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Abstract

Controlling energy homeostasis involves modulating the desire to eat and regulating energy expenditure. The controlling machinery

includes a complex interplay of hormones secreted at various peripheral endocrine endpoints, such as the gastrointestinal tract, the adi-

pose tissue, thyroid gland and thyroid hormone-exporting organs, the ovary and the pancreas, and, last but not least, the brain itself. The

peripheral hormones that are the focus of the present review (ghrelin, leptin, thyroid hormones, oestrogen and insulin) play integrated

regulatory roles in and provide feedback information on the nutritional and energetic status of the body. As peripheral signals, these hor-

mones modulate central pathways in the brain, including the hypothalamus, to influence food intake, energy expenditure and to maintain

energy homeostasis. Since the growth of the literature on the role of various hormones in the regulation of energy homeostasis shows a

remarkable and dynamic expansion, it is now becoming increasingly difficult to understand the individual and interactive roles of hormo-

nal mechanisms in their true complexity. Therefore, our goal is to review, in the context of general physiology, the roles of the five best-

known peripheral trophic hormones (ghrelin, leptin, thyroid hormones, oestrogen and insulin, respectively) and discuss their interactions

in the hypothalamic regulation of food intake.
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Introduction

The goal of the present review is to present an overview of

the most studied hormonal factors that contribute to the

central regulation of food intake and energy homeostasis

which simultaneously provide peripheral feedback signals

to the relevant hypothalamic feedback mechanisms. The

most important hormones playing such dual roles are ghre-

lin, leptin, thyroid hormones, insulin and oestrogen. Of

course, in addition to the listed hormones there are several

other humoral factors, such as catecholamines, etc, contri-

buting directly or indirectly to the regulation of energy

metabolism; however, attempts to cover all contributions

are beyond the scope of the present overview. The listed

factors highly influence the appetitive trigger that stimu-

lates food-seeking behaviour, ingestion and energy

expenditure, thereby establishing a dynamic and plastic

information channel between central, mostly hypothala-

mic, circuits and peripheral tissues. In the present search

for the blueprint of the complex regulatory machinery,

the hypothesis is that the functions of the hormones dis-

cussed in the present review cannot be understood and

may be misleading if examined in isolated environments

(i.e. singled out from the complex pool of the regulatory

circuit). They can only function appropriately when

acting together and adequate hormone interactions take

place. Thus, we will compare and review the literature

on the individual roles of the selected hormones with

those observed under the influence of one or more of

these hormones present in the actual context examined

or discussed. We believe that comparison of individual

and combined hormone effects will highlight the short-

comings of classical experimental protocols operating on

the basis of only one variable and then interpreting the

resulting data as lone-standing constituents of a more com-

plex mechanism. In fact, we believe that this comprehen-

sive review underscores that physiologically relevant data

can only be obtained from complex biological systems,
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and clinical application of experimental results should

be designed on the basis of the complex interplay of the

biological factors involved.

To best illustrate their individual and combined roles,

each of the factors will be discussed separately, then in

combination based on the available literature. Considering

that we are reviewing an enormous field of research, we

will keep the main stream of discussion within the bound-

aries of general physiology. However, we will use com-

parative animal physiology or specify sex differences

where the examples provide clarity and reveal their com-

plexity for the discussion of feedback loops or mechanisms

in the regulation of metabolic homeostasis.

General physiological roles of ghrelin, leptin, thyroid
hormones, oestrogen and insulin

Ghrelin

Ghrelin is an acylated twenty-eight-amino acid orexigenic

peptide hormone first isolated from rat stomach by

Kojima et al.(1). Ghrelin serum concentrations are below

detectable levels during fetal life but rise sharply during

the second to third postnatal weeks(2). Significant ghrelin

production has been observed in the human and rat pla-

centa(3). The X/A-like secretory cells in the oxyntic

glands of the stomach are responsible for most of the cir-

culating levels of ghrelin(1), although the hypothalamus,

hypophysis, kidney and the intestines also contribute to

ghrelin production. A high degree of ghrelin expression

was detected in several types of tumours, particularly the

adrenocorticotroph hormone-secreting thymus tumours,

gastrinomas, insulinomas, and in human pituitary carci-

nomas(4,5). Plasma levels of ghrelin are reduced by about

80 % after gastrectomy or fundectomy(6), indicating that

most ghrelin is produced by the oxyntic glands of the

stomach.

Besides its role in the regulation of neural circuits that

underly appetitive behaviour, feeding(7–9), digestion(10–12)

and thermogenesis(13), ghrelin modulates a number of

additional physiological processes that, overall, may

affect energy homeostasis, such as growth hormone

production(7,10,14), cell proliferation(9,15,16), apoptosis(9),

sleep–wake behaviour(17) and cardiovascular func-

tions(12,18,19). In addition, ghrelin receptors are found on

neurons in the arcuate nucleus of the hypothalamus

where appetite-stimulating neuropeptide Y (NPY) and

agouti-related protein (AgRP) are co-expressed(13,20),

within the hypothalamus, pituitary, small and large intes-

tines, placenta, kidney, testes, ovary and lymphocytes

and on insulin-secreting b-cells in a dose-dependent

manner(11,12,21).

Intracerebroventricular or peripheral (intravenous)

application of ghrelin stimulates food intake (appe-

tite)(22,23). Studies by several groups have demonstrated

that ghrelin supports lipogenesis and suppresses fat pad

degradation(24,25), increasing body weight and adiposity,

and leading to obesity. However, skeletal mass or bone

growth remains unaffected(24,25). Thus, ghrelin accelerates

the maturation and growth of adipocites in vitro, but

may not augment adipocyte differentiation in vivo (26,27).

Although ghrelin is an energy-deficit signal, ghrelin-null

or growth hormone secretagogue receptor (GHS-R)-null

mice do not display deficiencies in skeletal growth, body

composition and food intake(28,29). On high-fat diets,

these knock-out animals usually do not become obese

and/or insulin resistant(30,31).

The major stimulus in ghrelin secretion is fasting(32). All

parameters, including the pulse amplitude of ghrelin

release, are augmented by fasting(33). Circulating levels of

ghrelin increase after fasting and revert after feeding.

However, while a relatively short, 24 h fasting increases

serum ghrelin levels, a longer period of food restriction

does not affect postprandial ghrelin concentrations(34,35),

suggesting that ghrelin levels reflect short-term energy

deficits and corroborate a positive energy balance. The

preprandial rise of ghrelin’s plasma level in obese animals

is slower and delayed compared with those animals of

normal weight(36,37). While programmed feeding allows

for the observation of marked changes in plasma ghrelin

levels, under ad libitum feeding, ghrelin (as well as

leptin) secretion shows a pulsatile rhythm or pattern,

with a peak every 30 min on average. Ghrelin release is

not influenced by simple expansion (mechanical disten-

tion) of the stomach, but depends on the ingredients of

the meal(37–39), thus indicating that the energy content of

the meal may be a determining factor(40).

In rodents and humans, ghrelin plasma concentrations

follow changes in body weight and adiposity, but show

no alterations in circulating levels in ageing rats and

mice. Likewise, no alterations were found in ghrelin recep-

tor expression in the pituitary gland and brain of ageing

mice(41,42). Ghrelin binds to HDL, decreasing their ability

to bind and carry lipid molecules(43), inhibiting lipid

export from responsive tissue. A circadian rhythm in the

fluctuation of plasma ghrelin levels exists in rodents, with

the highest concentrations of circulating ghrelin occurring

before the dark period(44) and after waking/just before

breakfast in humans(45). Gastric ghrelin secretion increases

in the dark period. In contrast, daytime hypophyseal ghre-

lin release seems to be higher compared with night-time

values. The biodegradation of ghrelin has an important

role in the adjustment of plasma ghrelin levels. Tissue

esterases and proteases are the key enzymes in the inacti-

vation and biodegradation of ghrelin in the plasma.

The hypothalamic arcuate nucleus is a principlal target

of ghrelin. Ghrelin receptors are found on neurons in the

arcuate nucleus of the hypothalamus where NPY and

AgRP are co-expressed(13,20). Distinct populations of neur-

ons were identified in the arcuate nucleus as major players

in the regulation of food intake, such as NPY- and AgRP-

containing neurons(46) responsible for orexigenic effects
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(hunger cells), and the melanocyte-stimulating hormone/

pro-opiomelanocortin (a-MSH/POMC) satiety cells and

cocaine- and amphetamine-regulated transcript (CART)-

producing neurons responsible for anorexigenic

mechanisms. Hewson et al.(47) suggest that ghrelin exerts

its stimulatory effect on appetite and food intake/feeding

activity by stimulating NPY release. Intracerebroventricular

administration of anti-NPY IgG suppresses ghrelin’s (appe-

tite-stimulating) action, although anti-AgRP IgG had the

same effect. Nakazato et al.(24) also describe ghrelin’s

enhancing effect on AgRP and NPY mRNA levels

but found no modification of the influence of NPY/AgRP

neurons on energy expenditure.

