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Abstract

The relation of the fundamental structure models is discussed. Their
common intersection is provided by the U(3) dynamical symmetry for the
single shell problem, and by the multiconfigurational dynamical symme-
try (MUSY) of group structure Us(3) ⊗ Ue(3) ⊃ U(3) ⊃ SU(3) ⊃ SO(3)
for the major-shell-excitation. Both of them show dual breaking: U(3) and
SU(3) of the total Hamiltonian are dynamically broken, while SO(3) of
the intrinsic Hamiltonian is spontaneously broken, resulting in deformed
shape. MUSY has a composite nature: a simple dynamical symmetry is
present in each configuration, and a further symmetry transforms them into
each other. Together with the antisymmetrization it can completely wash
out the difference between the model pictures, thus occasionally cluster and
shell wavefunctions can be identical.
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1 Introduction
The fundamental models of nuclear structure are based on different physical
pictures. In the shell model we think the nucleus like a small atom, and the
relevant degrees of freedom are those of the nucleons. The collective model
treats it as a microscopic liquid drop, and applies shape parameters. The cluster
model says it is similar to a molecule, and the important dynamics is the relative
motion of the clusters. Due to this big variety, it is an interesting and important
question, how these models are related to each other, and what is their common
intersection, if there is any.

The basic answer was obtained in 1958 [1–3]. In the present day language
we can say that the U(3) ⊃ SU(3) ⊃ SO(3) dynamical symmetry was found to
be the common intersection of the three models for a single-shell problem.

As for the multi-shell problem, no concise answer was available for a long
time, in spite of the much valuable contribution from various approaches.
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Here we present a symmetry-based connection among these fundamental
structure models for the multi-major-shell case, which is an extension of the
U(3)-relation from 1958. It is called multiconfigurational dynamical symmetry,
and it is based on the algebraic structure of the chain Us(3) ⊗ Ue(3) ⊃ U(3) ⊃
SU(3) ⊃ SO(3).

In what follows, first (in Section 2) we recall some basic features of the
development in 1958, and pay special attention to the relation of the shapes and
symmetries (even if some aspects were revealed by later studies). Section 3
introduces MUSY, and presents its basic characteristics. Finally (in Section 4) a
brief summary is given, and some conclusions are drawn.

2 The 1958 connection

2.1 Basic relations
Elliott invented a spherical shell model [1] with harmonic oscillator potential
and quadrupole residual interaction of the nucleons:

H = HHO + χQQ, (1)

where Q is the sum of the nucleon quadrupole moments. This equation can be
rewritten in an algebraic form:

H = C
(1)
U3 + αC

(2)
SU3 + βC

(2)
SO3, (2)

where C(i) is the invariant operator of degree i of the algebra indicated in the
subscript. Since it is expressed in terms of Casimir operators of a single algebra-
chain

U(3) ⊃ SU(3) ⊃ SO(3) ⊃ SO(2) (3)
[n1, n2, n3] , (λ, µ),K, L, M.

its eigenvalue-problem has an analytical solution. This situation is called (bro-
ken) dynamical symmetry, and it plays important role in many algebraic models.
(Here we have indicated also the representation labels.) The spin-isospin sector
of the model space can be described by Wigner’s supermultiplet theory [4] of
UST(3) ⊃ US(2)⊗ UT(2), group structure.

Elliott showed that the quadrupole shape of the nucleus is determined by the
(λ, µ) SU(3) quantum numbers. E.g. (0, 0) is spherical (λ, 0) is prolate (0, µ)
is oblate, and in general (λ, µ) has a triaxial shape. He also revealed that a
rotational band is characterised by a well-defined SU(3) symmetry.

In the same year Wildermuth and Kanellopoulos showed [2] that the Hamil-
tonian of the shell model can be rewritten exactly into that of the cluster model
in the harmonic oscillator approximation

HSM = HCM . (4)
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This relation builds up, of course, a very close connection between the wave-
functions of the two models, too. In particular, a cluster model state is obtained
as a linear combination of those shell model basis states that belong to the same
energy.

Bayman and Bohr succeeded to reinterpret the cluster-shell [3] connection
in terms of the U(3) symmetry. Therefore, in 1958 specific collective and cluster
bands could be picked up from the see of the shell model states by their well-
defined SU(3) symmetries.

This beautiful connection of the fundamental structure models was found for
a single major-shell problem.

2.2 Shape and symmetry
The quantitative relation by which the SU(3) symmetry determines the quadrupole
deformation is [5, 6]:

β2 =
16π

5N2
0

(λ2 + µ2 + λµ), γ = arctan

( √
3µ

2λ+ µ

)
. (5)

HereN0 is the number of oscillator quanta, including the zero point contribution:
N0 = n+(A−1) 32 , n is the sum of the U(3) quantum numbers: n = n1+n2+
n3, and A is the mass number of the nucleus.

