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Abstract—Automated machine learning and predictive 

maintenance have both become prominent terms in recent 
years. Combining these two fields of research by conducting 
log analysis using automated machine learning techniques 
to fuel predictive maintenance algorithms holds multiple 
advantages, especially when applied in a production line 
setting. This approach can be used for multiple applications 
in the industry, e.g., in semiconductor, automotive, metal, 
and many other industrial applications to improve the 
maintenance and production costs and quality. In this 
paper, we investigate the possibility to create a predictive 
maintenance framework using only easily available log data 
based on a neural network framework for predictive 
maintenance tasks. We outline the advantages of the ALFA 
(AutoML for Log File Analysis) approach, which are high 
efficiency in combination with a low entry border for 
novices, among others. In a production line setting, one 
would also be able to cope with concept drift and even with 
data of a new quality in a gradual manner. In the presented 
production line context, we also show the superior 
performance of multiple neural networks over a 
comprehensive neural network in practice. The proposed 
software architecture allows not only for the automated 
adaption to concept drift and even data of new quality but 
also gives access to the current performance of the used 
neural networks.  
 

Index Terms—Arrowhead Tools, AutoML, Log Analysis, 
Neuronal Architecture Search, Predictive Maintenance 
Framework  
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I. INTRODUCTION 
redictive Maintenance (PdM), which roots can be traced 
back to 1940, gained more and more attention with the rise 

of automated data acquisition and data processing in decision 
making [30]. By monitoring system parameters, such as 
performance, vibrations, temperature development, oil 
conditions, noise generation, or the like, a useful purpose 
should be derived. The promises associated with using PdM are 
diverse, starting with management control, reduction of 
overtimes, reduction of downtimes, higher quality output, 
higher user support, etc. [27]. As diverse as the desired benefits 
of PdM are, the systems’ type, under which predictive 
maintenance is applied, might even be more diverse. This type, 
besides general principles of PdM, needs to be considered when 
designing an appropriate PdM approach. 
 

One of the regarded system types, under which PdM is 
applied, includes an ever-changing production line in a System 
of Systems (SoSs). An SoS, as a construct of systems, where 
each was designed and can be used for a main purpose other 
than being part of this SoS [2, 25], usually brings along non 
harmonized log messages and uncoordinated behaviour. When 
combining these different systems with an everchanging 
environment, e.g., due to a replacement of certain subsystems 
or because of a changing system load, a highly untransparent 
and difficult to predict SoS is created. Depending on the 
concrete setup of the system, different PdM approaches can be 
applied, among these are log analysis approaches.  

 
Log analysis is a rather easy approach to apply to predictive 

maintenance [31] since in most cases log data, as a basis for the 
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predictive maintenance intervention, is produced automatically 
and no further adjustments to the system are needed. They get
collected anyway and, hence, only need processing to yield 
useful predictive maintenance findings. Log analysis 
approaches can be found for software [1, 12, 13, 15, 24, 28] or 
hardware SoSs [32], following different PdM objectives with 
different means. Among these, one can find visual tree 
representation [15], prediction heuristics, such as the so-called 
Dispersion Frame Technique [24], or machine learning 
methods [4, 13].

Machine learning, as one approach to log analysis, is itself a 
well-researched academic area with application in nearly every 
imaginable area, especially in autonomous driving, health care, 
finance, manufacturing, and energy harvesting [3]. It is 
generally divided into supervised, unsupervised, and 
reinforcement learning [19]. Supervised learning uses features 
to predict labels, unsupervised learning uses features to get an 
insight about their statistical properties, and reinforcement 
learning uses a reward system for the current model behaviour
to optimize the model’s behaviour. Depending on the 
maintenance task in mind, an appropriate approach needs to be 
identified. In terms of identifying situations that need 
maintenance actions in advance, one can use the system’s logs
as features and the maintenance situations as labels, which are 
expressed by certain log entries. This would suggest supervised 
learning as a suitable method approach. Supervised learning 
methods include logistic regression, decision trees, support 
vector machines, and neural networks, among others [4].

A special fascination holds automated machine learning 
(AutoML) in this context since it could enable a PdM system to 
adapt to a changing environment. AutoML, which is mainly 
used in natural language processing (NLP) and computer vision 
(CV), aims at automating the entire pipeline of machine 
learning. Although there have been major achievements in NLP 
and CV, other areas are neglected [14]. This is also true for log 
analysis, which would benefit twice from such an approach. 
Firstly, such an automatization would provide access to this 
technology for a wider audience and, in general, support the 
creation of better ML systems. Secondly, besides these general 
advantages, this would allow the PdM system to update its 
outdated ML components automatically whenever it is 
necessary due to the changing environment.

The contributions of this paper are the following: a PdM 
framework for a steadily changing production line is introduced 
and different NN architectures are evaluated against each other 
within this framework using a proof-of-concept 
implementation. The practical relevance and automated nature 
of the approach allow for wide applicability, especially for 
novices in the area of machine learning.  

We will now show in this paper the high potential of AutoML 
in the context of a production line system of systems. Therefore, 
we first discuss general AutoML techniques in Section 2, before 
we discuss the applications of AutoML in production systems 

of systems in Section 3. Section 4 shows the first 
implementation of the theoretical ideas of Section 3. Finally, 
Section 5 discusses the conclusions based on this work and 
possible further work in this context. 

II. GENERAL AUTOML TECHNIQUES 

An extensive review of the state-of-the-art regarding 
AutoML in the context of neuronal networks (NN) was done by 
Xin He, Kaiyong Zhao, and Xiaowen Chu [14]. They describe 
the AutoML pipeline consisting of four stages: data preparation, 
feature engineering, model generation, and model evaluation. 
Data preparation, as a means to obtain useful data, is composed 
of data collection, cleaning, and augmentation. Based on these 
steps, feature selection, extraction, and construction are used 
during feature engineering to obtain the features from the data, 
which are later used for model generation. This model 
generation can itself be divided into search space, where the ML 
model’s structure is defined (e.g. support vector machine, k-
nearest neighbours, neural networks) and optimization 
methods, which are concerned with optimizing hyperparameter 
and architecture of the previously defined model. Model 
evaluation, as the last described stage, is used to evaluate a 
model’s performance. The AutoML pipeline is shown in Fig. 1.