In concert with these findings, immunohistochemical

analyses show a direct connection between NPY/AgRP

neurons and ghrelin-containing fibres(48). According to

Andrews et al.(49), ghrelin seems to act on NPY/AgRP neur-

ons by inducing mitochondrial respiration of these cells,

most probably by influencing mitochondrial proliferation

and activity of NPY/AgRP neurons via affecting uncoupling

protein (UCP) 2.

Some diseases and disorders are marked by altered ghre-

lin secretion. Prader–Willi syndrome (a genetic disorder

characterised by mental retardation, hyperphagia, short

stature and muscular hypothonia) presents with higher

plasma ghrelin concentrations(50–52), a possible factor for

the hyperphagic symptom of the disease. Anorexia nervosa

is also characterised by a high ghrelin plasma concen-

tration(53,54) which returns to a normal level after recovery

and weight gain(55). Patients suffering from short-bowel

syndrome have lower plasma ghrelin levels, supposedly

due to the missing ghrelin-producing tissues(56). The

same is observed after gastric bypass surgery(57), since

ghrelin is predominantly produced in the stomach.

Since more than 90 % of ghrelin is produced by the

stomach and duodenum, parts of the gastrointestinal tract

affected by gastric bypass surgery, a significant decrease

in ghrelin level was observed in most patients who under-

went this operation(58–60). Indeed, one of the mechanisms

by which gastric bypass reduces body weight is suppres-

sion of ghrelin production. However, the effects of

bypass surgery are much more complex and are not fully

understood. There are several other sources reporting

that there were no alterations in ghrelin levels after gastric

bypass or gastric banding(61). This discrepancy in post-

surgical ghrelin levels may be due to the difference in

surgical techniques involving, for example, treatment of

the vagus nerve(62).

Ghrelin appears to be evolutionarily conserved, as it

has been found in birds, reptiles, amphibians and fish,

although its effects may have served different functions

in specific species. In mammals, it is the only gut-derived

hormone that stimulates food intake, while in chickens, it

has the contradistinct effect of inhibition of feeding(63,64).

Ghrelin’s functions in other bird species are still unknown,

albeit energy balance and thermogenesis may be regulated

by ghrelin there as well. Nevertheless, the mechanism

is different from that of mammals and is yet to be

determined.

Leptin

Leptin is anorexigenic, inhibits excessive deposition of

lipids in various tissues and enables the organism to

adapt to periods of food deprivation or undernutrition(65).

The name ‘leptin’ is derived from the Greek word leptos,

meaning ‘thin’. Leptin is a member of the cytokine family

of peptide hormones first identified as a 16 kDa protein

secreted by the adipose tissue to regulate feeding beha-

viour and energy balance(66,67). The gene encoding for

leptin is identical to the ob gene, discovered in 1995 by

Geffroy et al.(68) as the factor responsible for obesity

when mutated. Hence, the gene was called ‘ob’, abbre-

viated from the word ‘obesity’. Geffroy et al. localised the

leptin’s ob gene to the 7th chromosome. Initial evidence

correlated levels of serum leptin with adipose tissue

mass, suggesting that it was produced by the adipose

tissue itself(69). Higher levels of ob mRNA are expressed

in the fat of obese population samples compared with

thin controls, and leptin release correlates with the size

of adipocytes, i.e. larger cells produce proportionally

higher quantities of leptin due to accumulation of

TAG(70,71). Leptin is produced predominantly, but not

exclusively, by white adipose tissue(72). It is also released

by brown adipose tissue, placenta (syncytiotrophoblasts),

ovary, skeletal muscle, stomach (epithelial cells in the

lower part of fundic glands), mammary epithelial cells,

heart, bone marrow, pituitary and the liver (especially in

birds)(73). In these organs and tissues, leptin acts as a para-

crine or autocrine hormone(65,74,75).

In an early experiment, mouse ob protein (leptin) was

purified and administered in small doses both centrally

and peripherally to genetically obese (ob/ob) mice, diet-

induced obese mice and diabetic (db/db) obese mice.

Leptin reduced food intake and body weight in both

genetically obese and diet-induced obese mice, but had

no effect on db/db obese animals. The behavioural effects

after central (intracerebral) administration suggested that

leptin acted directly on the neuronal networks that control

feeding and energy balance(76). To summarise, it was pro-

posed that the ob gene encoded the ob protein (leptin) that

regulated food intake and energy balance, and that the

extreme obesity of the genetically obese (ob/ob) mice

was attributable to mutations in the ob gene. It was also

suggested that the db gene encoded the receptors for this

factor and the extreme obesity of diabetic (db/db) mice

was attributed to mutations in the db gene(77). In another

human study on two severely obese children, serum

leptin levels were very low despite the markedly elevated

fat mass. In both children, a mutation in the leptin gene

was found, providing further evidence to support the

role of the ob gene in the regulation of leptin levels(78).
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Leptin receptor (Ob-R) is coded by the db gene. Cloning

of the mouse db gene revealed that it encodes five

alternative isoforms (a–e). All isoforms possess identical

ligand-binding domains (extracellular), but differ in their

C-terminus (intracellular), with Ob-Rb as the only isoform

able to activate the correct signal transduction pathway(79).

A further experiment showed that the mutant genotype

db/db lacks Ob-Rb, and the phenotype of the affected

mice was identical to that of genetically obese (ob/ob)

mice, characterised by obesity and diabetes (from which

the name of the gene, db, is derived)(80). Expression of

the other receptor isoforms (Ob-Ra, Ob-Rc, Ob-Rd and

Ob-Re) remained unaffected, leading to the conclusion

that, of the known receptor isoforms, only the Ob-Rb recep-

tor is essential for leptin’s weight-regulating effects(81).

Using in situ hybridisation, Ob-Rb receptors were

detected in high levels in hypothalamic neurons and hypo-

physeal cells, suggesting that these anatomical regions are

crucial sites of leptin’s actions(82). This is supported by evi-

dence that a single intracerebroventricular injection of

leptin reduces food intake at doses with no measurable

effect when delivered peripherally(83). In addition to the

central nervous system, relatively high Ob-Rb mRNA

expression levels were detected in the adipose tissue, skel-

etal muscle and liver, suggesting that leptin is likely to play

a role in peripheral lipid metabolism as well(84,85).

The transport mechanisms of leptin through the blood–

brain barrier is still undefined, but it has been hypothesised

that the receptor Ob-Ra could be involved in an active

transport mechanism in certain Ob-Rb-containing neurons

that actually project to neurohaemal brain regions (i.e. cir-

cumventricular organs) and thus avoid the blood–brain

barrier(86).

In the hypothalamus, the lateral hypothalamic and

ventromedial nuclei project both within and outside the

hypothalamus and modulate the activity of the parasympa-

thetic and sympathetic nervous systems, two overlapping

and redundant mechanisms of the central nervous system

that depend upon fight-or-flight or homeostatic demands

of the organism(87–89). The dorsomedial hypothalamic

nucleus, via its direct anatomical connections with the

parasympathetic nervous system, may be involved in inte-

grating information between the lateral hypothalamic,

ventromedial and paraventricular nuclei. The paraventric-

ular nucleus controls secretion of peptides from both the

posterior and anterior pituitary and projects to nuclei

with sympathetic or parasympathetic efferents(86,90,91).

Leptin’s central effects on the regulation of food intake

and energy metabolism are not confined to a single mech-

anism of action. Besides its direct effects on relevant neural

circuits, indirect mechanisms of leptin actions are also

known. In general, leptin down-regulates orexigenic pep-

tides, and up-regulates anorexigenic peptides, leading to

a reduction in food intake. However, there is a dynamic

and interactive effect between orexigenic and anorexigenic

factors. For example, a-MSH agonists decrease food intake,

while a-MSH antagonists act in the opposite manner to

reduce the anorexigenic effect of leptin(92). On the other

hand, peripheral and central effects of leptin can merge

to shape the final biological outcome: by the facilitation

of lipolysis in the adipose tissue, leptin increases

the plasma level of NEFA, the latter which influence

the function of relevant hypothalamic neurons, while

leptin also acts directly on hypothalamic orexigenic

neurons. Additionally, leptin up-regulates uncoupling in

UCP-expressing hypothalamic neurons and probably

other cells as well, thereby propelling energy metab-

olism/utilisation/use of energy. Therefore, along with its

stimulatory effect on sympathetic tone, leptin’s overall

effects also include increased heat production(93). In

addition to these central actions, leptin exerts considerable

peripheral effects that can be considered upstream signals

of extended hypothalamic leptin effects. In short, leptin

decreases the levels of insulin and glucocorticoids,

enhances the secretion of growth hormone, catechol-

amines and the thyroid hormones, thus stimulating

energy expenditure and hepatic lipogenesis(65). Leptin

augments mitochondrial fatty acid oxidation especially

in hepatocytes and skeletal muscle cells(94,95) and

increases insulin sensitivity and glucose metabolism in

myocytes(65,96). NPY/AgRP neurons are major targets of

leptin in the hypothalamus(97,98). In these cells, the two

antagonistic hormones, ghrelin and leptin, act in opposite

ways to modulate neuronal activity and influence food

intake, as discussed below.

