with the segment of occurrence, additionally to the log ID, and
the improvement of the used NAS approach. The used NAS
approach can be enhanced by extending the search space to
include more NN architectures and by refining the
hyperparameter optimization.

REFERENCES

[1] Bao, L., Li, Q., Lu, P., Lu, J., Ruan, T., & Zhang, K. (2018). Execution
anomaly detection in large-scale systems through console log analysis.
Journal of Systems and Software, 143, 172-186. DOI:
10.1016/j.jss.2018.05.016

[2] Boardman, J., & Sauser, B. (2006, April). System of Systems-the meaning
of of. In 2006 IEEE/SMC International Conference on System of Systems
Engineering (pp. 6-pp). IEEE. DOI: 10.1109/sysose.2006.1652284

AutoML for Log File Analysis (ALFA) in a Production Line System
of Systems pointed towards Predictive Maintenance

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2021 • VOLUME XIII • NUMBER 3 83

[21] Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L. J., ...
& Murphy, K. (2018). Progressive neural architecture search. In
Proceedings of the European conference on computer vision (ECCV)
(pp. 19-34). doi: 10.1007/978-3-030-01246-5_2

[22]	 Liu, H., Simonyan, K., Vinyals, O., Fernando, C., & Kavukcuoglu, K.
(2017). Hierarchical representations for efficient architecture search.
arXiv preprint arXiv:1711.00436.

[23]	 Liu, H., Simonyan, K., & Y ang, Y . (2018). Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055.

[24]	 Lin, T. T., & Siewiorek, D. P. (1990). Error log analysis: statistical
modeling and heuristic trend analysis. IEEE Transactions on
reliability, 39(4), 419-432. doi: 10.1016/0026-2714(92)90140-g

[25]	 Maier, M. W. (1998). Architecting principles for systems-of-systems.
Systems Engineering: The Journal of the International Council on
Systems Engineering, 1(4), 267-284. doi: 10.1002/(SICI)1520-
6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D

[26]	 Mendoza, H., Klein, A., Feurer, M., Springenberg, J. T., & Hutter, F.
(2016, December). Towards automatically-tuned neural networks. In
Workshop on Automatic Machine Learning (pp. 58-65). PMLR.

		 doi: 10.1007/978-3-030-05318-5_7
[27]	 Mobley, R. K. (2002). An introduction to predictive maintenance.

Elsevier. doi: 10.1016/b978-0-7506-7531-4.x5000-3
[28]	 Oliner, A., Ganapathi, A., & Xu, W. (2012). Advances and challenges

in log analysis. Communications of the ACM, 55(2), 55-61.
		 doi: 10.1145/2076796.2082137
[29]	 Pham, H., Guan, M., Zoph, B., Le, Q., & Dean, J. (2018, July). Efficient

neural architecture search via parameters sharing. In International
Conference on Machine Learning (pp. 4095-4104). PMLR.

[30]	 Selcuk, S. (2017). Predictive maintenance, its implementation and
latest trends. Proceedings of the Institution of Mechanical Engineers,
Part B: Journal of Engineering Manufacture, 231(9), 1670-1679.

		 doi: 10.1177/0954405415601640
[31]	 Sipos, R., Fradkin, D., Moerchen, F., & Wang, Z. (2014, August).

Log-based predictive maintenance. In Proceedings of the 20th ACM
SIGKDD international conference on knowledge discovery and data
mining (pp. 1867-1876). doi: 10.1145/2623330.2623340

[32]	 Tan, W. N. (2019). SMT Machine Log File PDE Features Extraction
and Analysis (Doctoral dissertation, Tunku Abdul Rahman University
College).

[33]	 Wei, T., Wang, C., Rui, Y., & Chen, C. W. (2016, June). Network
morphism. In International Conference on Machine Learning (pp.
564- 572). PMLR.

[34]	 Zela, A., Klein, A., Falkner, S., & Hutter, F. (2018). Towards automated
deep learning: Efficient joint neural architecture and hyperparameter
search. arXiv preprint arXiv:1807.06906.

[35]	 Zhang, H., Li, Y., Chen, H., & Shen, C. (2019). Ir-nas: Neural architecture
search for image restoration. arXiv preprint arXiv:1909.08228.

[36]	 Zhang, Z., & Sabuncu, M. R. (2018). Generalized cross entropy loss
for training deep neural networks with noisy labels. arXiv preprint
arXiv:1805.07836.

[37]	 Zoph, B., & Le, Q. V. (2016). Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578.

	 [5]	 Chen, J., Chen, K., Chen, X., Qiu, X., & Huang, X. (2018). Exploring
shared structures and hierarchies for multiple nlp tasks. arXiv preprint
arXiv:1808.07658.

	 [6]	 Chen, W., Wilson, J., Tyree, S., Weinberger, K., & Chen, Y. (2015, June).
Compressing neural networks with the hashing trick. In International
conference on machine learning (pp. 2285-2294). PMLR.

	 [7]	 Domhan, T., Springenberg, J. T., & Hutter, F. (2015, June). Speeding
up automatic hyperparameter optimization of deep neural networks
by extrapolation of learning curves. In Twenty-fourth international
joint conference on artificial intelligence.

	 [8]	 Dikov, G., & Bayer, J. (2019, April). Bayesian learning of neural
network architectures. In The 22nd International Conference on
Artificial Intelligence and Statistics (pp. 730-738). PMLR.