Parts of this AutoML pipeline are referred to as neural 
architecture search (NAS), a sub-topic of AutoML gaining 
increased attention most recently [14]. NAS includes
architecture optimization in the case of a neural network search 
space from the area of model generation in combination with 
model evaluation. The idea is to create a basic NN ML model 
based on the considered search space by applying architecture 
optimization to this structure and to create the final model by 
hyperparameter optimization. Evaluation during this procedure 
is inevitable. The search space describes how candidates for the 
model’s basic structure are found and can be entire-structured, 
cell-based, hierarchical, and morphism-based. Entire-structured 
approaches create a structure by selecting layers and their order 
from a pool of layer candidates. Cell-based approaches use a 
fixed number of repeating cell structures, consisting of different 
blocks, which are concatenated afterward and consist itself of 
different layers combined at the end. One can tune the model 
by selecting the number of blocks, the operations of the layers 
in a block, and the combination method at the end of a block 
(e.g. addition, concatenation, etc.) and cell. An exemplary cell 
structure is shown in Fig.  2.
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predictive maintenance intervention, is produced automatically 
and no further adjustments to the system are needed. They get
collected anyway and, hence, only need processing to yield 
useful predictive maintenance findings. Log analysis 
approaches can be found for software [1, 12, 13, 15, 24, 28] or 
hardware SoSs [32], following different PdM objectives with 
different means. Among these, one can find visual tree 
representation [15], prediction heuristics, such as the so-called 
Dispersion Frame Technique [24], or machine learning 
methods [4, 13].

Machine learning, as one approach to log analysis, is itself a 
well-researched academic area with application in nearly every 
imaginable area, especially in autonomous driving, health care, 
finance, manufacturing, and energy harvesting [3]. It is 
generally divided into supervised, unsupervised, and 
reinforcement learning [19]. Supervised learning uses features 
to predict labels, unsupervised learning uses features to get an 
insight about their statistical properties, and reinforcement 
learning uses a reward system for the current model behaviour
to optimize the model’s behaviour. Depending on the 
maintenance task in mind, an appropriate approach needs to be 
identified. In terms of identifying situations that need 
maintenance actions in advance, one can use the system’s logs
as features and the maintenance situations as labels, which are 
expressed by certain log entries. This would suggest supervised 
learning as a suitable method approach. Supervised learning 
methods include logistic regression, decision trees, support 
vector machines, and neural networks, among others [4].

A special fascination holds automated machine learning 
(AutoML) in this context since it could enable a PdM system to 
adapt to a changing environment. AutoML, which is mainly 
used in natural language processing (NLP) and computer vision 
(CV), aims at automating the entire pipeline of machine 
learning. Although there have been major achievements in NLP 
and CV, other areas are neglected [14]. This is also true for log 
analysis, which would benefit twice from such an approach. 
Firstly, such an automatization would provide access to this 
technology for a wider audience and, in general, support the 
creation of better ML systems. Secondly, besides these general 
advantages, this would allow the PdM system to update its 
outdated ML components automatically whenever it is 
necessary due to the changing environment.

The contributions of this paper are the following: a PdM 
framework for a steadily changing production line is introduced 
and different NN architectures are evaluated against each other 
within this framework using a proof-of-concept 
implementation. The practical relevance and automated nature 
of the approach allow for wide applicability, especially for 
novices in the area of machine learning.  

We will now show in this paper the high potential of AutoML 
in the context of a production line system of systems. Therefore, 
we first discuss general AutoML techniques in Section 2, before 
we discuss the applications of AutoML in production systems 

of systems in Section 3. Section 4 shows the first 
implementation of the theoretical ideas of Section 3. Finally, 
Section 5 discusses the conclusions based on this work and 
possible further work in this context. 

II. GENERAL AUTOML TECHNIQUES 

An extensive review of the state-of-the-art regarding 
AutoML in the context of neuronal networks (NN) was done by 
Xin He, Kaiyong Zhao, and Xiaowen Chu [14]. They describe 
the AutoML pipeline consisting of four stages: data preparation, 
feature engineering, model generation, and model evaluation. 
Data preparation, as a means to obtain useful data, is composed 
of data collection, cleaning, and augmentation. Based on these 
steps, feature selection, extraction, and construction are used 
during feature engineering to obtain the features from the data, 
which are later used for model generation. This model 
generation can itself be divided into search space, where the ML 
model’s structure is defined (e.g. support vector machine, k-
nearest neighbours, neural networks) and optimization 
methods, which are concerned with optimizing hyperparameter 
and architecture of the previously defined model. Model 
evaluation, as the last described stage, is used to evaluate a 
model’s performance. The AutoML pipeline is shown in Fig. 1.

Parts of this AutoML pipeline are referred to as neural 
architecture search (NAS), a sub-topic of AutoML gaining 
increased attention most recently [14]. NAS includes
architecture optimization in the case of a neural network search 
space from the area of model generation in combination with 
model evaluation. The idea is to create a basic NN ML model 
based on the considered search space by applying architecture 
optimization to this structure and to create the final model by 
hyperparameter optimization. Evaluation during this procedure 
is inevitable. The search space describes how candidates for the 
model’s basic structure are found and can be entire-structured, 
cell-based, hierarchical, and morphism-based. Entire-structured 
approaches create a structure by selecting layers and their order 
from a pool of layer candidates. Cell-based approaches use a 
fixed number of repeating cell structures, consisting of different 
blocks, which are concatenated afterward and consist itself of 
different layers combined at the end. One can tune the model 
by selecting the number of blocks, the operations of the layers 
in a block, and the combination method at the end of a block 
(e.g. addition, concatenation, etc.) and cell. An exemplary cell 
structure is shown in Fig.  2.
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during feature engineering to obtain the features from the data, 
which are later used for model generation. This model 
generation can itself be divided into search space, where the ML 
model’s structure is defined (e.g. support vector machine, k-
nearest neighbours, neural networks) and optimization 
methods, which are concerned with optimizing hyperparameter 
and architecture of the previously defined model. Model 
evaluation, as the last described stage, is used to evaluate a 
model’s performance. The AutoML pipeline is shown in Fig. 1.

Parts of this AutoML pipeline are referred to as neural 
architecture search (NAS), a sub-topic of AutoML gaining 
increased attention most recently [14]. NAS includes
architecture optimization in the case of a neural network search 
space from the area of model generation in combination with 
model evaluation. The idea is to create a basic NN ML model 
based on the considered search space by applying architecture 
optimization to this structure and to create the final model by 
hyperparameter optimization. Evaluation during this procedure 
is inevitable. The search space describes how candidates for the 
model’s basic structure are found and can be entire-structured, 
cell-based, hierarchical, and morphism-based. Entire-structured 
approaches create a structure by selecting layers and their order 
from a pool of layer candidates. Cell-based approaches use a 
fixed number of repeating cell structures, consisting of different 
blocks, which are concatenated afterward and consist itself of 
different layers combined at the end. One can tune the model 
by selecting the number of blocks, the operations of the layers 
in a block, and the combination method at the end of a block 
(e.g. addition, concatenation, etc.) and cell. An exemplary cell 
structure is shown in Fig.  2.