Thyroid hormones

Traditionally, the hormone products of the thyroid gland

have been known as ‘thyroid hormones’. Today, the

source and function of these hormones comprise a large

body of knowledge, allowing for a remarkably complex

view on the physiological roles of thyroid hormones.

This brief summary is confined to those salient thyroid hor-

mone effects that, in one way or another, are involved in

the hypothalamic regulation of food intake.

There are various types of thyroid hormones: thyroxine

(T4), containing four iodine atoms, is generally considered

to be a prohormone, while triiodothyronine (T3), contain-

ing three iodine atoms, is biologically more active than T4.

These two hormones are inactivated by conversion to

reverse triiodothyronine (rT3) or diiodothyronine (T2).

Thyroid hormones are crucial for the maintenance of

energy equilibrium of the body: thyroid hormones regulate

the rate of metabolic processes (including the BMR),

increase O2 consumption and heat production. Conse-

quently, thyroid hormones are equally necessary for

normal reproduction, growth and development(99).

In humans, most (80 %) of the circulating T3 originates

from the periphery (i.e. not from the thyroid gland),

where T4 is converted into T3 by the corresponding

deiodinase enzymes. The most important peripheral
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T3-producing organs are the liver, kidney and the skeletal

muscle(100). In rats, more T3 is produced in the thyroid

gland (55 %) than in other peripheral tissues(101), while in

birds almost all (99 %) T3 is synthesised in peripheral tis-

sues, outside of the thyroid gland(102).

The function of the thyroid gland is regulated by a nega-

tive feedback mechanism. The hypothalamic nuclei pro-

duce thyrotropin-releasing hormone that stimulates the

adenohypophysis to produce and secrete thyroid-stimulat-

ing hormone (TSH). TSH increases T4 production in the

thyroid gland. An increase of plasma T4 concentration, in

turn, down-regulates the production of thyrotropin-releas-

ing hormone, TSH, and T4 as well(103).

The peripheral T4-to-T3 conversion is catalysed by deio-

dinase enzymes(104). There are three types of deiodinases

in different tissues: type I deiodinase (D1), type II deiodi-

nase (D2) and type III deiodinase (D3). D1 is expressed

in the central nervous system, especially the pituitary, in

rats but not in humans(105–107). Of the lower vertebrates,

the fish brain was found to contain D1(108).

D2 expression was described in the brain (including the

pineal gland) and pituitary of rats(106) mainly as a glial

enzyme most abundant in astrocytes and tanycytes (near

the mediobasal hypothalamus)(109,110). In humans, D2 is

the only thyroid hormone-activating 50 deiodinase in the

brain(105).

D3 is ubiquitously expressed in the adult rat brain,

especially in the forebrain, cerebral cortex, pyramidal

cells of the hippocampus, granule cells of the dentate

gyrus, and in the piriform cortex(111). These brain regions

are the richest in thyroid hormone receptors(112). In neo-

natal rat brain, D3 expression is age dependent(113). In con-

trast to D2, D3 can be found mostly in neural cells(111).

D1 and D2 activate (when pH , 7, D1 may also inacti-

vate), while D3 inactivates, thyroid hormone. In mammals,

the bulk production of T3 is mediated by D1. D1 is

expressed in the liver, kidneys, thyroid gland, skeletal

muscles, lung, and in the hypophysis(114–118). In mammals,

hepatic and kidney-derived D1 is the most important

source of T3. These organs produce T3 and release it into

the bloodstream. Therefore, these are called hormone-

exporting organs(116,117,119). D2 is also expressed in the

liver in birds but not in mammals(102).

Peripheral tissues can adjust the ratio of active and inac-

tive thyroid hormones, according to their actual energy

needs and energy supply through their deiodinase activity.

Therefore, the peripheral tissues can become more or less

independent from the central regulatory processes. In the

case of appropriate energy supply, the body primarily

needs T3, thereby turning on thyroid hormone-activating

deiodination(117,119,120).

Thyroid hormones act through binding to their cognate

receptors (thyroid hormone receptors). Thyroid hormone

receptors are nuclear receptors that can stimulate ligand-

dependent transcription of certain genes(121,122). In mam-

mals, there are four thyroid hormone receptor isoforms,

thyroid hormone receptor a (TRa) 1–2 and thyroid hor-

mone receptor b (TRb) 1–2, encoded by two highly con-

served genes (Thra and Thrb, respectively)(123,124). TRa2

has not been found in non-mammalian species(125).

Unlike the other thyroid hormone receptors, TRa2 acts as

a weak repressor instead of functioning as a receptor of

T3
(126). Thyroid hormone receptors have both T3-depen-

dent and -independent functions. Interestingly, T3 can con-

vert a T3-independent repressor into a T3-dependent

activator(127).

The distribution pattern of Thra and Thrb is age and

tissue dependent. While TRa1 is widely expressed, TRb

1–2 mRNA expression is restricted to specific ontogenetic

states and is highly tissue specific(128). Based on knock-

out and knock-in experiments, Thra was found to influ-

ence cardiac functions, thermogenesis, haemopoiesis, and

the maturation of intestines and bones(128–131). Thrb is

crucial for the proper endocrine and sensory functions

such as the hypothalamic–pituitary–thyroid axis, hepatic

reactions to T3, behaviour, audition, colour sensation and

tactile senses(132–138). TRa1 and TRb1 isoforms can be

co-expressed in the same tissues and can substitute for

each other’s function to a certain extent(138,139).

Nutrients entering the small intestines elicit enterogluca-

gon production in the intestinal wall that reaches the liver

before the absorption of the nutrients(140). Absorbed nutri-

ents quickly enter the liver through the portal vein. Carbo-

hydrates, and to a lesser extent proteins, induce hepatic D1

gene expression(141–143) and down-regulate D3 activity. T3,

in turn, increases hepatic and muscular GLUT (GLUT-1 and

GLUT-5) gene expression(101,144). The latter also enhances

hepatic thyroid hormone activation(145). Increased energy

intake, therefore, induces increased plasma T3 concen-

tration that increases BMR(117). Increased, but still physio-

logical plasma T3 concentrations, in turn, trigger appetite

in the hypothalamic ventromedial nucleus. This is a self-

strengthening mechanism(146,147).

In piglets, thyroid hormone plasma concentration

(mostly T3) increases sharply after food intake, reaching

its peak after 60 min. The rise in thyroid hormone concen-

tration mainly depends on the energy content of the food

and is relatively independent from the glucose concen-

tration of the blood(101). In contrast to feeding, starvation

elicits a decrease in plasma T3 concentration in mammals.

T4 response to starvation, however, depends on the

species. For example, starvation leaves plasma T4 concen-

tration unaffected in humans(148), but in rats(149,150) and

swine(151–153) plasma T3 concentrations drop after star-

vation. In chickens, starvation causes decreased plasma

T3 and increased plasma T4 concentration(115,154–157) due

to increased hepatic D3(111) and decreased hepatic D2

activity and gene expression(158). In cows, effects of star-

vation are difficult to examine due to the characteristics

of rumen function. Therefore, the effect of fluctuations in

feeding on plasma thyroid hormone concentration was
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tested and it was found that reduced food intake resulted

in decreased plasma thyroid hormone concentration(159).

Dairy cows represent a unique category with regard

to thyroid hormone physiology. These animals can enter

a physiologically starvation-like period during lactation

when energy metabolism turns towards so-called negative

energy balance. Under such conditions, plasma T4 concen-

tration reaches its nadir and T3 plasma concentration

is low. Later, plasma thyroid hormone concentrations

increase and reach their peak during the dry period(159).

Romo et al.(160) and Pezzi et al.(117) found that hepatic

D1 activity is the lowest during early lactation and

suggested a possible role of fatty liver in the decreased

enzyme activity and the consequently decreased hepatic

thyroid hormone activation. However, decreased feed

(and consequently carbohydrate) intake can also be

acting in the background of decreased thyroid hormone

activation since T4-to-T3 conversion is a carbohydrate-

dependent process(141) and glucose directly triggers

hepatic D1 expression(143).

As mentioned above, hypothalamic NPY/AgRP neurons

are in a special position to trigger food intake, and both

leptin and ghrelin are able to influence the activity of

these cells. Coppola et al.(161) clearly demonstrated that

arcuate nucleus NPY/AgRP neurons are supplied with T3

by hypothalamic tanycytes, and that T3, imported from

tanycytes, can activate intracellular mechanisms in NPY/

AgRP cells to increase neuronal firing and, consequentially,

to initiate food intake. These observations imply a possible

interaction between the three hormones discussed so far,

in the regulation of NPY/AgRP neuronal activity. However,

according to Ishii et al.(162), subcutaneously injected T3

results in hyperphagia via hypothalamic adenosine mono-

phosphate activated protein kinase (AMPK) phosphoryl-

ation, without affecting local (hypothalamic) NPY or

POMC mRNA expression levels, suggesting that additional

mechanisms may also be involved in the hypothalamic

regulation of food intake.