The deformation of the nuclear ground state is an example of the sponta-
neous symmetry breaking. Simply speaking a symmetry is spontaneously bro-
ken, if the Hamiltonian shows the symmetry, but the ground state of the system
does not. This is a typical case with the rotational symmetry in nuclei. The
phenomenon has been discussed both in the mean-field approach [7, 8], and
in the interacting boson model [9, 10]. Interestingly enough, however, it was
not addressed within the framework of the Elliott model until recently. This is
somewhat surprising, considering the fact that it was the first model to connect
the quadrupole deformation (and the collective rotation) to the spherical shell
model, and it is also the prototype of the algebraic structure models. In fact it
offers a very simple and transparent way [11] for the illustration of the sponta-
neous breaking.

The model Hamiltonian of Eq. (2) can be split up exactly into an intrinsic
(i.e. fast) and collective (i.e. slow) parts:

H = Hintr +Hcoll, Hintr = C
(1)
U3 + αC

(2)
SU3, Hcoll = βC

(2)
SO3. (6)

Hintr determines the energy of the band-heads, and Hcoll = βLL splits up
the bands. Not only the total H , but also Hintr is rotationally invariant, yet
the intrinsic shape of the nucleus may be deformed, as a result of the sponta-
neous breaking in the eigenvalue-problem of Hintr. It happens when the ground
state of Hintr is degenerate, i.e. more than one state has the same energy. The
spurious excitation between these degenerate states correspond to the Goldstone
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bosons [11], which appear, when a continuous global symmetry is spontaneously
broken [12].

The same kind of spontaneous breaking takes place in many other algebraic
structure models; some of them are direct extensions of the Elliott model [11].

The scenario we have observed here is a typical one for the spontaneous
symmetry breaking, not only in nuclear physics [13]. In particular:

1. The Hamiltonian is separated into a fast and slow parts.
2. The symmetry of the fast part breaks spontaneously, when there is a de-
generecy.
3. The symmetry recovers when all the degrees of freedom are taken into ac-
count, i.e. the complete Hamiltonian is considered.

In light of the previous paragraphs we can say that in the Elliott model a dual
symmetry breaking shows up. The U(3) and SU(3) symmetries are dynamically
broken by the interactions expressed in terms of the invariants of their subal-
gebras (i.e. SU(3) and SO(3)), while the rotational symmetry is spontaneously
broken in the eigenvalue problem of the intrinsic part of the Hamiltonian. This
kind of dual symmetry breaking is also typical in algebraic models of nuclear
structure [14].

3 Multi-shell connection: MUSY
For the multi-shell problem the connecting symmetry is characterized by the
group-chain:

Us(3) ⊗ Ue(3) ⊃ U(3) ⊃ SU(3) ⊃ SO(3) (7)
|[ns1, ns2, ns3] , [ne1, n

e
2, n

e
3], ρ, [n1, n2, n3], (λ, µ),K, L〉.

One arrives at this structure by investigating the algebraic models of the multi-
shell problem from the shell, collective and cluster sides, as shown below.

This symmetry is a composite symmetry in the sense that each configuration
has a simple U(3) dynamical symmetry, and there is a further symmetry con-
necting the configurations to each other. The logical structure is similar to that
of the dynamical supersymmetry (SUSY) of nuclear physics. In the SUSY case
a system is considered, which has a bosonic and a fermionic sector, each of them
equipped with a dynamical symmetry, and the supertransformations connect the
two sectors.

3.1 Shell model
From the shell model perspective a successful extension of the Elliott model is
the symplectic model [15, 16]. It includes major shell excitations of 2 oscillator
quanta, connecting shells of the same parity. Many physical phenomena requires
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shell excitation, e.g. the calculation of the E2 transitions. In the Elliott model it
is described by applying an effective charge, i.e. a phenomenological parameter.
The description with real electric charges requires shell excitations. This model
has a symplectic group-structure, together with its subgroups:

Sp(6,R) ⊃ U(3) ⊃ SU(3) ⊃ SO(3) (8)
|[ns1, ns2, ns3], [ne1, ne2, ne3], ρ, [n1, n2, n3], (λ, µ),K, L〉.

Here [ns1, n
s
2, n

s
3] denotes the symplectic bandhead, which is a U(3) irrep, be-

ing a lowest-weight Sp(6,R) state. [ne1, n
e
2, n

e
3] corresponds to the major-shell

excitations. Please, note that the basis states are characterized by the irreps of
group-chain (7). The symplectic model is a multi-major-shell extension of the
Elliott model on one hand, and it is a microscopic collective model on the other
hand, including collective rotation and vibration.