3

In comparison to cell-based approaches, hierarchical search 
also focuses on the network structure and not only on the cell 
structure. There are different approaches, all allowing for a 
fitting on a cell level and a network level [20, 21, 22].
Morphism-based search space uses already existing model 
structures to improve already existing networks and, hence, 
create new networks [33].

After defining the NN based on the search space, architecture 
optimization is used to find the best-performing architecture, 
which always includes the evaluation of different NNs. This 
search for the best architecture can be regarded as a search for 
a hyperparameter, where human expertise is needed. Different 
algorithms aim at automating this process, such as grid/random 
search, the evolutionary algorithm, reinforcement learning, 
gradient descent, surrogate model-based optimization, and 
hybrid methods. Grid and random search are two very basic 
optimization methods not considering any feedback from the 
current state of the architecture and might be considered a 
baseline approach for comparison. The evolutionary algorithm 
is a heuristic optimization algorithm, which uses an evaluation 
procedure until a stopping criterion is met. Starting with a set 
of NN, the evaluation procedure, inspired by biological 
evolution, selects a subset based on the NNs’ performance, 
generates a new network from every two previously selected 
NNs, mutates the resulting NN a bit, and removes the worst-
performing new NNs. Another recognized approach, 
reinforcement learning [37], usually uses a recurrent neural 
network (RNN) to incrementally improve the architecture by 
executing certain actions leading to a so-called reward 
influencing the next action and moving in that manner through 
the search space. This is shown in Fig.  3.

In comparison to these already mentioned methods to search 
for the best-performing architecture, gradient descent is an 
approach allowing for a continuous search space [14, 23]. For 
that reason, it uses a continuous relaxation of the architecture 
representation, which is then used for optimization for the 
operations used in one node of the architecture’s cell and leads 
to one architecture. Surrogate model-based optimization is a 
broadly used approach for architecture optimize by building a 
surrogate model to predict the best performing architecture [8,
17, 26]. Of course, all mentioned methods might be combined 
in a hybrid approach. 

After deciding on the architecture to use, which is done with 
the same set of hyperparameters in most cases, one can turn to 
the optimization of the hyperparameters for the used 
architecture [14]. Therefore, different approaches are used, 
such as grid/random search, Bayesian optimization, and 
gradient-based optimization. Alternatively, hyperparameter and 
architecture optimization (HAO) can be used to optimize 
hyperparameter and architecture in combination [34].

All NAS approaches share one mutual problem, which is the 
need for frequent evaluation of architectures, leading to a high 
need for time and computing resources [14]. Different 
approaches, such as weight sharing [29], surrogate methods [9],
early stopping [7], and low fidelity methods [18], aim at 
reducing this need for resources.

III. ADVANTAGES OF AUTOML IN A PRODUCTION SETTING

AutoML has proven its usefulness in the context of NLP [5,
16] and CV [11, 35], other areas have been neglected [14].
Especially in a production setting, applying AutoML 
approaches to log data might be useful, since they not only bring 
along the known advantages, such as easy access to NNs and 
improvement of ML models but also advantages specific to a 
production setting. Since there is a wide variation in production 
settings, we will now describe one rather generic production 
setting to show the usefulness of AutoML approaches when 
working with log data in this context.  

One aspect of the production line setting is the usage of log 
data, which is produced by the subsystems and generally easily 
accessible - merely a central collection of this already existing 
and accessible data is required for the proposed utilization in a 
NN. Naturally, one can collect a unique ID for a specific log 
entry, a unique ID for a specific subsystem where the log entry 
originated, the time of occurrence, and possibly a duration. 
Depending on the actual setup further data might be recorded. 
In this setting, some log IDs might have an informing character, 
others might indicate a critical or interesting situation in the 
overall system. It is of utmost importance to prevent the cause 
of critical log entries from happening or, if this is not possible, 
to quickly react to the negative influences associated with such 
a critical log entry. In a predictive maintenance manner, a NN 
can be trained to predict upcoming log entries of interest-based 
on the observed log entries to allow for appropriate 
intervention. 

Fig. 1.  AutoML pipeline as described by Xin He, Kaiyong Zhao, and  
Xiaowen Chu [14]. The elements shown in grey describe NAS elements.

Fig. 2. Exemplary cell structure as shown by Xin He, Kaiyong Zhao, and 
Xiaowen Chu [14].
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algorithms aim at automating this process, such as grid/random 
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gradient descent, surrogate model-based optimization, and 
hybrid methods. Grid and random search are two very basic 
optimization methods not considering any feedback from the 
current state of the architecture and might be considered a 
baseline approach for comparison. The evolutionary algorithm 
is a heuristic optimization algorithm, which uses an evaluation 
procedure until a stopping criterion is met. Starting with a set 
of NN, the evaluation procedure, inspired by biological 
evolution, selects a subset based on the NNs’ performance, 
generates a new network from every two previously selected 
NNs, mutates the resulting NN a bit, and removes the worst-
performing new NNs. Another recognized approach, 
reinforcement learning [37], usually uses a recurrent neural 
network (RNN) to incrementally improve the architecture by 
executing certain actions leading to a so-called reward 
influencing the next action and moving in that manner through 
the search space. This is shown in Fig.  3.

In comparison to these already mentioned methods to search 
for the best-performing architecture, gradient descent is an 
approach allowing for a continuous search space [14, 23]. For 
that reason, it uses a continuous relaxation of the architecture 
representation, which is then used for optimization for the 
operations used in one node of the architecture’s cell and leads 
to one architecture. Surrogate model-based optimization is a 
broadly used approach for architecture optimize by building a 
surrogate model to predict the best performing architecture [8,
17, 26]. Of course, all mentioned methods might be combined 
in a hybrid approach. 

After deciding on the architecture to use, which is done with 
the same set of hyperparameters in most cases, one can turn to 
the optimization of the hyperparameters for the used 
architecture [14]. Therefore, different approaches are used, 
such as grid/random search, Bayesian optimization, and 
gradient-based optimization. Alternatively, hyperparameter and 
architecture optimization (HAO) can be used to optimize 
hyperparameter and architecture in combination [34].

All NAS approaches share one mutual problem, which is the 
need for frequent evaluation of architectures, leading to a high 
need for time and computing resources [14]. Different 
approaches, such as weight sharing [29], surrogate methods [9],
early stopping [7], and low fidelity methods [18], aim at 
reducing this need for resources.