Oestrogen

Traditionally, oestrogens (mostly 17b-oestradiol; E2) have

been regarded exclusively as sex hormones, and, indeed,

many of their direct actions are exerted on reproductive

organs and tissues. Oestrogens are primarily synthesised

within the developing follicles of the ovaries and exert

an influence on the female reproductive system. However,

other sites of biosynthesis are present throughout the body,

including the adipose tissue and the brain itself. Adipose

tissue contributes significantly to the maintenance of

plasma concentration of E2. Besides the adipose tissue,

aromatase (oestrogen synthase) expression is also found

in muscle, skin fibroblasts, osteoblasts and chondrocytes

of bones, vascular endothelial and aortic smooth muscle

cells, Leydig cells, as well as a number of sites in the

brain including the medial preoptic/anterior hypothalamus,

the mediobasal hypothalamus and the amygdala(163,164).

Oestrogens exert an effect on almost every cell type, regu-

lating an eclectic assortment of functions.

In males, regulation of E2 mainly occurs through

the conversion of testosterone using aromatase enzyme

throughout the body, including the adipose tissue that

represents a major source of ovary-independent pro-

duction(164). A positive relationship was described between

BMI and plasma E2 levels in men and postmenopausal

women, and circulating levels of E2 decreased in response

to fasting or energy restriction in fertile women(165). Rats

lacking oestrogen receptor a (ERa) or aromatase have

increased fat mass and hyperlipidaemia(166). This suggests

that E2 has a role in signalling the central nervous system

about the status of peripheral energy stores.

It has long been known that E2 modulates

hunger(166–168). The question, however, of how much is

the share of E2 alone, besides other relevant hormones,

in the regulation of food intake is not fully known. Apart

from the actual initiation of food intake, effects on

energy expenditure highly influence evolving hunger sig-

nals. Therefore, E2 can modulate feedback hunger signals

through its central and peripheral regulatory role in the

initiation of heat production(169). The homeostatic func-

tions of E2, such as reproduction, stress responses, feeding,

sleep cycles and temperature regulation were originally

thought to be mediated through E2’s classical intracellu-

lar/nuclear receptors (oestrogen receptors) ERa and

oestrogen receptor b (Erb), which act as transcription

factors, binding to the oestrogen-responsive elements

(ERE)(170,171) of respective genes. Keeping with the general

context of the present review, a recent study reported that

elimination of ERa (ERaKO) from the hypothalamic

ventromedial nucleus in rats leads to the development of

the metabolic syndrome, with a significant deficit in

energy expenditure(172). In addition to nuclear oestrogen

receptors, there are other extranuclear pathways activated

after ligands bind to the oestrogen receptor in the plasma

membrane(173,174), or activate intracellular proteins directly

responsible for the regulation of cellular energy levels,

such as UCP(175) or ectonucleotidases(176). Oestrogens can

also initiate cellular actions through membrane-bound

E2-sensitive molecular complexes, such as G-protein-

coupled receptor 30, ion channels and receptors for

other ligands(177). An interesting mechanism of oestrogenic

effects is the synaptogenic influence of E2 on hypothalamic

neuronal connectivity. It is now well established that E2

induces synaptic reorganisation in the hypothalamus to

regulate the secretion and release of gonadotropin-releas-

ing hormone and, consequentially, pituitary luteinising

hormone release(178). Synaptic plasticity plays a crucial

role in the hypothalamic mediation of leptin and ghrelin

effects as well(179), and overall synaptic reorganisation in

the hypothalamus seems to be shaped by all three hor-

mones (E2, leptin and ghrelin). However, E2 appears to

exert its own synaptogenic influence in the hypothalamus,
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since apart from the ovarian cycle, hunger is also modu-

lated by the actual levels of E2(167,168). It is now well estab-

lished that oestrogens (E2 above all) are trophic hormones.

As such, a plethora of studies reported that E2 interacts

with other trophic hormones, including the ones discussed

in the present review, to regulate developmental events

and energy metabolism (food intake and energy expendi-

ture)(180–183). A relevant selection of these interactions

will be discussed below. At this point, we only note that

E2, while targeting hypothalamic neurons, is able to influ-

ence the function of NPY/AgRP-containing neurons of the

arcuate nucleus, the major mediators–initiators of food

intake, and thus play a significant role in shaping the over-

all outcome of NPY/AgRP neuronal activity(179,182). The

latter role includes a blunting effect after fasting-induced

activation of these neurons(183). Interestingly, however,

E2 not only attenuates hunger by down-regulating relevant

hypothalamic ‘hunger cell’ activity (NPY/AgRP neurons),

but also modulates neurotransmission on POMC neurons

(satiety cells) to attenuate the cannabinoid-induced

changes in appetite(184).

Insulin

Insulin is secreted by pancreatic islet cells (b-cells) and is

known as a major regulator of blood glucose levels. To

date, a large body of evidence demonstrates actions of

insulin in the hypothalamic feedback loop of energy bal-

ance regulation(185). The actual concentration of plasma

insulin is proportional to body adiposity, although it also

depends on food consumption and type of diet. Secretion

and synthesis of insulin are affected by a number of genetic

and environmental/epigenetic factors. Food intake, diet,

fasting and re-feeding influence insulin entry to the brain

or its ability to get into the brain tissue(186). Eating increases

the concentration of insulin in the brain whereas fasting

decreases the concentration. Plasma insulin levels directly

correlate with those measured in the cerebrospinal fluid.

Insulin enters the brain, crossing the blood–brain barrier

by a receptor-mediated transport, and stimulates anorexi-

genic pathways as an adiposity signal leading to reduced

food intake. Insulin receptors are expressed in hypothala-

mic neurons, predominantly in the arcuate nucleus(187), a

nucleus associated with the regulation of food intake,

energy expenditure and food reward and the site of several

orexigenic and anorexigenic neural signals(180,182,188,189).

In rats, hyperphagia caused by insulin-deficient type 1

diabetes can be reversed by intracerebroventricular

administration of insulin. Thus, insulin interacts with both

orexigenic and anorexigenic neuromodulators(189,190).

Reports from the past three decades show that insulin

exerts multiple effects in the brain, and its role has been

validated by the identification of receptors and transport

machinery in the central nervous system. Insulin acts on

hypothalamic circuits that regulate food intake, metabolism

and other crucial functions, and insulin-responsive neurons

include the hypothalamic NPY/AgRP neurons(191), the

latter which may represent a special cell population allow-

ing for a cross-talk between the major hormonal signals

discussed in the present review. The effects of insulin lead-

ing to decreased food intake are, at least in part, due to the

inhibition of NPY expression of neurons of the arcuate

nucleus(192). An interesting hypothalamic effect of insulin

was observed by Lin et al.(193), who found that hypothala-

mic NPY/AgRP and POMC neurons mediate insulin’s cen-

tral effects to regulate hepatic glucose production.

Part of the endocrine cross-talk appears to manifest in

the hormonal regulation of hypothalamic synaptic reorgan-

isation, where the interaction of insulin-like growth factors

and their receptors are a well-known episode in the regu-

lation of synaptic plasticity(178).

Despite the abundance of relevant data, a clearcut bor-

derline between the effects of insulin alone and those

exerted through the interactions of insulin with other per-

ipheral trophic hormones in the hypothalamic regulation

of food intake is not yet known. Therefore, further effects

of insulin on food intake will be discussed below in the

context of hormone interactions.

Hormone interactions and combined hormone effects

Interactions of ghrelin and leptin

In mammals, ghrelin stimulates food intake and appears to

act as the functional antagonist of leptin(194). There is a fine

balance between the two physiologically antagonistic

hormones as demonstrated by Giovambattista et al.(195),

who detected enhanced leptin secretion after prolonged

ghrelin exposure. In turn, moderate hyperleptinaemia/

leptin administration prevents the increase of plasma

ghrelin during short-term energy restriction(196). Ghrelin’s

hunger signal stimulates the hypothalamic regions

responsible for food intake in the lateral hypothalamic

nuclei and arcuate nucleus. In contrast to leptin, plasma

levels of ghrelin fluctuate in relation to food intake. The

low ghrelin levels in obese individuals are associated

with low growth hormone concentration and high

leptin levels(32,197). Rigamonti et al.(198) found higher con-

centrations of plasma ghrelin in young patients compared

with elderly patients. Thus, it is possible that a high

concentration of leptin suppresses ghrelin’s plasma

level. This idea is supported by observations that plasma

leptin concentration correlates with the body fat mass

which is high in obesity, decreased in fasting and low in

anorexia nervosa.

An interesting addition for ghrelin and leptin regulation

is the linkage to sleep–wake behaviour(17). It has been

demonstrated that inadequate or bad-quality sleep is

associated with changed levels of ghrelin and leptin, and

is in connection with energy balance disorders leading to

weight gain. Normally, ghrelin levels rise at night. In

sleep deprivation or insomnia, however, night-time ghrelin
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levels fall significantly and are followed by increased day-

time ghrelin levels. Administration of ghrelin increases the

ratio of non-rapid eye movement (REM) sleep in human

subjects. The REM phase is thought to be the stage with

the highest metabolic rate. Lack of it leads to hormonal

changes that increase appetite. It is noteworthy that insuf-

ficient sleep can decrease daytime levels of leptin; how-

ever, its nocturnal levels do not show significant change

between healthy individuals and insomniacs.

