

Production Systems and Information Engineering

Volume 10 (2), pp. 52�63
doi: 10.32968/psaie.2022.2.5.

52

EVENT SEQUENCE SEGMENTATION FOR PARALLEL

PROCESSES

László Kovács

University of Miskolc, Hungary
Institute of Information Technology

kovacs@iit.uni-miskolc.hu

Dávid Polonkai

University of Miskolc, Hungary
Institute of Information Technology

david.polonkai2@gmail.com

Abstract. The robotic process mining focuses on the analysis of his-
torical process sequences in order to build up a process model for the
investigated �eld. One of the main tasks in robotic process mining is
the construction of process schema for the input sequences. Usual meth-
ods are able to generate models using only baseline graph structures. In
order to support high level structures like parallelism, the input event se-
quence structure must support additional attributes on the events. This
paper presents a novel approach on sequence segmentation providing an
intermediate graph structure which can be used to mine complex graph
patterns. The tested prototype system contains a Python-based imple-
mentation of the proposed algorithm. In the paper, some tests are shown
to illustrate the suitability of the proposed model.

Keywords: robotic process mining, RPM, event sequences, even graph

1. Introduction

The automation of o�ce work�ows is a key area in the development of smart
administration engines. Our investigation focuses on a speci�c problem do-
main, where the goal is to build up an accurate model of the underlying train-
ing processes. In this case, we assume that individual processes are given with
event sequences and the integration, generalization of these event sequences
generates an event graph.

Robotic Process Mining (RPM) [1] is a new research area aiming to explore
automated processes with machine learning tools. Due to the large complexity

http://doi.org/10.32968/psaie.2022.2.5.

Event sequence segmentation 53

of event processes, the development of process mining methods is a largely un-
explored issue. Several proposals have been made in the literature, but their
e�ectiveness is still relatively low. The following methods can be highlighted
in this area. One approach is the analysis of textual process speci�cation. The
problematic part of this method is the inaccuracy of the interpretation of nat-
ural language texts [2]. The second way is the form-based analysis in which
employees �ll out a data sheet about the work�ows performed. The di�culty
here stems from the partial non-automation of the process [3]. The third ap-
proach is the automatic event exploration [4]. This method is considered to be
the most promising approach.

In the case of complex event graph structures, the appropriate segmentation
of the incoming sequences can improve the e�ciency of the schema mining
algorithms. In this paper, we present a novel approach to perform process
segmentation that can also be used also for event graphs containing parallel
segments.

2. Background survey

Within the framework of automated process exploration, the following main
steps can be distinguished [5]:

1. Data collection. The data used to describe and characterize the pro-
cesses can come from several di�erent and very di�erent sources.

2. Data preparation. During data preparation, several processing steps
may be required to ensure adequate data quality and quantity. The
most common processing operations are: Data format transformation,
Data structure conversion, . Data value conversion, . Data cleaning,
Data reduction.

3. Data analysis. Based on the compiled teaching samples, the goal is to
create the operating model that best �ts the samples. The model is usu-
ally de�ned using statistical and machine learning methods. The most
commonly used methods are: Pattern matching , Exploration of com-
mon and rare patterns, clusters, . Neural network based classi�cation, .
Process forecasting.

The most important source of data retrieval is the event log. Log-based process
exploration is an area that has been slowly being explored for ten years. The
main shortcomings of previous models [6] are: 1) unique, complex algorithms,
2) inadequately tuned models, or 3) under-learning or over-learning models.
The development of e�ective models remains an important and active research
goal.

54 L. Kovács and D. Poronkai

The accuracy and e�ciency of the di�erent schema mining tools depends on
the quality of the input event sequences. In practical cases, the investigated
process includes several actors and several sub-processes. The event graph
consists of the integration of these sub-processes where several dependency
types can be discovered among the sub-processes. According to the YAWL
standard [7], there are three main types of join nodes (see Fig. 1):

• OR-join
• XOR-join
• AND-join

In order to identify these control nodes in the schema, the input log se-
quences should contain appropriate information about these synchronization
points.

Figure 1. Control nodes in process graphs [1]

Regarding the event-log �les, the key format is de�ned by the XES [8] stan-
dard. An XES document is actually an XML �le that describes an event log,
which can contain any number of traces, where a trace is a sequence of events.
Both traces and events can have any number of attributes that can even be
nested. There are �ve basic types de�ned by the standard: String, Date, Int,
Float, and Boolean, which correspond to the following standard XML types:
xs: string, xs: dateTime, xs: long, xs: double, and xs: boolean.

Figure 2. Sample XES �le

Event sequence segmentation 55

In addition, the model can be extended with any additional attributes (ex-
tensions). The XES standard does not make the use of any attribute manda-
tory. However, we can specify this in the global attribute list for events and
traces at the beginning of the event log. When processing event logs, the
following must be observed:

• Correlation and consistency. Ensuring consistency and correlation of
events from di�erent related systems [9].