III. ADVANTAGES OF AUTOML IN A PRODUCTION SETTING

AutoML has proven its usefulness in the context of NLP [5,
16] and CV [11, 35], other areas have been neglected [14].
Especially in a production setting, applying AutoML 
approaches to log data might be useful, since they not only bring 
along the known advantages, such as easy access to NNs and 
improvement of ML models but also advantages specific to a 
production setting. Since there is a wide variation in production 
settings, we will now describe one rather generic production 
setting to show the usefulness of AutoML approaches when 
working with log data in this context.  

One aspect of the production line setting is the usage of log 
data, which is produced by the subsystems and generally easily 
accessible - merely a central collection of this already existing 
and accessible data is required for the proposed utilization in a 
NN. Naturally, one can collect a unique ID for a specific log 
entry, a unique ID for a specific subsystem where the log entry 
originated, the time of occurrence, and possibly a duration. 
Depending on the actual setup further data might be recorded. 
In this setting, some log IDs might have an informing character, 
others might indicate a critical or interesting situation in the 
overall system. It is of utmost importance to prevent the cause 
of critical log entries from happening or, if this is not possible, 
to quickly react to the negative influences associated with such 
a critical log entry. In a predictive maintenance manner, a NN 
can be trained to predict upcoming log entries of interest-based 
on the observed log entries to allow for appropriate 
intervention. 

Fig. 3. Basic functionality of reinforcement learning as shown by Xin He, 
Kaiyong Zhao, and Xiaowen Chu [14].
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settings, we will now describe one rather generic production 
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data, which is produced by the subsystems and generally easily 
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NN. Naturally, one can collect a unique ID for a specific log 
entry, a unique ID for a specific subsystem where the log entry 
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to quickly react to the negative influences associated with such 
a critical log entry. In a predictive maintenance manner, a NN 
can be trained to predict upcoming log entries of interest-based 
on the observed log entries to allow for appropriate 
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4

Another aspect of the hereinafter regarded production line 
setting is its SoS nature, which determines its composition of 
distinct, changing subsystems working on a changing 
production load. Both addressed circumstances, a changing 
system and a changing production load are realistic due to 
continuous improvements of the production line and variations 
in the production demands, and they impact heavily on the log 
data. An altered production load influences the statistic 
properties of the log data and, hence, might render a trained NN 
unsuitable. These changing statistical properties, denoted as 
concept drift [10], are not necessarily happening incremental 
but might happen suddenly without any further indication on 
how the change might unfold, due to an unforeseen change in 
production. An even greater influence is exhibited by a new 
subsystem, which might introduce a new quality of log data, 
which cannot be handled by a trained NN. 

The described problems of a sudden concept drift change and 
the introduction of a new quality of log data, specific to the
described production line setting, can be addressed by AutoML 
approaches. Concept drift, as the first addressed problem, is 
already a discussed topic in literature [10]. Forgetting 
mechanisms, for example, allow to incorporate data with 
different emphasis, depending on how recent they are. In 
combination with change detection based on sequential 
analysis, statistical process control, distribution comparison, or 
contextual approaches, the software can react to concept drift 
and an adjustment of the model can be initiated. This 
adjustment, or learning, can be divided into two approaches:
retraining, where the current model is discarded, and 
incremental adaption, where the current model is updated. 
Hence, concept drift is a phenomenon one can cope with, 
whereas an introduction of a new quality of log data, as the 
second addressed problem, is not yet discussed on a wide basis. 
When working with an embedding layer to map the log IDs to 
n-dimensional vectors, for example, one would have to adjust 
the vocable size (number of different log IDs) as input to this 
layer. This would require the creation and training of a new 
model.

One alternative approach for introducing new log IDs to a 
NN, without adapting the NN, is feature hashing [6]. This 
would lead to classes of IDs, which are used in the model. These 
classes would be indistinguishable for the model, new IDs
would be assigned to one of the already existing classes. Over 
the course of time, when new ids occur and old IDs vanish, this 
might lead to a situation where log entries of one ID are used to 
predict the occurrence of an entirely other log ID. Also, two 
IDs, which are very different in their behavior, might be 
bundled together in one class. Such a bundling would, hence, 
be problematic in certain cases.

By introducing NNs for each log ID of interest, one would be 
able to create an overall ML model capable to adapt to concept 
drift concerning individual log IDs and it would be able to 
introduce a NN based on a new log ID as soon as enough data 

has been recorded to train such a NN. This allows for an 
incremental adaption of the overall model, even if new log IDs
are introduced. However, each NN would need to accept 
unknown log IDs as feature values in a residual category. As 
soon as the respective NN gets retrained, this alarm ID does not 
receive a separate appearance in the NN. In the background, the 
active NNs need to be evaluated, replacement candidates are 
trained using AutoML methods and compared to the active 
NNs.  Whenever a replacement candidate outperforms an active 
NN, the replacement candidate is incorporated into the overall 
model. The described workflow can be found in Fig.  4.

Another advantage of using log data in the described setup is 
that labels can be calculated directly based on the features. Input 
features of the NNs are log IDs, device IDs, times, and so on, 
output labels are log IDs of interest. This means that the true 
labels are received sometime after the prediction, which allows 
for an evaluation of the current NNs and training of replacement 
candidates. 

IV. ANALYSIS OF PROOF-OF-CONCEPT IMPLEMENTATION

Automated decision-making by predictive diagnosis and 
machine learning is a main topic within the Arrowhead Tools 
project, a Horizon 2020 project aiming for digitalization and 
automation solutions for the European industry. In this project 
different partners from the industry develop new tools to 
improve the European industry by creating many different new 
tools e.g., the Arrowhead Framework, but also tools based on 
new algorithms or neuronal networks which are used in 
different use cases. One important use case for complex 
maintenance tasks is the work on equipment data in the 
semiconductor industry. We worked together with the company 
Infineon Technologies Dresden on a use case using neuronal 
networks for a better understanding of the failure in a highly 
complex wafer transportation system to create predictive 
maintenance solutions saving time and high personal efforts. 
Another goal is, that this setup could be used in many different 
other industrial applications showing high potentials for 
interoperability.  A first implementation of the theoretical ideas 
discussed in the previous section is implemented. We will first 
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fitting on a cell level and a network level [20, 21, 22].
Morphism-based search space uses already existing model 
structures to improve already existing networks and, hence, 
create new networks [33].