3.2 Collective model
The symplectic model has a simplified version, called contracted symplectic
model [17, 18]. From the mathematical viewpoint it is simpler, because it has
a compact algebraic structure of Us(3) ⊗ Ub(6) (as opposed to the noncompact
Sp(6,R)), and an orthonormal set of basis:

Us(3)⊗Ue(6) ⊃ Us(3)⊗Ue(3) ⊃ U(3) ⊃ SU(3) ⊃ SO(3), (9)

including the Us(3) ⊗ Ue(3) ⊃ U(3) ⊃ SU(3) ⊃ SO(3) part again. Physi-
cally the simplification is due to the bosonization, not fully including the Pauli
principle. This model is an algebraic model of collective motion for a multi-
major-shell problem.

3.3 Cluster model
As for the clusterization is concerned, the relevant approach for revealing the
connection to other structure models needs to be algebraic and (semi)microscopic.
The algebraic nature is obvious from the U(3)-connection of the single-shell
problem. The U(3) symmetry has been around in cluster studies from 1958, but
only for the basis states. The fully algebraic description started in 1981, when
Iachello invented the vibron model of U(4) group structure for dipole degrees of
freedom [19]. This is what we need for the treatment of the relative motion of
the clusters. Fully algebraic model means that not only the basis states, but also
the physical operators carry group symmetries, like in the Elliott model e.g.

The microscopic nature is required for the model space, i.e. it has to appre-
ciate the Pauli-principle. From the phenomenological viewpoint the shell and
cluster configurations are orthogonal to each other, therefore, this approach is
not suitable for the study of their relation.
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The semimicroscopic algebraic cluster model (SACM) [20, 21] combines a
fully microscopic model space with a fully algebraic description. It describes the
internal structure of the clusters by the Elliott model, and their relative motion by
the vibron model, which is modified in order to incorporate the Pauli principle.
A binary cluster configuration has a group structure of

UC1
(3)⊗UC2

(3)⊗ UR(4) ⊃ UC(3) ⊗UR(3) ⊃
U(3) ⊃ SU(3) ⊃ SO(3), (10)

where C1, and C2 stand for individual clusters, C is for their coupled structure,
and R indicates relative motion. Please, note again the presence of the group-
chain (7).

In the models of the last three subsections we were dealing only with the
space degrees of freedom, and did not discuss the spin-isospin sector. It can be
described in each case by Wigner’s supermultiplet theory of UST(4) ⊃ US(2)⊗
UT(2), just like in the Elliott model. The antisymmetric requirement of the
total wavefunction puts a constraint on the relation between the irreducible rep-
resentation of UST(4) and U(3), which is taken into account in each major shell
separately, and then they are combined [22].

3.4 Connecting symmetry: MUSY
As the preceding subsections have shown it, the group-chain (7) provides us
with a common classification scheme for the shell, collective and cluster models.
The states are specified by the labels of irreducible representations of the same
groups, the difference between them is the set of specific quantum numbers. This
unified multiplet structure of the three models is the first pillar of MUSY [22].

It also needs a second one, i.e. transformations which take the different
configurations into each other. In order to find them we need to consider another
classification scheme. The one which has lead to chain (7) is based on the shell
scheme in the sense that the model space is constructed in each major shell
separately, and then they are combined. On the other hand the transformation
from e.g. a shell configuration to a cluster one or vice versa, or between different
clusterizations, requires the redistribution of the nucleons in the pseudo space of
the particle indices. Such a scheme, that deals with the particles democratically,
independent of their shell-association, have been worked out by Kramer and
Moshinsky [23].

They have considered the problem of n nucleons in the 3 dimensional har-
monic oscillator potential. This system has an U(3n) symmetry group, and its
subgroups: U(3) in the real space and U(n) in the particle index space U(3n) ⊃
U(3)⊗ U(n). The generators of these groups are the number conserving bilinear
products of the oscillator quantum creation and annihilation operators. In par-
ticular, there are 3nx3n of them for U(3n), 3x3 for U(3) and nxn for U(n). The
generators of the subgroups are obtained from those of U(3n) by contraction,
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i.e. summing up according to the particle indices for U(3), and according to the
space indices for U(n) [22, 23].

This classification scheme guides us in building up our formalism is such
a way that it can be invariant with respect to the transformations in the pseudo
space of particle indices. In particular, if we apply physical operators, which are
expressed in terms of the generators of U(3) and its subgroups: U(3) ⊃ SU(3)
⊃ SO(3), i.e. they are contracted with respect to the particle indices, then the
system is invariant with respect to the transformations from one configuration to
another. This set of transformation is the second pillar of MUSY.