• Chronology. When we combine data from di�erent systems, we want to
arrange the events based on the timestamp.

• Completeness. An event log may not contain a complete process
• Validity. Because a lot of data comes from di�erent source systems, it is
di�cult to decide which of these are relevant and which are not; which
should be included in the event log and which should not.

• Detail. In practice, the detail of event log events and user-relevant
activities often do not match.

In the case of parallel subsequences, the control �ow is split into two or
more subsequences where each subsequent must have di�erent actors. This
split event is symbolized with an AND-split node in the event graph symbol
systems. The parallel segments are merged into new segments at the AND-join
nodes.

In the next sections, the possible errors in the input event logs are investi-
gated and we present a method on how to locate the parallel and sequential
segments in the incomplete event logs.

3. Event log for parallel sub-processes

In the standard event-log model, en event entry is a tuple of the following
attributes [10]:

• tr: trace id
• id: event id
• tp: event type (class of the event)
• ti: timestamp
• ac: actor, agent
• co: cost

Considering only simple sequences, chain structure, we can use two parame-
ters, the (timestamp, actor) tuple to segment the trace into sub-sequences. In
this case, the following algorithm can be applied:

• sort the events by timestamp;

56 L. Kovács and D. Poronkai

• segment the sequence by actors, every segment contains events belonging
to the same actor.

It can be shown that in complex cases, this structure is not enough to
determine the corresponding eventgraph. For example, the trace id will identify
the whole process of several agents, thus the trace id is not suitable to separate
the sub-processes. Taking the complex event graphs with parallel subprocesses,
the following shortcomings can be identi�ed:

1. In this case, the parallel sub-processes are belong to di�erent actors,
thus, these sub-processes overlap each others.

Figure 3. Example for false schema detection

2. There may exist false sequence detection. In this case, having two par-
allel sub-processes, if these processes have short execution times, it may
happen that one process terminates before the other starts. Thus the
log contains a sequence, but the real event graph contains a parallelism.

Figure 4. Example for false schema detection

3. Having a parallel (AND) split, it is hard to locate the end control node
(AND join), as the sub-sequence after the AND-join may seem to be the
next section of one of the parallel branches.

4. Having a nested parallelism, when one branch is split again into two
parts, it is not possible to determine the correct control borders.

Based on the presented ambiguities, the presented event model alone is
suitable for complex event mining. In order to upgrade the event log models
for supporting the discovery of complex event graphs, we introduce some new
information items into the event records.

Event sequence segmentation 57

4. Segmentation methods for parallel sub-processes

In order to determine the parallel sub-processes, we use a dependency re-
lationship among the sub-processes based on the items (artifacts,products of
the processing). An item here is the object, the target of the processing, like
a mobile phone in the production line, or a document in the o�ce records
management. In this view, every event (processing step) is assigned to item
sets (which may also empty):

• input items
• output items

We assume that each item is identi�ed with an item type. Having these event
properties, we can construct a dependency graph, where

• the nodes corresponds to the events
• there is a directed edge from event A to event, only if the intersection
of the input itemset for B with the output itemset of A is not empty.

According to this dependency graph, if events e1 and e2 are not connected
then e2 can not be an adjacent member of the event e1 in the schema graph.

The application of item-level dependency requires the extension of the fea-
ture attributes with the two new item sets:

• tr: trace id
• id: event id
• tp: event type (class of the event)
• ti: timestamp
• tl: duration, time length
• ac: actor, agent
• co: cost
• input items
• output items

We argue that this kind of extension is a natural requirement which is based
on information usually available in the production systems. In the real appli-
cation cases, the properties of the artifact items are important elements of the
technical requirements.

In the event graph description, we introduce a segment unit, which denotes
the sequence of events where

• the actor is the same
• the output of an event is equal to the input of the next event
• has a maximal length

58 L. Kovács and D. Poronkai

Based on the proposed dependency graph, the corresponding segmentation
mining algorithm consists of the following elements.

1. split every event into two events, a opening and a closing part; the set
of input items is assigned to the opening part, the output set is related
to the closing part

2. ordering the events by the related timestamp
3. the �rst event is the start event, the last one is an stop event
4. process the events in the timestamp order
5. initially we take the start event and we take an empty set of active items,

and a set of idle items containing all items
6. at every processing step:

(a) take the �rst open event where all of the input items are in the idle
set

(b) move these items from the idle set to the set of active items
(c) connect this event with those events using an adjacency link where

the output contains some items from the current input. Thus we
assign for input item a unique sender event

(d) at closing event we move the output items into the set of idle items
(e) if two connected events have di�erent actors, a new synchronization

node is inserted between the events. The related synchronization
nodes are merged into a single synchronization node.