After defining the NN based on the search space, architecture 
optimization is used to find the best-performing architecture, 
which always includes the evaluation of different NNs. This 
search for the best architecture can be regarded as a search for 
a hyperparameter, where human expertise is needed. Different 
algorithms aim at automating this process, such as grid/random 
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gradient descent, surrogate model-based optimization, and 
hybrid methods. Grid and random search are two very basic 
optimization methods not considering any feedback from the 
current state of the architecture and might be considered a 
baseline approach for comparison. The evolutionary algorithm 
is a heuristic optimization algorithm, which uses an evaluation 
procedure until a stopping criterion is met. Starting with a set 
of NN, the evaluation procedure, inspired by biological 
evolution, selects a subset based on the NNs’ performance, 
generates a new network from every two previously selected 
NNs, mutates the resulting NN a bit, and removes the worst-
performing new NNs. Another recognized approach, 
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network (RNN) to incrementally improve the architecture by 
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the search space. This is shown in Fig.  3.
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Fig. 4. Overall concept of a prediction model based on multiple NNs, each 
concerned with predicting one ID.
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Another aspect of the hereinafter regarded production line 
setting is its SoS nature, which determines its composition of 
distinct, changing subsystems working on a changing 
production load. Both addressed circumstances, a changing 
system and a changing production load are realistic due to 
continuous improvements of the production line and variations 
in the production demands, and they impact heavily on the log 
data. An altered production load influences the statistic 
properties of the log data and, hence, might render a trained NN 
unsuitable. These changing statistical properties, denoted as 
concept drift [10], are not necessarily happening incremental 
but might happen suddenly without any further indication on 
how the change might unfold, due to an unforeseen change in 
production. An even greater influence is exhibited by a new 
subsystem, which might introduce a new quality of log data, 
which cannot be handled by a trained NN. 

The described problems of a sudden concept drift change and 
the introduction of a new quality of log data, specific to the
described production line setting, can be addressed by AutoML 
approaches. Concept drift, as the first addressed problem, is 
already a discussed topic in literature [10]. Forgetting 
mechanisms, for example, allow to incorporate data with 
different emphasis, depending on how recent they are. In 
combination with change detection based on sequential 
analysis, statistical process control, distribution comparison, or 
contextual approaches, the software can react to concept drift 
and an adjustment of the model can be initiated. This 
adjustment, or learning, can be divided into two approaches:
retraining, where the current model is discarded, and 
incremental adaption, where the current model is updated. 
Hence, concept drift is a phenomenon one can cope with, 
whereas an introduction of a new quality of log data, as the 
second addressed problem, is not yet discussed on a wide basis. 
When working with an embedding layer to map the log IDs to 
n-dimensional vectors, for example, one would have to adjust 
the vocable size (number of different log IDs) as input to this 
layer. This would require the creation and training of a new 
model.

One alternative approach for introducing new log IDs to a 
NN, without adapting the NN, is feature hashing [6]. This 
would lead to classes of IDs, which are used in the model. These 
classes would be indistinguishable for the model, new IDs
would be assigned to one of the already existing classes. Over 
the course of time, when new ids occur and old IDs vanish, this 
might lead to a situation where log entries of one ID are used to 
predict the occurrence of an entirely other log ID. Also, two 
IDs, which are very different in their behavior, might be 
bundled together in one class. Such a bundling would, hence, 
be problematic in certain cases.

By introducing NNs for each log ID of interest, one would be 
able to create an overall ML model capable to adapt to concept 
drift concerning individual log IDs and it would be able to 
introduce a NN based on a new log ID as soon as enough data 

has been recorded to train such a NN. This allows for an 
incremental adaption of the overall model, even if new log IDs
are introduced. However, each NN would need to accept 
unknown log IDs as feature values in a residual category. As 
soon as the respective NN gets retrained, this alarm ID does not 
receive a separate appearance in the NN. In the background, the 
active NNs need to be evaluated, replacement candidates are 
trained using AutoML methods and compared to the active 
NNs.  Whenever a replacement candidate outperforms an active 
NN, the replacement candidate is incorporated into the overall 
model. The described workflow can be found in Fig.  4.

Another advantage of using log data in the described setup is 
that labels can be calculated directly based on the features. Input 
features of the NNs are log IDs, device IDs, times, and so on, 
output labels are log IDs of interest. This means that the true 
labels are received sometime after the prediction, which allows 
for an evaluation of the current NNs and training of replacement 
candidates. 

IV. ANALYSIS OF PROOF-OF-CONCEPT IMPLEMENTATION

Automated decision-making by predictive diagnosis and 
machine learning is a main topic within the Arrowhead Tools 
project, a Horizon 2020 project aiming for digitalization and 
automation solutions for the European industry. In this project 
different partners from the industry develop new tools to 
improve the European industry by creating many different new 
tools e.g., the Arrowhead Framework, but also tools based on 
new algorithms or neuronal networks which are used in 
different use cases. One important use case for complex 
maintenance tasks is the work on equipment data in the 
semiconductor industry. We worked together with the company 
Infineon Technologies Dresden on a use case using neuronal 
networks for a better understanding of the failure in a highly 
complex wafer transportation system to create predictive 
maintenance solutions saving time and high personal efforts. 
Another goal is, that this setup could be used in many different 
other industrial applications showing high potentials for 
interoperability.  A first implementation of the theoretical ideas 
discussed in the previous section is implemented. We will first 
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explain the available data, continue with the chosen NN 
structure, and finish with the used software design.
Available Data Quantities

The log entries in this AHT use case exhibit unique IDs, a 
start timestamp, an end timestamp, and a spatial location 
expressed as a segment of spatially close positions. This 
information is available for all entries, except for the segment, 
which is available only for around 50% of the data. Therefore, 
an additional category was introduced, expressing that no 
location information is available. 

Based on these available log data quantities, different derived 
quantities can be constructed, such as observed log IDs, time 
since log occurrence, the active state of a log entry, and the 
segment of occurrence. For a given point in time, these 
quantities can be fed into a NN – the last log entries, each 

expressed as ID, time since the occurrence, the information, if
it is still active, and the segment of occurrence. This can either 
be done for a fixed number of past log entries or, more 
accurately, for a fixed time in the past. To ensure a fixed-size 
input length to the NN in the latter case, such a fixed number of 
considered log entries need to be defined. If there are more log 
entries falling in the designated timeframe, they are ignored and 
if there are fewer log entries falling in this timeframe, place-
holder values need to be introduced. These placeholder values 
can be zero for the log ID, expressing that no log entry occurred. 
For the time since log occurrence, it can be one, when the time 
since occurrence is expressed as a number between zero and 
one – zero standing for right now and one stands for before or 
at the beginning of the designated timeframe. When decoding 
the still active state, it can be zero for not active and for the 
segment, the no-location-available value is used. A graphical 
representation of the data quantities is shown in Fig.  5.