The anatomy and synaptology of the hypothalamic

leptin/ghrelin-responsive neurons provide an explanation

for the aforementioned interactions. In a review, Hor-

vath(179) pointed to the ability of hypothalamic neuronal

circuits to rearrange themselves in response to peripheral

and central hormone effects. Earlier, this phenomenon

had not been considered as part of the mechanism respon-

sible for the regulation of daily energy metabolism. How-

ever, as stressed in that review, experiments on ob/ob

mice and transgenic animals provided clearcut evidence

for the ability of leptin and ghrelin to induce synaptic

reorganisation on hypothalamic neurons that are in a key

position (NPY/AgRP and POMC cells) to regulate food

intake and other determinants of energy homeostasis.

Hypocretin/orexin-containing neurons of the lateral

hypothalamus are major targets of gastric ghrelin and, at

the same time, these neurons directly innervate raphe

serotonergic neurons to regulate sleep–wake behaviour.

Elevation of serum ghrelin levels increases the number of

excitatory synapses and the ratio of stimulatory/inhibitory

synapses on lateral hypothalamic hypocretin/orexin neur-

ons. Since such a ratio in cellular synaptic status is a key

factor in the shaping of neuronal activity, the consequence

of such a synaptic reorganisation is that the neurons in

question, as major sources of the stimulatory innervation

of arcuate nucleus NPY/AgRP cells, increase the activity

of the latter cell population, thereby initiating/increasing

food intake. Such synaptic plasticity occurs simultaneously

on POMC neurons as well, where an inhibitory dominance

occurs at the time of increased NPY/AgRP cell activity. The

described synaptological basis of the mechanism includes

the anti-ghrelin-like (antagonistic) effects of leptin, but is

also modulated by the synaptogenic effects of E2 and

other hormones discussed in the present review.

Interactions of ghrelin and insulin

As mentioned above, ghrelin release is not influenced by

simple expansion (mechanical distention) of the stomach;

instead, it is highly dependent on the ingredients of the

meal. Elevated blood glucose level, after oral or intra-

venous application, leads to decreased plasma ghre-

lin(197,199,200). In turn, ghrelin seems to enhance the

degradation/catabolism of carbohydrates and results in

an increase in the RQ. According to Ariyasu et al.(36),

insulin-induced hypoglycaemia facilitates ghrelin secretion

in rodents and this can be reversed by glucose injections.

Ghrelin levels are increased under lipid-rich diets, but

not under low-protein diets(201,202).

As emphasised in the present review, the arcuate

nucleus is a key brain region regulating energy balance.

Peripheral hormonal signals converge to influence arcuate

nucleus circuits and shape overall energy metabolism.

Among these signals are ghrelin and insulin, whose

common targets are the arcuate nucleus NPY/AgRP neur-

ons, the ‘hunger cells’ of the hypothalamus. As described

above, ghrelin stimulates the activity, while insulin

down-regulates NPY secretion of these cells; thus these

two hormones antagonise in the regulation of ‘hunger

cell’ function. Apart from their hypothalamic effects, paral-

lel brain circuits are also modulated by the two hormones.

For example, there is evidence that brainstem regions, such

as the ventral tegmental area, are sensitive to leptin, insulin

and ghrelin and that the activity of dopaminergic cells of

the ventral tegmental area are modulated by the above hor-

mones(203,204). In turn, the ventral tegmental area dopamin-

ergic cells innervate a number of forebrain structures,

forming circuits that are commonly associated with the

expectation of feeding-associated reward(205–207).

It is noteworthy that besides their central effects, there

are certain peripheral interactions of ghrelin and insulin

that also influence hypothalamic neural mechanisms. For

example, a wide range of findings supports roles of ghrelin

in the regulation of insulin release. Ghrelin receptors are

present on insulin-secreting b-cells(21) and ghrelin immuno-

reactivity is reported in pancreatic islets partly overlapped

with glucagon-immunoreactive cells. Data suggest that

ghrelin is synthesised and secreted in pancreatic a-cells

and feeds back on the same a-cells in an autocrine and/

or paracrine manner. Ghrelin concentration in pancreatic

veins is higher than in pancreatic arteries, suggesting that

pancreatic islets produce ghrelin as well(208,209). In support

of the latter, in their review, Dezaki et al.(210) described that

ghrelin is present in pancreatic islet cells and regulates

b-cell insulin secretion.

It was recently established that (exogenous) ghrelin

administration increases plasma glucose and reduces insu-

lin levels(211). These results are supported by the finding

that ghrelin knock-out mice show elevated insulin pro-

duction in pancreatic islets, which leads to decreased

blood glucose levels(212,213). The main regulator of insulin

release seems to be the glucose-induced Ca influx into

the b-cells. Dezaki(213) described the Ca-mediated insulin

release that could be attenuated by ghrelin administration.

The mechanism underlying this observation involves ghre-

lin’s activating effect on b-cell growth hormone secretago-

gue receptors (GHS-R) to enhance Kþ currents through

delayed rectifier K-channels via G-protein activation; this,

in turn, attenuates the glucose-induced Ca influx and

thereby decreases insulin secretion(210).

Yet another finding to consider is that ghrelin attenuates

the expression of UCP2 in ob/ob mice, which, under

normal circumstances, down-regulates glucose-induced
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ATP production, reducing insulin release from b-cells. In

summary, ghrelin inhibits insulin secretion in islet b-cells

in two ways: (1) by acutely enhancing Kv channels and

suppressing Ca signalling; and (2) by chronically up-regu-

lating UCP2. Consequently, ghrelin inhibits insulin release,

thereby increasing glycaemia, and affecting feeding beha-

viour and adiposity(210,211).

Interactions of leptin and thyroid hormones

Both leptin and the thyroid hormones are key regulators of

body weight by affecting food intake and energy expendi-

ture(214). Leptin decreases food intake and increases energy

expenditure, while the thyroid hormones T4 and T3

increase both food intake and energy expenditure. This

indicates that thyroid hormones and leptin could play a

crucial role in the regulation of the balance between

energy intake and energy expenditure, and, consequently,

in the regulation of body weight and body fat mass. The

correlation between serum leptin and T3 concentrations

has been studied extensively. Results so far are conflicting,

particularly those from human studies(215).

Study on cultured rat adipocytes demonstrated that

leptin mRNA production and thus leptin secretion was

inhibited by Triac (triiodothyroacetic acid, a metabolite of

T3) and T3 in a dose-dependent manner and with similar

potency(216). This was confirmed in an in vivo rat study,

in which intraperitoneal administration of different doses

of T3 (and consequently increased serum T3) led to a

decrease in white adipose leptin mRNA levels and a

decrease in serum leptin concentration. This observation

indicates that T3 regulates serum leptin through the modu-

lation of leptin gene (ob) expression(205).

Conversely, administration of leptin has been shown to

affect serum thyroid hormone levels. When administered

to fasted rats, leptin prevented the reduction in thyroid

hormone levels by maintaining normal pro-thyrotropin-

releasing hormone (precursor to thyrotropin-releasing hor-

mone) mRNA activity in the hypothalamus(217). Likewise,

leptin enhanced T4-to-T3 conversion(217). Leptin also pre-

vents the suppression of TSH in the anterior pituitary

after food restriction, thereby maintaining serum T3 and

T4 levels. However, this anti-inhibitory effect of TSH also

depends on thyroid gland activity, as it was not observed

in hypothyroid rats(218).

In the brain, T4-to-T3 conversion is catalysed by D2.

According to Coppola et al.(161), in the arcuate nucleus,

D2 activity takes place in tanycytes, and resulting T3 is

then transferred to NPY/AgRP neurons. T3 in the latter

cell population triggers a series of events including the

up-regulation of UCP2 and NPY, eventually leading to

mitochondrial proliferation and increased neuronal

activity. The physiological outcome of these cellular

events manifests in the initiation of or in an increase in

food intake. As previously mentioned, leptin up-regulates

uncoupling in UCP2-expressing hypothalamic neurons.

This might be, at least in part, due to leptin’s ability to

increase T3 levels by acting centrally on D2 activity(219).

Interestingly, however, as an anorexigenic hormone,

leptin down-regulates NPY/AgRP neuronal functions.

Therefore, in terms of food intake, it seems likely that

T3’s and leptin’s opposing physiological effects on NPY

neurons are mediated by different signalling modalities

with possible cross-talk at the level of UCP2. UCP2, and

other uncoupling enzymes elsewhere in the body, may

be common targets of T3 and leptin in their regulatory

actions in heat production. The latter regulatory process

probably involves parallel neural circuits. For example,

the expression level of UCP1 in brown adipose tissue is a

marker of sympathetic nervous system activity. It has

been shown that D2 activity, in brown adipose tissue in

particular, can be stimulated by the sympathetic nervous

system(219) and, not surprisingly, central leptin adminis-

tration increases UCP1 expression in brown adipose tissue.