It follows from the mentioned properties that every segment connects two
synchronization nodes in the event schema graph.

5. Segmentation implementation

In the test framework, we used the Python programming language for im-
plementation of the proposed segmentation algorithm. The main bene�ts of
the selected programming language is the rich library pool on data manage-
ment and data analysis. The implemented framework includes the following
modules:

• core segmentation module
• input sequence generation
• graph visualization module

The sequence generation unit provides a description language which is based
on the following building blocks:

• event_types
• event sequences

The eventtype class has four key parameters:

Event sequence segmentation 59

• type id
• duration time
• input artifacts, objects
• output artifacts, objects

Example for sample sequence:

e = EventSequence()

et1 = EventType(1,2,Ain=[],Aout=[1])

et2 = EventType(2,4,Ain=[1],Aout=[1])

et3 = EventType(3,2,Ain=[],Aout=[2])

...

e.add_event(Event(1,"a",et1))

e.add_event(Event(3,"b",et3))

e.add_event(Event(2,"a",et2))

e.add_event(Event(4,"b",et4))

The sequence discovery unit performs a processing loop on the sequence
items. For each item, it will perform an adjacency matching using more aspects
like actors, objects and time factors. The simpli�ed code is presented in the
following list.

def discover (Act, Log):

jnodes_c = []

for i in range(len(Log)): # loop on the vents in the sequence

ac = Act[ev.action] # get event type

out = ac.outputs.copy() # get output objects (E1)

for j in range(i+1,len(Log)): # loop on remaining events

ev2 = Log[j]

ac2 = Act[ev2.action] # candidate adjacent event

in2 = ac2.inputs # get input objects of E2

z = in2.intersection(out) # list of shared objects

if len(z) > 0: # if there are shared objects

if ev.agent != ev2.agent: # if different agents,

insert a new synchronization event

out = out - in2 # adjust the list of free

while (len(jnodes_c) > 0): # merging the atomic sync events

xd = []

X1 = set([jnodes_c[0][0]]) # process current sync event

X2 = set([jnodes_c[0][2]])

60 L. Kovács and D. Poronkai

t1 = jnodes_c[0][5]

t2 = jnodes_c[0][6]

xd.append(0)

for j in range(1,len(jnodes_c)): # compare other events

fnd = 0

if jnodes_c[j][0] in X1:

X2.add (jnodes_c[j][2])

fnd = 1

if jnodes_c[j][2] in X2:

X1.add (jnodes_c[j][0])

fnd = 1

if fnd ==1: # if they are matching process them

xd.append(j)

if t1 < jnodes_c[j][5]:

t1 = jnodes_c[j][5]

if t2 > jnodes_c[j][6]:

t2 = jnodes_c[j][6]

determine the merged sync events

XX1 = [(x,Act[Log[x].action].name) for x in X1]

XX2 = [(x,Act[Log[x].action].name) for x in X2]

The merged schema graph can be visualized to show and analyze the re-
sulting output structure. Fig.5 presents a sample output schema showing four
sync events and four segments with three actors (a,b,c,).

Figure 5. Generated base schema graph

Example 1 We construct here an event sequence containing collaboration
of more actors and having parallel execution segments. The training set is
de�ned with the following commands:

e=EventSequence()

et1 = EventType(1,2,Ain=[],Aout=[1])

et2 = EventType(2,4,Ain=[1],Aout=[1])

Event sequence segmentation 61

et3 = EventType(3,2,Ain=[],Aout=[2])

et4 = EventType(4,5,Ain=[2],Aout=[2])

et5 = EventType(5,4,Ain=[1,2],Aout=[3])

et6 = EventType(6,3,Ain=[1,2],Aout=[4])

et7 = EventType(7,1,Ain=[3],Aout=[5])

et8 = EventType(8,1,Ain=[4],Aout=[6])

et9 = EventType(9,4,Ain=[5,6],Aout=[7])

et10 = EventType(10,3,Ain=[7],Aout=[])

e.add_event(Event(1,"a",et1))

e.add_event(Event(3,"b",et3))

e.add_event(Event(2,"a",et2))

e.add_event(Event(4,"b",et4))

e.add_event(Event(5,"c",et5))

e.add_event(Event(6,"a",et6))

e.add_event(Event(7,"c",et7))

e.add_event(Event(8,"a",et8))

e.add_event(Event(9,"b",et9))

e.add_event(Event(10,"b",et10))

After processing the constructed complex event sequence , the segmentation
algorithm will generate the model given in Fig. 6 for the sequence.