Comprehensive NN VS. Multiple NNs 

The theoretical advantages of using multiple NNs, one for 
each log ID of interest, were already discussed at the end of
section III and can be extended by practical advantages. Besides 
the ability to gradually adapt the overall model to the concept 
drift and new log IDs, the possibility to create a well-
performing overall model seems more easily achievable. 
Although a comprehensive NN predicting all log IDs of interest
is theoretically equivalent to a combination of multiple NNs 
predicting a certain log ID, the computational effort can be 
reduced by following a divide-and-conquer approach and 
splitting the comprehensive NN into multiple NNs. This hard to 
quantify assumption was also observed during our 
experimentation. 

We created a comparison between a comprehensive NN to 
multiple NNs in our production line setting. Therefore, we 
aimed to predict log IDs of special interest (based on domain 
experts’ rating) which occur with a relative frequency of at least 
0.11%. Furthermore, we used a weighted version of the cross-
entropy loss [36] to account for the unbalanced nature of the 
data, where the weights are inversely proportional to the 
relative frequency of the corresponding log ID. The used 
architecture was the same for both cases and is shown in Fig.  

6. The features were constructed from the last 100 log entries 
within the last 45 minutes, the labels were created based on the 
next 15 minutes. Each embedding layer is of dimension 8, each 
hidden dense layer consists out of 32 neurons, the drop layer 
features a dropout rate of 50%. 
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Fig. 5. Visualization of the AHT data. It contains a start and an end timestamp, a log ID, and a segment. Log IDs of interest are shown in a black rectangle. 
By introducing a relevant past, a relevant future, one can create input vectors for NNs.

Fig. 6. NN architecture used for comparing a comprehensive NN to 
multiple NNs.
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For the time since log occurrence, it can be one, when the time 
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quantify assumption was also observed during our 
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multiple NNs in our production line setting. Therefore, we 
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To compare the performance of the NNs, two widely used 
performance indicators are introduced – the positive predictive 
value (PPV) and the sensitivity. Both indicators are empirical 
probabilities. The indicator PPV can be calculated as the 
number of correct predictions of a log ID divided by the total 
number of predictions of this ID. The higher this value is, the 
more reliable is a gained prediction of this log ID. The indicator 
sensitivity can be calculated as the number of correct 
predictions of a log ID divided by the total number of 
occurrences of this log ID. The higher this indicator is, the 
fewer occurrences of this log ID are ‘overlooked’ by the NN. A 
reliable prediction system requires both values to be high. 

Comparing the performance of a comprehensive NN to 
multiple NNs in our production line setting speaks for the usage 
of multiple NNs over a comprehensive NN. Table I shows the 
two introduced performance indicators, observed when 
predicted and predicted when observed, for both discussed 
cases. Except for log ID 4 and 8, both indicators speak 
consistently for using multiple NNs over a comprehensive NN. 
Although the log IDs 4 and 8 lead to contradicting indicators to 
some extent, the overall results speak clearly for using multiple 
NNs over a comprehensive NN.

LOG
ID

PPV Sensitivity
ComNN MNNs ComNN MNNs

1 79 92 1 63
2 34 92 46 70
3 65 71 32 78
4 58 79 68 66

5 54 97 13 95
6 47 80 50 93
7 71 76 16 39
8 70 44 68 89
9 65 70 8 32

The superior practical performance of multiple NNs over a 
comprehensive NN might be based on different circumstances. 
One such circumstance is that, instead of working with only one 
set of hyperparameters, each NN predicting only one log ID of 
interest allows for its own set of hyperparameters, such as 
relevant past (see Fig.  5) or the number of neurons in a certain 
layer. Another contributing factor might be the more complex 
structure of the comprehensive NN, which might induce a 
worse performance of the optimization algorithm used for the 
training procedure, leading to a suboptimal trained NN. 
Another factor is the design of the used labels, which allow for 
only one next log ID of interest to be predicted. This might 
distort the NN’s performance, since one log ID of interest might 
be concealed by another log ID of interest, leading to inferior 
performance. 

To set the performance of the NNs from the multiple NNs 
approach into relation, one can compare it to trivial prediction 
models. A suitable base model can be obtained by always 
predicting the most common observed class. Due to the 
extremely unbalanced situation, we are facing with the AHT 
dataset, this is always clearly the prediction, that there will not 
be an ID of interest in the upcoming timeframe. The accuracy 
is calculated as the ratio of correct predictions to all predictions. 
For the no information rate model, this value is always the ratio 
of no-error predictions, which ranges for our situation between 
89% to 98.6%. Although these values are quite high, the 
obtained NNs outperform this bae-line accuracy in nearly all 
cases with accuracies between 94.4% and 99.9%, as shown in   
Table II.

LOG
ID

Accuracy
No information rate MNNs

1 96.5 98.6
2 96.2 98.6
3 95.9 97.8
4 89.0 94.2
5 98.6 99.9
6 97.7 99.3
7 93.0 94.9
8 95.4 94.4

9 96.1 96.9

Proposed ALFA Software Design 

To benefit from the advantages promoted in the previous 
sections, we propose the ALFA (AutoML for Log File 
Analysis) software design capable of handling the needed 
requirements. The software design contains two main 
components, the predictor and the model updater. 

The predictor receives the log information as soon as they occur 
and creates a prediction based on this information. In the first 
step, the data – log ID, time, segment, and type (it is either the 
start or the end of a log event) is received and stored in a 
database. In a second step, the NNs are loaded from the model 
updater if they have not been loaded yet and enough data is 
available to do so. Finally, the NNs are used to predict the 
occurrence of log IDs of interest if enough data is available.
Furthermore, the received log IDs can be used to calculate the 
performance of the previously made predictions, which 
guarantees for always present performance indicators for each 
NN. This component operates only, and as soon as new log data 
is received. 

The model updater is used to store, load, and refit the NNs. It 
operates on an external trigger, either from the predictor when 
loading a NN, or a regular impulse, based on e.g., a certain time 
or a certain amount of received and relevant log data, to refit 
one or more NNs. When loading the NNs, the model updater 
first tries to load already existing NNs from the file system. If 
this is not possible, it loads the relevant log data to create and 
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explain the available data, continue with the chosen NN 
structure, and finish with the used software design.
Available Data Quantities

The log entries in this AHT use case exhibit unique IDs, a 
start timestamp, an end timestamp, and a spatial location 
expressed as a segment of spatially close positions. This 
information is available for all entries, except for the segment, 
which is available only for around 50% of the data. Therefore, 
an additional category was introduced, expressing that no 
location information is available. 