A simple dynamically symmetric Hamiltonian characterized by this group-
chain can describe the spectra of different configurations (obtained from differ-
ent reactions) in a unified way [24], in spite of the fact that they are distributed
in a large range of excitation energy and deformation. Occasionally even the
prediction of the high-lying cluster spectra from the description of the well-
established low-lying quartet (shell) spectrum is possible.

The spin-isospin degrees of freedom are handled in the particle scheme again
in terms of Wigner’s UST(4) ⊃ US(2) ⊗ UT(2), symmetry, which is obtained
in this case by the contraction of the U(4n) total symmetry group. And the
total antisymmetry requirement is formulated by the relation of the permutation
groups of S(n), which are contained in the subgroup-chain of the U(n) particle
symmetry groups both in the space and in the spin-isospin parts [22, 23].

MUSY, as it is presented here, is a result of a multi step evolution. First it was
invented for connecting different cluster configurations [25]. Therefore, it was
also called multichannel dynamical symmetry, referring to the reaction chan-
nels that define the cluster configurations. The connection between the different
configurations was found on the basis of wavefunction and energy eigenvalue
arguments. The explicit transformations between the different configurations
was established first for the case of two binary cluster configurations (in terms
of Talmi-Moshinsky transformations) [26]. Then it was realized that the quartet
configuration in particular, and the shell configuration in general [27], has a re-
lation to the cluster configurations, which is similar to the one existing among
them [28]. The present formulation of MUSY is a general one, incorporating
any shell or cluster configuration.

3.5 Cluster-shell duality
The cluster–shell duality is a historical and evergreen problem in structure stud-
ies. MUSY has some interesting contribution to this topic. The fact that shell
and various cluster configurations can be identical with each other, as a con-
sequence of the antisymmetrization, have been known for a long time. So far,
however, it was discussed mainly in the low-energy region. MUSY-based stud-
ies, which apply large model space revealed several examples, when the quartet
(shell) configuration has a 100% overlap with several cluster configurations.

Especially remarkable are the cases of shape isomers. In particular, they
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Figure 1: Cluster-shell duality in 28Si. The quantum numbers in parenthesis are
the U(3) labels, while the first integer shows the major shell excitation quanta.

correspond to extremely deformed shapes, where the U(3) symmetry is very sta-
ble [29]; sometimes even more than in the ground state. These special shell
configurations usually have a single multiplicity, therefore, in the expansion of
the cluster wavefunction only a single term appears, i.e. the two wavefunctions
are identical. If it happens with several cluster configurations, they are also iden-
tical. In spite of the very different physical picture behind the shell and cluster
model their states may have 100% overlap, as a consequence of the antisym-
metrization.

Figure 1 shows an illustrative example. Strongly deformed states of the 28Si
nucleus are displayed with 0, 1, 2, and 4 excitation quanta. The latter one is the
newly predicted [30] and observed [31] superdeformed state.

4 Summary and conclusions
In this contribution I introduced the multiconfigurational dynamical symmetry,
which is the common intersection of the shell, collective and cluster models for
the multi-major-shell problem. It is a composite symmetry in the sense that
each configuration has a simple dynamical symmetry, and a further symmetry
connects the configurations.

The previous one is a direct extension of the U(3) symmetry of the Elliott
model: Us(3) ⊗ Ue(3) ⊃ U(3) ⊃ SU(3) ⊃ SO(3), found in the symplectic,
contracted symplectic, and semimicroscopic algebraic cluster models. The rep-
resentation labels of these groups provide us with a unified classification scheme
of the shell, collective and cluster multiplets. The second symmetry, connecting
the configurations, is the invariance with respect to the transformations in he
pseudo space of the particle indices.

Due to the fact that MUSY connects the fundamental structure models, it
is able to describe spectra of different configurations (from different reactions)
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distributed in a large range of excitation energy and deformation in a unified
way. It may be ale to give occasionally interesting predictions, some of which
have already been approved by experimental observation [24, 32].

Not only the energy spectrum can be calculated from MUSY, but a new
method for the determination of the shape isomers was also found, which is
based on the stability and selfconsistency study of the connecting U(3) symme-
try [32].

MUSY shows a dual symmetry breaking, similarly to the Elliott model: the
U(3) and SU(3) symmetries are dynamically broken by some interactions ex-
pressed in terms of the invariant operators of their subgroups. On the other hand
SO(3) is spontaneously broken in the eigenvalue problem of the intrinsic Hamil-
tonian, resulting in deformed shape. The deformed shapes look different from
the shell and cluster perspectives, but sometimes the antisymmetrization may
result in a complete overlap of their wavefunctions.

Some of the early applications of MUSY seem to suggest that this interesting
symmetry is realized in some nuclei, nevertheless, it is still an open question, in
which territory and to what extent is it a good approximation.
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