Figure 6. Generated schema result for Example 1

As we can see the segmentation algorithm discovered the parallel segments
and the required synchronization nodes. Thus this compound sequence can be
used as a member of a training set to construct complex event schema graphs
in the next phase of the schema mining process.

6. Conclusion

This paper presents a novel approach on sequence segmentation providing
an intermediate graph structure which can be used to mine complex graph
patterns. The proposed model requires the availability of the object, artifact

62 L. Kovács and D. Poronkai

level dependencies among the di�erent event types. The detection of the par-
allel segments is based on this kind of relationship. Based on the discovered
segments, the engine constructs a complex event schema graph, which may con-
tain AND-join and AND-split synchronization nodes too. These schema graphs
can be later merged into the next level schema graph where also XOR-nodes
appear to show optional segments. The tested prototype system contains a
Python-based implementation of the proposed algorithm. The performed tests
show the suitability of the proposed model in mining of complex event schema
graphs.

7. Acknowledgement

The described article was carried out as part of the 2020-1.1.2- PIACI-KFI-
2020-00165 �ERPA - Development of Robotic Process Automation solution for
heavily overloaded customer services� project implemented with the support
provided from the National Research, Development and Innovation Fund of
Hungary, �nanced under the 2020�1.1.2-PIACI KFI funding scheme.

References

[1] Aalst, W., Bichler, M., and Heinzl, A.: Robotic process automation.
Business Information Systems Engineering, 60, (2018), 269-272, URL https:

//dx.doi.org/10.1007/s12599-018-0542-4.

[2] Leopold, H., van der Aa, A. H., and Hajo, A. R.: Identifying candi-
date tasks for robotic process automation in textual process descriptions. En-
terprise, business-process and information systems modeling, 1, (2018), 67-80,
URL https://dx.doi.org/10.1007/978-3-319-91704-7_5.

[3] Leno, V., Polyvyanyy, A., Dumas, M., Rosa, M. L., and Maggi, F.:
Robotic process mining: vision and challenges. Business Information Sys-
tems Engineering, 63/3, (2021), 301-314, URL https://dx.doi.org/10.1007/

s12599-020-00641-4.

[4] Bose, R., Jagadeesh, C., and van der Aalst., W. M.: Discovering signature
patterns from event logs. IEEE Symposium on Computational Intelligence and
Data Mining, URL https://dx.doi.org/10.1109/CIDM.2013.6597225.

[5] Truong-Chi, T. and Fournier-Viger, P.: A survey of high utility sequential
pattern mining. High-Utility Pattern Mining: Theory, Algorithms and Applica-
tions, pp. 97-129, URL https://dx.doi.org/10.1007/978-3-030-04921-8_4.

[6] Augusto, A. and et al.: Automated discovery of process models from event
logs: review and benchmark. IEEE transactions on knowledge and data engineer-
ing, 31/4, (2018), 686-705, URL https://dx.doi.org/10.1109/TKDE.2018.

2841877.

https://dx.doi.org/10.1007/s12599-018-0542-4
https://dx.doi.org/10.1007/s12599-018-0542-4
https://dx.doi.org/10.1007/978-3-319-91704-7_5
https://dx.doi.org/10.1007/s12599-020-00641-4
https://dx.doi.org/10.1007/s12599-020-00641-4
https://dx.doi.org/10.1109/CIDM.2013.6597225
https://dx.doi.org/10.1007/978-3-030-04921-8_4
https://dx.doi.org/10.1109/TKDE.2018.2841877
https://dx.doi.org/10.1109/TKDE.2018.2841877

Event sequence segmentation 63

[7] Aalst, V. D. and et al., W. M.: Design and implementation of the yawl
system. International Conference on Advanced Information Systems Engineering,
URL https://dx.doi.org/10.1007/978-3-540-25975-6_12.

[8] Gunther, C. W. and Verbeek, H. M. W.: Xes-standard de�nition. IEEE
Computational Intelligence Magazine, pp. 4-8, URL https://dx.doi.org/10.

1109/MCI.2017.2670420.

[9] Ferreira, D. R. and Gillblad, D.: Discovering process models from unla-
belled event logs. International Conference on Business Process Management,
URL https://dx.doi.org/10.1007/978-3-642-03848-8_11.

[10] Avigdor, G., Senderovich, A., and Weidlich., M.: Challenge paper: data
quality issues in queue mining. Journal of Data and Information Quality (JDIQ),
9/4, (2018), 1-5, URL https://dx.doi.org/10.1145/3165712.

https://dx.doi.org/10.1007/978-3-540-25975-6_12
https://dx.doi.org/10.1109/MCI.2017.2670420
https://dx.doi.org/10.1109/MCI.2017.2670420
https://dx.doi.org/10.1007/978-3-642-03848-8_11
https://dx.doi.org/10.1145/3165712

	7. Acknowledgement
	References