Based on these available log data quantities, different derived 
quantities can be constructed, such as observed log IDs, time 
since log occurrence, the active state of a log entry, and the 
segment of occurrence. For a given point in time, these 
quantities can be fed into a NN – the last log entries, each 

expressed as ID, time since the occurrence, the information, if
it is still active, and the segment of occurrence. This can either 
be done for a fixed number of past log entries or, more 
accurately, for a fixed time in the past. To ensure a fixed-size 
input length to the NN in the latter case, such a fixed number of 
considered log entries need to be defined. If there are more log 
entries falling in the designated timeframe, they are ignored and 
if there are fewer log entries falling in this timeframe, place-
holder values need to be introduced. These placeholder values 
can be zero for the log ID, expressing that no log entry occurred. 
For the time since log occurrence, it can be one, when the time 
since occurrence is expressed as a number between zero and 
one – zero standing for right now and one stands for before or 
at the beginning of the designated timeframe. When decoding 
the still active state, it can be zero for not active and for the 
segment, the no-location-available value is used. A graphical 
representation of the data quantities is shown in Fig.  5.

Comprehensive NN VS. Multiple NNs 

The theoretical advantages of using multiple NNs, one for 
each log ID of interest, were already discussed at the end of
section III and can be extended by practical advantages. Besides 
the ability to gradually adapt the overall model to the concept 
drift and new log IDs, the possibility to create a well-
performing overall model seems more easily achievable. 
Although a comprehensive NN predicting all log IDs of interest
is theoretically equivalent to a combination of multiple NNs 
predicting a certain log ID, the computational effort can be 
reduced by following a divide-and-conquer approach and 
splitting the comprehensive NN into multiple NNs. This hard to 
quantify assumption was also observed during our 
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0.11%. Furthermore, we used a weighted version of the cross-
entropy loss [36] to account for the unbalanced nature of the 
data, where the weights are inversely proportional to the 
relative frequency of the corresponding log ID. The used 
architecture was the same for both cases and is shown in Fig.  

6. The features were constructed from the last 100 log entries 
within the last 45 minutes, the labels were created based on the 
next 15 minutes. Each embedding layer is of dimension 8, each 
hidden dense layer consists out of 32 neurons, the drop layer 
features a dropout rate of 50%. 

AutoML for Log File Analysis (ALFA) in a Production Line System  
of Systems pointed towards Predictive Maintenance

TABLE II
Accuracy of the individual models from the multiple NNs 

approach compared to the no-information-rate model (never 
predicting an upcoming ID).

TABLE I
Performance comparison between a comprehensive NN (ComNN) 

and multiple NNs (MNNs) in the described production line setting 
with percentage values.
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representation of the data quantities is shown in Fig.  5.

Comprehensive NN VS. Multiple NNs 

The theoretical advantages of using multiple NNs, one for 
each log ID of interest, were already discussed at the end of
section III and can be extended by practical advantages. Besides 
the ability to gradually adapt the overall model to the concept 
drift and new log IDs, the possibility to create a well-
performing overall model seems more easily achievable. 
Although a comprehensive NN predicting all log IDs of interest
is theoretically equivalent to a combination of multiple NNs 
predicting a certain log ID, the computational effort can be 
reduced by following a divide-and-conquer approach and 
splitting the comprehensive NN into multiple NNs. This hard to 
quantify assumption was also observed during our 
experimentation. 

We created a comparison between a comprehensive NN to 
multiple NNs in our production line setting. Therefore, we 
aimed to predict log IDs of special interest (based on domain 
experts’ rating) which occur with a relative frequency of at least 
0.11%. Furthermore, we used a weighted version of the cross-
entropy loss [36] to account for the unbalanced nature of the 
data, where the weights are inversely proportional to the 
relative frequency of the corresponding log ID. The used 
architecture was the same for both cases and is shown in Fig.  

6. The features were constructed from the last 100 log entries 
within the last 45 minutes, the labels were created based on the 
next 15 minutes. Each embedding layer is of dimension 8, each 
hidden dense layer consists out of 32 neurons, the drop layer 
features a dropout rate of 50%. 
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To compare the performance of the NNs, two widely used 
performance indicators are introduced – the positive predictive 
value (PPV) and the sensitivity. Both indicators are empirical 
probabilities. The indicator PPV can be calculated as the 
number of correct predictions of a log ID divided by the total 
number of predictions of this ID. The higher this value is, the 
more reliable is a gained prediction of this log ID. The indicator 
sensitivity can be calculated as the number of correct 
predictions of a log ID divided by the total number of 
occurrences of this log ID. The higher this indicator is, the 
fewer occurrences of this log ID are ‘overlooked’ by the NN. A 
reliable prediction system requires both values to be high. 

Comparing the performance of a comprehensive NN to 
multiple NNs in our production line setting speaks for the usage 
of multiple NNs over a comprehensive NN. Table I shows the 
two introduced performance indicators, observed when 
predicted and predicted when observed, for both discussed 
cases. Except for log ID 4 and 8, both indicators speak 
consistently for using multiple NNs over a comprehensive NN. 
Although the log IDs 4 and 8 lead to contradicting indicators to 
some extent, the overall results speak clearly for using multiple 
NNs over a comprehensive NN.

LOG
ID

PPV Sensitivity
ComNN MNNs ComNN MNNs

1 79 92 1 63
2 34 92 46 70
3 65 71 32 78
4 58 79 68 66

5 54 97 13 95
6 47 80 50 93
7 71 76 16 39
8 70 44 68 89
9 65 70 8 32

The superior practical performance of multiple NNs over a 
comprehensive NN might be based on different circumstances. 
One such circumstance is that, instead of working with only one 
set of hyperparameters, each NN predicting only one log ID of 
interest allows for its own set of hyperparameters, such as 
relevant past (see Fig.  5) or the number of neurons in a certain 
layer. Another contributing factor might be the more complex 
structure of the comprehensive NN, which might induce a 
worse performance of the optimization algorithm used for the 
training procedure, leading to a suboptimal trained NN. 
Another factor is the design of the used labels, which allow for 
only one next log ID of interest to be predicted. This might 
distort the NN’s performance, since one log ID of interest might 
be concealed by another log ID of interest, leading to inferior 
performance. 

To set the performance of the NNs from the multiple NNs 
approach into relation, one can compare it to trivial prediction 
models. A suitable base model can be obtained by always 
predicting the most common observed class. Due to the 
extremely unbalanced situation, we are facing with the AHT 
dataset, this is always clearly the prediction, that there will not 
be an ID of interest in the upcoming timeframe. The accuracy 
is calculated as the ratio of correct predictions to all predictions. 
For the no information rate model, this value is always the ratio 
of no-error predictions, which ranges for our situation between 
89% to 98.6%. Although these values are quite high, the 
obtained NNs outperform this bae-line accuracy in nearly all 
cases with accuracies between 94.4% and 99.9%, as shown in   
Table II.