	 [9]	 Eggensperger, K., Hutter, F., Hoos, H., & Leyton-Brown, K. (2015,
February). Efficient benchmarking of hyperparameter optimizers via
model-based surrogates. In Proceedings of the AAAI Conference on
Artificial Intelligence (Vol. 29, No. 1).

		 doi: 10.1007/s10994-017-5683-z
	[10]	 Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia,

A. (2014). A survey on concept drift adaptation. ACM computing
surveys (CSUR), 46(4), 1-37. doi: 10.1145/2523813

	[11]	 Ghiasi, G., Lin, T. Y., & Le, Q. V. (2019). Nas-fpn: Learning scalable
feature pyramid architecture for object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(pp. 7036-7045). doi: 10.1109/cvpr.2019.00720

[12]	 He, S., Lin, Q., Lou, J. G., Zhang, H., Lyu, M. R., & Zhang, D.
(2018, October). Identifying impactful service system problems via
log analysis. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (pp. 60-70).

		 doi: 10.1145/3236024.3236083
[13]	 He, S., Zhu, J., He, P., & Lyu, M. R. (2016, October). Experience

report: System log analysis for anomaly detection. In 2016 IEEE
27th International Symposium on Software Reliability Engineering
(ISSRE) (pp. 207-218). IEEE. doi: 10.1109/ISSRE.2016.21

[14]	 He, X., Zhao, K., & Chu, X. (2021). AutoML: A Survey of the State-
of-the-Art. Knowledge-Based Systems, 212, 106622.

		 doi: 10.1016/j.knosys.2020.106622
[15]	 Jayathilake, D. (2012, May). Towards structured log analysis. In 2012

Ninth International Conference on Computer Science and Software
Engineering (JCSSE) (pp. 259-264). IEEE.

		 doi: 10.1109/jcsse.2012.6261962
[16]	 Jiang, Y., Hu, C., Xiao, T., Zhang, C., & Zhu, J. (2019, November).

Improved differentiable architecture search for language modeling
and named entity recognition. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP) (pp. 3576-3581). doi: 10.18653/v1/D19-1367

[17]	 Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., & Xing,
E. (2018). Neural architecture search with bayesian optimisation and
optimal transport. arXiv preprint arXiv:1802.07191.

[18]	 Klein, A., Falkner, S., Bartels, S., Hennig, P., & Hutter, F. (2017, April).
Fast bayesian optimization of machine learning hyperparameters on
large datasets. In Artificial Intelligence and Statistics (pp. 528-536).
PMLR.

[19] Lee, J. H., Shin, J., & Realff, M. J. (2018). Machine learning:
Overview of the recent progresses and implications for the process
systems engineering field. Computers & Chemical Engineering, 114,
111-121. doi: 10.1016/j.compchemeng.2017.10.008

[20]	 Liu, C., Chen, L. C., Schroff, F., Adam, H., Hua, W., Yuille, A. L.,
& Fei-Fei, L. (2019). Auto-deeplab: Hierarchical neural architecture
search for semantic image segmentation. In Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition (pp.
82-92). doi: 10.1109/CVPR.2019.00017

AutoML for Log File Analysis (ALFA) in a Production Line System
of Systems pointed towards Predictive Maintenance

SEPTEMBER 2021 • VOLUME XIII • NUMBER 384

INFOCOMMUNICATIONS JOURNAL

Matthias Maurer is Senior Researcher for Contextual
Information Systems and Operational Insights at
Virtual Vehicle Research GmbH. His research interests
include data analytics, machine learning, and cognitive
science. Matthias has received his Dipl.-Ing. (equiv.
MSc) from Graz University of Technology in Technical
Mathematics and his Mag. rer. nat. from University of
Graz in Education. His work is manly focused on the
analysis of time-based production measurement and
log data, focusing on predictive maintenance and root
cause analysis..

Dipl.-Ing. Andreas Festl, BSc, is Senior Researcher
for Contextual Information Systems and Management
at Virtual Vehicle Research GmbH and affiliated
lecturer for data and information science at FH
Joanneum University of applied sciences. His research
interests include data analytics, statistics and machine
learning. Andreas has received his Dipl.-Ing. (equiv.
MSc) from Graz University of Technology in Technical
Mathematics. A large part of his work was and is
focused on the analysis of time-based automotive

measurement data, thereby answering questions about customer vehicle usage,
driving behavior and various environmental conditions.

Mag. Bor Bricelj, CQRM holds a master's degree
in economics and finance from University of
Maribor’s Faculty of Economics and Business, and a
Certificate in Quantitative Risk Management from the
International Institute of Professional Education and
Research. He worked in the fields of financial services
and higher education before transitioning to data
science. He has more than five years of experience as
a data scientist, implementing statistical and machine
learning methods to analyse and solve various industry

specific problems in different industry branches, ranging from automotive
industry, heavy industry, to chemical industry. At Virtual Vehicle Research
GmbH, he is employed as a Senior researcher / Data Scientist, working with
the "Information Network Extraction Systems" group. His work and research
are focused on domains of computer vision and data enrichment.

Dr. Germar Schneider (m) holds a Diploma and a PhD
in chemistry. He joined the Siemens AG in Essonnes
in France in 1995 as a process engineer in the wet
department. In 1998 in Dresden, he became the section
manager for the 200mm wet department. From 2004 to
2008, he built up a team that was important for factory
automation. Between 2008 and 2012, as manager in
the new wafer test department he was responsible for
production & maintenance and equipment engineering.
With 26 years of experience combining know-how of

process engineering, production, maintenance, automation and the experience
in digitalization projects he is main driver in various JU projects.

Dr. Michael Schmeja (55) has been working at the
Virtual Vehicle Research Center in Graz since 2009
and is currently the responsible Area Manager for
Safety & Security. After studying mathematics, Mr.
Schmeja earned his doctorate at the Institute of Railway
Engineering at the Graz University of Technology.
From 1997 - 2009 he held various management
positions at Siemens Mobility, where he was awarded
Inventor of the Year in 2003. In 2009, he moved to
Virtual Vehicle and, in addition to his function as Area

Manager, he also manages numerous international research projects.