In sum, T3 regulates serum leptin levels by inhibiting

leptin gene expression, but leptin maintains normal thyroid

hormone levels in food-restricted animals by preventing

the suppression of thyrotropin-releasing hormone and

TSH(220). Leptin also increases D1 activity peripherally,

and D2 activity centrally in food-restricted animals, result-

ing in an increase in T3 as long as sufficient T4 is available.

Interactions of oestrogen and leptin

The interactions of E2 and leptin are particularly interesting

and deserve more attention, since the two hormones have

similar effects on food intake and energy homeostasis. For

example, leptin limits food intake, i.e. decreased leptin

levels result in hyperphagia. Oestrogen also mimics this

effect: ovariectomy leads to increased food intake that

can be reversed by E2 replacement.

Noteworthy among their interactions are the two hor-

mone’s effects on the regulation of each other’s plasma

levels. Such effects are exerted through indirect and

direct pathways. Leptin influences E2 levels indirectly by

modulating the regulation of the reproductive axis. It is

well known that undernutrition inhibits female reproduc-

tive functions and lowers ovarian E2 in favour of self-main-

tenance and thermoregulation(221–223). Low levels of

ovarian E2 during fasting can be increased by eliminating

leptin deficiency. Similarly, low E2 levels in ob/ob mice

can also be increased by leptin(165). Furthermore, leptin

administration increases basal luteinising hormone levels,

ovarian uterine weights and restores fertility in ob/ob

mice(221). This suggests that leptin could be the adiposity

signal to the reproductive axis signalling the body’s current

nutritional status, allowing reproduction to continue if

significant adipose tissue is available and inhibiting it

if body fat stores are depleted(224). The inhibiting effect

of leptin deficiency on reproduction is mediated

through the down-regulation of gonadotropin-releasing

hormone(165,225).
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Although gonadotropin-releasing hormone secretion

appears as an important platform of leptin influence on

oestrogenic effects, leptin may also influence cellular E2

availability directly. Leptin stimulates aromatase activity

in adipose tissue and the presence of leptin receptors

(Ob-R) in the ovary implies that leptin may have direct

influence on ovarian E2 production and/or oestrogenic

effects(165).

There is evidence suggesting that leptin production is

directly affected by E2. Ovariectomy or deletion of ERa

increases serum leptin levels and leads to an increase of

body fat mass(166). Plasma leptin levels are higher in

women than in men with an equivalent fat mass and

leptin secretion is higher in isolated female omental

tissue than male donors, suggesting that sex steroids

exert effects on leptin production. Women have higher

subcutaneous tissue fat and less intra-abdominal fat than

men. Therefore, this sex-related difference in fat distri-

bution may account for these sex differences in leptin

levels. Conversely, administration of E2 to cultured rat adi-

pocytes induces leptin secretion and E2 receptors have

been found in adipose tissue, suggesting that E2 exerts

its effects over leptin secretion directly on adipocytes(165).

In ovariectomised rats, the minimum effective leptin

dose resulting in weight loss is greater than in controls,

implying that E2 deficiency may attenuate leptin’s

effects(165). A number of further studies confirm this attenu-

ating effect of E2 over leptin and provide more insight into

the potential mechanism. Meli et al.(166) found that changes

in body weight and fat content caused by ovariectomy are

accompanied by alterations in serum leptin concentration.

Serum leptin levels are higher in ovariectomised than sham

controls, and are reversed by E2 treatment. Increased

serum leptin levels after E2 withdrawal are secondary to

the increase in fat mass. Mid- or long-term hypo-oestrogen-

ism causes a lower expression of Ob-R in adipose tissue

and the hypothalamus compared with sham-operated

rats. Lack of E2 leads to hypothalamic NPY overproduction

and impairs central leptin sensitivity. The decrease in Ob-R

and the associated leptinaemia support central leptin

insensitivity. Oestrogen status, therefore, modulates

serum leptin levels, as well as hypothalamic and white adi-

pose Ob-Rb expression, thereby implying close cross-talk

between central and peripheral leptin sensors in the regu-

lation of body fat mass.

The above phenomenon was observed outside of the

hypothalamus as well: Chen et al.(226) found a relationship

between E2 levels and Ob-R expression in the dorsal root

ganglion. Oestrogen was found to increase the expression

of Ob-R protein and mRNA in ovariectomised rats. As a

result of co-labelling for Ob-R and ERa/ERb, 100 % co-

localisation of ERa with Ob-R occurred, while ERb–Ob-R

co-localisation occurred in only 15 % of dorsal root

ganglion neurons. The authors concluded that E2 may

up-regulate the expression of Ob-R protein and mRNA in

an ERa-dependent manner.

A study by Ainslie et al.(227) confirmed that E2-deficient

rats may be leptin insensitive. The authors showed that

the effect of central leptin administration on food intake

and physical activity in ovariectomised rats is significantly

less than in sham controls. However, they did not find

differences in Ob-Rb mRNA expression between sham

and ovariectomised rats, suggesting that central leptin

insensitivity may occur due to a defect at, or downstream

to, the hypothalamic Ob-Rb itself.

Once leptin binds to Ob-Rb, the associated Janus kinase

2 tyrosine kinase is activated, followed by the activation of

signal transducer and activator of transcription 3 protein

(STAT3), STAT5, phospatidylinositol 30-kinase and MAPK

pathways. STAT3 is a crucial member of these pathways,

as ablation of Ob-Rb–STAT3 signalling/neuronal STAT3/

STAT3 in Ob-Rb neurons mimics the obesity, hyperphagia

and decreased energy expenditure of leptin-deficient

db/db mice. Following phosphorylation of STAT3 by

Janus kinase 2 and the subsequent dimerisation and

nuclear transport, STAT3 alters cell transcription and func-

tion. It was proposed that E2 may interact with the leptin

pathway at the level of STAT3. STAT3 has been reported

as a target of E2 signalling in cells. In a neural STAT3

knock-out murine model, mice exhibited obesity and infer-

tility which E2 administration failed to correct(182).

Oestrogen receptors are functionally linked to

STAT3: they have a direct physical coupling and involve

co-regulators such as cAMP-response element binding

protein. STAT3 also enhances the transactivational function

of oestrogen receptors, which suggests that oestrogen

receptors and STAT3 act mutually as co-activators to

facilitate signalling(182).

Conversely, Chen & Heiman(228) sought to determine

whether ovariectomy leads to leptin resistance. Ovari-

ectomy caused hyperphagia and increased fat mass.

Leptin treatment increased fat utilisation and prevented

reduction in energy expenditure. Withdrawal of leptin

stimulated hyperphagia. The authors concluded that loss

of ovarian function in rats is not associated with a

change in leptin sensitivity.

It is well established that the hypothalamus plays an

important role in the regulation of food intake and body

weight since chemical or physical lesions of these regions

cause hyperphagia and obesity(165,182). It seems clear at this

point that the combined effects of leptin and E2 are exerted

by their actions on the same population of hypothalamic

neurons(229). Evidence indicating that E2 and leptin may

cooperate in the regulation of energy metabolism and

reproduction is provided by the co-localisation of E2 and

leptin receptors in hypothalamic neurons. Diano et al.(230)

reported co-localisation of leptin receptors with ERa in the

medial preoptic area, arcuate nucleus, ventromedial

nucleus and paraventricular nuclei in female rats. The

authors suggested that this extensive co-localisation of

receptors in neuronal perikarya of the hypothalamus indi-

cates a functional link between these hormones and the
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regulation of a variety of behavioural and neuroendocrine

mechanisms. In a previous study, Meli et al.(166) also found

considerable co-localisation of oestrogen receptors and

Ob-R in hypothalamic nuclei.

The possible mechanisms through which E2 and leptin

may cooperate in the brain include interrelated modifi-

cations of hypothalamic orexigenic and anorexigenic

neuropeptides. In the hypothalamus, anorexigenic arcuate

nucleus POMC neurons inhibit food intake through the

release of the cleavage product melanocyte-stimulating

hormone, while the orexigenic NPY neurons act

against this to promote feeding(165). When leptin signalling

is diminished, or during fasting, POMC expression is

reduced, while increasing levels of leptin stimulate POMC

transcription through STAT3 activation(165,182). Mystkowski

& Schwartz(165) found that ovariectomy in rats leads to

increased POMC expression in the arcuate nucleus, imply-

ing an adaptive response of POMC neurons to attenuate

increases in body weight. Furthermore, decreased body

weight following the administration of supraphysiological

amounts of E2 in male rats is followed by the induction

of arcuate nucleus POMC gene expression. Oestrogen-

induced weight loss elicits a compensatory reduction of

POMC gene expression. Therefore, increased melanocortin

signalling does not mediate E2 effects on energy

homeostasis.

Gao & Horvath(182) claim, however, that E2 exhibits mol-

ecular and cellular effects on POMC similar to leptin in the

arcuate nucleus. They state that both leptin and E2 alter the

synaptic input on hypothalamic melanocortin neurons,

inducing an increased POMC tone and decreased food

intake and adiposity, allowing for the assumption that E2

and leptin regulate POMC expression by the induction of

synaptic remodelling.