LOG
ID

Accuracy
No information rate MNNs

1 96.5 98.6
2 96.2 98.6
3 95.9 97.8
4 89.0 94.2
5 98.6 99.9
6 97.7 99.3
7 93.0 94.9
8 95.4 94.4

9 96.1 96.9

Proposed ALFA Software Design 

To benefit from the advantages promoted in the previous 
sections, we propose the ALFA (AutoML for Log File 
Analysis) software design capable of handling the needed 
requirements. The software design contains two main 
components, the predictor and the model updater. 

The predictor receives the log information as soon as they occur 
and creates a prediction based on this information. In the first 
step, the data – log ID, time, segment, and type (it is either the 
start or the end of a log event) is received and stored in a 
database. In a second step, the NNs are loaded from the model 
updater if they have not been loaded yet and enough data is 
available to do so. Finally, the NNs are used to predict the 
occurrence of log IDs of interest if enough data is available.
Furthermore, the received log IDs can be used to calculate the 
performance of the previously made predictions, which 
guarantees for always present performance indicators for each 
NN. This component operates only, and as soon as new log data 
is received. 

The model updater is used to store, load, and refit the NNs. It 
operates on an external trigger, either from the predictor when 
loading a NN, or a regular impulse, based on e.g., a certain time 
or a certain amount of received and relevant log data, to refit 
one or more NNs. When loading the NNs, the model updater 
first tries to load already existing NNs from the file system. If 
this is not possible, it loads the relevant log data to create and 
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fit new NNs. In case that there is not enough data to fit NNs, 
nothing is done – until enough log data is present. Furthermore, 
on a regular basis, triggered e.g., by elapsed time or a certain 
amount of received data, the currently used NNs are reevaluated 
and possibly replaced, in other words, refitted. This includes 
loading of the relevant log data, the creation and fitting of new 
NNs, the comparison between these new NNs and the currently 
active NNs, and replacing the currently active NNs through the 
newly created and better performing NNs. 

The software description is still lacking an essential piece of 
information, that is, what exactly we mean by creating and 
fitting a model. Recapitulating the discussions about NAS from 
Section II, we make use of architecture optimization in case of 
a neural network search space with subsequent hyperparameter 
optimization. The precedes tasks of data preparation and feature 
engineering, which are usually included into the AutoML 
pipeline are not required in the presented setting, since the data 
is already well formatted, and features have been predefined.
The mode evaluation, on the other hand, is still a crucial aspect 
of the presented workflow and is used whenever a new NN is 
created and trained with the data. A schematic depiction of the 
described ALFA software architecture can be found in Fig.  7.

This proposed software architecture is currently developed in 
the AHT project for industrial applications, especially for 
automated decision making by predictive diagnosis and 
machine learning in a semiconductor use case. The application 
is constantly enhanced. The search space includes the NN 
architecture shown in Fig.  6 and slight variations of it, the 
hyperparameter optimization uses a grid search approach.
Possible extensions of this first implementation include the 
additional prediction of the occurrence segment and the 
extension of the currently used search space.

V. CONCLUSION

We have given an overview of the current state regarding log 
analysis and AutoML, furthermore, the advantages of 

combining these approaches were presented in theory and for
the introduced AHT use case. In this context, the theoretical and 
practical predominance of using multiple NNs, each tuned to 
predict one log ID, over one comprehensive NN, predicting all 
log IDs, was shown. The invoked theoretical advantages are the 
possibility to gradually adapt the overall prediction model to the 
concept drift or even to a new quality of data, which are new 
log IDs in the AHT use case. The invoked practical advantage 
in the context at hand is the better results produced by using 
multiple NNs in the AHT use case, shown in Table I.

Based on these considerations, the ALFA software architecture 
comprised of multiple NNs was proposed, it is shown in Fig.  7.
This architecture allows for the beforehand enumerated 
advantages and, beyond that, to also carry along the up-to-date 
performance of the used NNs. An automated update of the used 
NNs is done in the background, as soon as a better performing 
NN for a given log ID or even a new NN for a new log ID is 
found, it gets integrated. An expert in the field of NNs is not 
required to use this setup, opening the usage of it for a wide 
audience. The sole requirement is a suitable data format.

The gained models, from a first, simple implementation show 
great potential. Compared to the no-information-rate model, 
always predicting the most likely class, good performance was 
achieved. On the very unbalanced AHT dataset, assessed by the 
accuracy, the obtained NNs outperform the no-information-rate 
model in nearly all cases on a very high level, as shown in Table 
II.

The ALFA software architecture is currently developed in the 
AHT project and is constantly evaluated in this context as a new 
tool that will be provided to the Eclipse Arrowhead project.
Although the first results are promising, a long-time evaluation 
might hold crucial information for the further development of 
the proposed prediction model. This especially concerns the
evaluate the software component’s behavior when confronted 
with an unknown concept drift and the introduction of data of 
new quality. This, however, requires time for data in the given
setup to be shifted in this direction. 

A next step, besides the long-term evaluation, is the extension 
of the ALFA software architecture. There are two apparent 
extensions, the introduction of an additional label dimension 
with the segment of occurrence, additionally to the log ID, and 
the improvement of the used NAS approach. The used NAS 
approach can be enhanced by extending the search space to 
include more NN architectures and by refining the 
hyperparameter optimization.

REFERENCES

[1] Bao, L., Li, Q., Lu, P., Lu, J., Ruan, T., & Zhang, K. (2018). Execution 
anomaly detection in large-scale systems through console log analysis. 
Journal of Systems and Software, 143, 172-186. DOI:
10.1016/j.jss.2018.05.016

[2] Boardman, J., & Sauser, B. (2006, April). System of Systems-the meaning 
of of. In 2006 IEEE/SMC International Conference on System of Systems 
Engineering (pp. 6-pp). IEEE. DOI: 10.1109/sysose.2006.1652284

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2021 • VOLUME XIII • NUMBER 3 81



7

fit new NNs. In case that there is not enough data to fit NNs, 
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NNs is done in the background, as soon as a better performing 
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found, it gets integrated. An expert in the field of NNs is not 
required to use this setup, opening the usage of it for a wide 
audience. The sole requirement is a suitable data format.

The gained models, from a first, simple implementation show 
great potential. Compared to the no-information-rate model, 
always predicting the most likely class, good performance was 
achieved. On the very unbalanced AHT dataset, assessed by the 
accuracy, the obtained NNs outperform the no-information-rate 
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The ALFA software architecture is currently developed in the 
AHT project and is constantly evaluated in this context as a new 
tool that will be provided to the Eclipse Arrowhead project.
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the proposed prediction model. This especially concerns the
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new quality. This, however, requires time for data in the given
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