According to Hirosawa et al.(231), the increased serum

leptin levels did not up-regulate POMC expression in the

hypothalamus of ERa-null mice, while ablation of E2 by

ovariectomy and the accompanying higher serum leptin

levels up-regulated POMC expression, indicating that ERa

is essential for the up-regulation of POMC and that this

pathway is probably mediated in an E2-independent

manner. ERa can be transcriptionally activated by ligand-

independent activation. The authors suggest that leptin

may activate ERa through the MAPK pathway via Janus

kinase 2. Others, however, suggest that E2 influences

the distribution of body fat and adipose tissue

metabolism via both ERb and ERa: according to Shin

et al.(232), obesity and blood leptin levels are influenced

by the ERb:ERa ratio.

It may be possible that E2 exerts its effects over POMC

via a putative membrane-associated oestrogen receptor

that is distinct from ERa and ERb. Qiu et al.(171) identified

this receptor in dopamine-containing and POMC hypo-

thalamic neurons; its activation leads to desensitisation of

g-aminobutyric acid (GABAB) receptors in POMC neurons

of the arcuate nucleus by the phospholipase C, protein

kinase C, protein kinase A pathway, facilitating the for-

mation of synaptic contacts with hypothalamic areas

controlling appetite by POMC neurons.

Interactions between insulin and leptin, oestrogen or
thyroid hormones

Leptin, like insulin, plays an important and key role in

food reward. The mechanisms are unclear but are

being intensely investigated(233). Insulin is a major

modulator of leptin levels(234–239), in a dose-dependent

manner(240–242). In diabetic rats, insulin administration

reverses the previously reduced leptin level(243). Hypo-

thalamic neurons (predominantly in the arcuate nucleus)

that express leptin receptors(82) and insulin recep-

tors(244–246) widely overlap. In these neurons, the signal-

ling pathways of leptin and insulin converge on PI3

kinase whose product, PIP3, regulates excitability of ATP-

dependent K (KATP) channels, thereby controlling food

intake, energy expenditure and glucose metabolism(247).

The activation of KATP channels results in hyperpolarisation

and thereby inactivation of glucose-responsive/insulin-

sensitive neurons. It has been shown that the inhibition

of PI3 kinase blocks the anorexigenic effects of both

leptin and insulin in rats(188). Insulin and leptin both

target arcuate nucleus NPY neurons, where PI3 kinase-

mediated signals seem to be shared and are common reg-

ulators in the two hormones’ activating effects(248). Insulin,

in interaction with serotonin and leptin, affects the activity

of POMC neurons, inducing a-MSH release, which leads to

a negative regulation of energy balance.

It has been reported that both ERa knock-out and

aromatase knock-out mice are obese(249,250), but ovari-

ectomised ERa knock-out mice display decreases in body

weight, fat-pad weight, adipocyte size and improved insu-

lin and glucose metabolism indicative of ERb-mediated

activity on adipose tissue which are opposite to those of

ERa(251). ERa plays a role in the development of hepatic

insulin sensitivity(252,253) since the absence of ERa in the

ventromedial nucleus leads to weight gain and insulin

resistance, adiposity, hyperphagia and hyperglycaemia(172).

It is well known that the insulin-activated GLUT-4 transpor-

ter is the main carrier for glucose into cells. In ERa knock-

out mice, the activity of these transporters is substantially

reduced; ERb knock-out mice do not show this

deficiency(254). Insulin–E2 interactions are also obvious

in certain physiological or pathological conditions, such

as pregnancy, menopause or diabetes. In pregnant rats,

sexual steroid levels are increased, resulting in elevated

insulin levels. Likewise, E2 administration in menopausal

women corrects insulin secretion and decreases insulin

resistance(255–257). Cellular investigations demonstrate that

ERa is also present in pancreatic b-cells, which is respon-

sible for the short-term insulinotropic effect of E2 via inhi-

bition of KATP channels.

V. Somogyi et al.142

N
u
tr
it
io
n
R
es
ea
rc
h
R
ev
ie
w
s



A hypothesis has arisen that partially explains the

synergistic interrelationship of insulin and T3 underlying

mechanisms involved in glucose and lipid metabolism.

According to this, T3 plays a more significant role in glu-

cose metabolism and regulation than previously thought.

T3 regulates glucose uptake, storage, glycolysis, as well

as lipid oxidation and uptake in insulin-sensitive cells.

Disturbances in T3 levels cause insulin resistance and

hyperglycaemia, which is indicative of its contribution to

deficiencies/pathogenesis leading to type 2 diabetes. T3

increases glucose uptake directly. Expression of (regulat-

ory) glucose transport proteins, such as GLUT-1, GLUT-2

and GLUT-4 are regulated by both insulin and T3. A

family of membrane-associated proteins regulated by T3,

named b3-adrenergic receptors, plays a role in NEFA

oxidation and insulin secretion. T3 and TAG in fat cells

regulate insulin secretion and insulin sensitivity by an as

yet unknown mechanism(258–266). Additionally, T3 regu-

lates the expression of transmembrane enzymes Kþ/Naþ

and Ca2þ ATP-ase, involved in driving membrane-bound

protein pumps, which transport molecules such as glucose

and amino acids into the cells(267). Thyroid hormones

reduce b-cell mass, the main source of insulin production,

although several studies have demonstrated that thyroid

hormones have cytotoxic effects on b-cells in vivo and

in vitro. In fact, thyroid hormones induce apoptotic cell

death in insulin-producing cells(268–272).

Interactions between oestrogen and thyroid hormones

Although clinical reports point to a relationship between

thyroid disorders and insulin sensitivity particularly preva-

lent in older populations of females more than males, the

mechanisms which link sex steroids, thyroid hormones

and metabolic homeostasis in both sexes are not well

known(273). In postmenopausal women receiving E2 treat-

ment, lower levels of free T3 and free T4 have been

observed although there was no rise in serum TSH(274).

Although E2 treatment did not alter the serum concen-

trations of TSH in euthyroid or untreated hypothyroid

rats, it increased the T3 effect in serum TSH in hypothyroid

rats. Oestrogen treatment increased thyroid hormone

receptor expression in the pituitary, suggesting that an

increase in thyroid receptors may be induced by E2 in

rats(275). During development, treatment with testosterone

and E2 had similar effects in both sexes, producing lower

levels of a and b subunit mRNA in exogenous sex ster-

oid-treated hypothyroid rats compared with hypothyroids

not receiving exogenous sex-steroid treatment. These

data suggest that gonadal steroids render the pituitary

thyrotroph cells more sensitive to thyroid hormones(276).

This mechanism between oestrogen receptor and thyroid

hormone receptor interaction will be explored further,

keeping in mind the relationship as it pertains to feeding,

appetite, metabolism and energy balance modulated by

sex hormones, particularly E2 in women.

Thyroid hormones affect reproductive behaviours of

both males and females in addition to playing a permissive

role in the photoperiodicity of both sexes(277–279). Both

thyroid hormones and sex steroids modulate metabolic

homeostasis and oxidative metabolism at the tissue level

via their respective non-genomic membrane and

genomic nuclear receptors, sometimes acting synergistically

between genomic and non-genomic mechanisms(280–286)

as described above. These mechanisms, in turn, feed

back into the regulation of the hypothalamo–pituitary–

adrenal axis, hypothalamo–pituitary–gonad axis, as well

as the ‘hypothalamus–gut’ circuits(287–289). Additionally,

thyroid hormones contribute to the maintenance of non-

reproductive conditions, homeostasis in both male and

female birds and mammals, for example, intracellular

sites of activity including mitochondria, endoplasmic reti-

culum, plasma membrane, synapse(124,290), lipogenesis,

lipolysis, thermogenesis, growth, development, differen-

tiation(124,291,292), mylenation of axons(293) via nuclear

recruitment of co-activators and co-repressors by ligand-

bound nuclear receptors(294). Mood and cognition in

women are also affected by E2 and thyroid hormones –

signals that underlie appetitive behaviour at converging

pathways in the hypothalamic nuclei, brain stem

and target organs of humoral and efferent

signals(283–285,287,295–297). Such mechanisms conduct

cross-talk among isoforms of nuclear oestrogen receptors

and thyroid hormone receptors in diverse tissues and in

terms of genomic expression(280,290,298–300). While it is

tempting to envision an overlapping function between oes-

trogen receptor and thyroid hormone receptor subtypes

and isoforms, different co-localisation studies indicate dis-

tinct non-overlapping functions(290). In support of this

idea, the phenotypes of the specific knock-out models

suggest functions unique to specific isoforms(294). On the

other hand, the modulation of the signals arising from E2

and thyroid hormones converging must influence under-

lying behaviour, such as appetite, feeding, homeostasis

and metabolism, concentrated in hypothalamic nuclei.

Two genes, Thra and Thrb, encode the mammalian

nuclear receptors for T3, confirming that T3 acts directly

on transcription. TRa1 (and TRa2)(291,300) is encoded by

the Thra gene, and TRb1 and TRb2 are encoded by the

Thrb gene; another TRb3 isoform that may be rat

specific(301). These receptors have a similar, if not identi-

cal, structure, containing a central DNA-binding domain

and a C-terminus domain, which activates transcription

upon ligand binding(302). Both oestrogen receptors and

thyroid hormone receptors are ligand-dependent nuclear

transcription factors that can bind to an identical half-

site, AGGTCA, of their cognate hormone response

elements, although generalisations of receptor cross-

activity are not easily made. For example, co-transfection

of a mutated TRa1 also inhibited the E2 effect without

binding to the AGGTCA sequence(303). Studies of inhibi-

tory effects of liganded TRa1 on E2 induction suggest
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that oestrogen receptors and thyroid hormone receptors

may interact to modulate E2-sensitive gene expression,

in a ligand-dependent and isoform-specific manner such

as for the hypothalamic preproenkephalin promoter(303).

However, in contrast to TRa, the isoforms TRb1 and

TRb2 failed to inhibit E2-induced activation of the consen-

sus ERE but, rather, attenuated E2-mediated transcriptional

activation(297). Thus, oestrogen receptor and thyroid

hormone receptor isoforms have modular protein struc-

tures with high homology in the central DNA-binding

domain where they bind common enhancer elements

(ERE) within the promoter sequence modulating gene

transcription(280,297,304–309).

Thyroid hormone receptors and oestrogen receptors are

members of the nuclear receptor superfamily, composed of

forty-eight ligand-activated Zn-finger transcription factors

involved in important physiological functions such as

metabolism and energy homeostasis, carbohydrate and

lipid metabolism in addition to development, reproduc-

tion, etc(304,305,310,311). Briefly, members of the superfamily

of nuclear receptors reside in either the cytoplasm or

nucleus of the cell. When ligands or small molecules

bind to the cytoplasmic nuclear receptor complex, it

undergoes conformational change, dimerisation and trans-

location to the nucleus where it binds to a sequence of

DNA called the hormone response element. There the

nuclear receptor complex then co-recruits or co-represses

other proteins downstream at the promoter site where tran-

scription factors are activated and changes in cell function

ensue.

Specifically, half of the T3 consensus response element

DNA sequence is identical to the oestrogen receptor

response element (ERE); therefore thyroid hormone

receptors bind to a consensus ERE(297,300,306,307,312) on sev-

eral receptor genes in the hypothalamus. Thyroid hor-

mone receptors and oestrogen receptors are both

present in rat hypothalamic nuclear extracts and bind to

the promoter regions in the hypothalamic gene preproen-

kephalin, causing interations between liganded thyroid

hormone receptors and oestrogen receptors that affect

preproenkephalin transcription(296,312). Likewise, the oxy-

tocin gene promoter has a composite hormone response

element to which several members of this superfamily of

nuclear receptors can bind to whereby thyroid hormones

interfere with E2-stimulated oxytocin mRNA reducing E2-

stimulated behaviour(300,307). The ERE identified in the

promoter region of the progesterone receptor is also

bound by thyroid hormone receptors(297). Progesterone,

important in reproductive behaviour, correlates with a

rise in appetite in cycling women(313). Thus, since T3

may reduce E2-dependent sexual behaviour through inter-

actions between thyroid hormone receptors and oestro-

gen receptors in the nuclei of hypothalamic neurons

which underlie sexual behaviour(303), their interaction

may modulate eating behaviour in women throughout

the cycle by acting at the nuclear receptor superfamily

concensus ERE as outlined above. Indeed, cursory

searches for feeding and oestrogen receptors, thyroid

hormone receptors, progesterone receptor, oxytocin and

preproenkephalin return hundreds of papers altogether

on feeding and each of the factors referred to above.

Over the past 30 years much has been explored on

the interaction of thyroid hormones and E2 at regions

of DNA co-activating and co-repressing genomic

expression(314) and the non-genomic membrane-initiated

molecular mechanisms of hormone signalling(309), i.e. the

cross-talk that produces a synergy between activation and

repression of genomic and non-genomic mechanisms(310).

Using a reproductive behavioural assay of rats, i.e. lordosis,

it has been shown that sex hormone-dependent hypothala-

mic gene expression and behaviour are influenced by

synaptic inputs which interfere with oestrogen receptor-

dependent neuroendocrine function and behaviour(314).

For example, the two different genes that code for TRa1

and TRb have opposite effects on female sexual beha-

viours(290,308), whereas hypothalamic neurons that express

E2-sensitive genes, for example, the preproenkephalin

promoter, are inhibited by TRa1 in the ventromedial hypo-

thalamus (VMH) but not the amygdala or caudate/

putamen(303,307,310). High doses of thyroid hormones

reduce lordosis behaviour of ovariectomised E2-treated

female mice(315) but in total pituitary RNA levels, depen-

dent upon new protein synthesis, E2 induced increases

while T3 inhibited E2 induction(316). Studies of sex speci-

ficity between E2 and thyroid hormones in the regulation

of pituitary function found that pituitary weight and

total cellular RNA levels were significantly decreased fol-

lowing ovariectomy in females but increased following

gonadectomy in males without changes in pituitary DNA

levels compared with intact rats. Oestrogen treatment pro-

duced a significant increase in pituitary RNA in ovari-

ectomised females but not gonadectomised males,

although concomitant administration of T3 blocked the

increase in pituitary RNA in females(314). In contrast,

thyroid hormone inhibited ERa proteolysis in pituitary

lactotropes, did not prevent induction of prolactin gene

expression or proliferation and inhibited the ERE reporter

gene, suggesting that other endocrine factors can indirectly

modulate ERa activity(316).

Thyroid hormone receptor is known to bind an ERE

which inhibits E2-dependent transactivation(317). Areas of

the brain involved in reproductive functions and behaviour

may play a role in other appetitive behaviours such as

appetite and food seeking, namely the olfactory bulb, hip-

pocampus and granular layer of the cerebellar cortex,

where TRa1 and TRa2 transcript levels are highest.

Feedback mechanisms common to reproduction and

feeding/appetitive/energy homeostasis occur in hypo-

thalamic nuclei. For example, such mechanisms exist

in the paraventricular nuclei with hypophysiotrophic

neurons projecting to the median eminence, and pre-

autonomic neurons controlling autonomic projections to
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the liver(287,293,318,319), arcuate nucleus(283,297), supraoptic

nucleus particularly the TRa(317,320), and adrenal afferents

to the brainstem and suprachiasmatic nucleus via separate

sympathetic and parasympathetic neuron populations(319).

In addition, cross-talk between E2 and thyroid hormones

modulates the activity in the hippocampus and amygdala

contributing to cognition and mood, triggers for emotional

eating in women(282).

Nuclear receptors such as oestrogen receptors and

thyroid hormone receptors bind low-molecular-weight

ligands of E2, selective oestrogen response modulators,

T3 and T4
(278,321), where they co-activate and co-

repress transcription factors at targeted genomic

regions(286,304,305,321–323). However, E2 and thyroid

hormones also bind to plasma membrane receptor sites

initiating non-genomic, ion and intracellular Ca2þ chan-

nels, and G-protein-coupled secondary messenger

cascades discussed above(177,281,282,309,310,324). Future

investigation into the regulation of metabolic homeostasis

between the central nervous system and peripheral tissue

may incorporate genomic analysis of the superfamily of

nuclear receptors (oestrogen receptors and thyroid

hormone receptors) in concert with the neuromodulatory

factors outlined above.

Conclusion

The goal of the present review was to highlight the role of

the complex hormonal interplay in the regulation of food

intake and energy homeostasis. The hormones discussed

in the present review are crucial in the regulation of food

intake and energy homeostasis in that they play the most

significant roles in the function of relevant central, mostly

hypothalamic, circuits. However, they also act as the per-

ipheral signals/mediators of peripheral tissues to inform

hypothalamic circuits of the real-time status of the body’s

constituent energy level. Thus, it appears that ghrelin,

leptin, thyroid hormones, insulin and E2 form a ‘second

zone’ in the modulation of energy homeostasis (Fig. 1).

This second zone lies between the central ‘hotspot’ of

hypothalamic circuits and the peripheral tissues. The per-

ipheral tissues, as appears from our review, represent a

third, ‘outer ring/zone’ in this respect, where local inter-

actions take place between the discussed hormones, on

the one hand, and between the respective tissues and the

trophic hormones, on the other hand. The apparent integ-

rity of the discussed regulatory mechanisms suggests that

the interpretation of hormonal effects alone or in simple

combinations is not sufficient to understand their true

nature, as both individual (feedback signals) and combined

effects are necessary in the complex orchestration of

energy homeostasis, including the regulation of food

intake and energy expenditure. In other words, it seems

most likely that the discussed hormones act as feedback

signals, functioning as individual hormone signals, while

their interactive effects propel and shape the bidirectional

message between the central nervous system and the

periphery. Our summary, therefore, points to the need

for studies involving thorough, multifactorial investigation

of the topic, including the analysis of simultaneous

changes in the aforementioned variables from the central

nervous system, as well as peripheral tissues of the exper-

imental subjects.
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