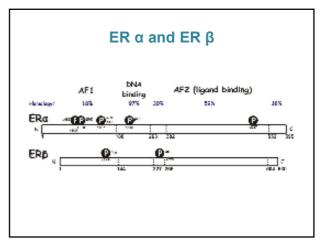

SZENT ISTVÁN UNIVERSITY FACULTY OF VETERINARY MEDICINE

Estrogen and Thyroid Hormone Receptors and their Interaction

Lior Kerner Budapest, 2012

Nuclear Receptors

- What are Nuclear Receptors?
 - $_{\odot}$ Proteins located inside cells
 - $_{\odot}$ Bind Response Elements on DNA
 - $_{\odot}$ Regulate transcription
 - \circ Modulated by binding of ligands
 - · Lipophilic endogenous hormones
 - · Fat soluble vitamins



Estrogen Hormone Receptor

- A receptor molecule that could bind 17 βestradiol.
- Initially discovered in 1958 (Jensen and Jacobsen)
- A second receptor was discovered in 1966 $_{\odot}$ ER α
 - o ER β

ER α and ER β

- High degree of similarity in their DBD
- Moderate degree of similarity in their LBD
- Poorly homologous in their N terminus
 - \circ ER β has a weaker AF-1 related function
 - $_{\odot}$ Depends more on ligand dependent $\mbox{AF-2}$

ERβ Expression in Normal and Tumoral Canine Mammary Glands (*De Las Mulas, et al., 2004*)

- 35 tumoral lesion were collected from 28 female dogs.
- Compared with non altered mammary tissues taken from healthy glands.
- The type of tumor was histologically evaluated.
- The tumors were qualitatively and quantitatively analyzed for detection of the β isoform.

ERβ Expression in Normal and Tumoral Canine Mammary Glands

• Expression in benign canine mammary tumors:

Type of tensor	Total number	Entroped Receptor () Practice	SS of the second second
Distances	1	1	0
compos casibeno	1	15	-
Complex adecome	1	1	100
terig-nicolume	2	L.	1044
Total	5	3 (6058)	67

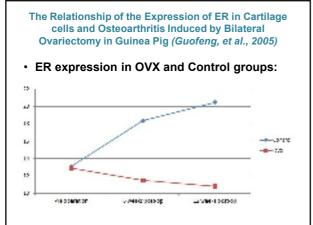
ERβ Expression in Normal and Tumoral Canine Mammary Glands

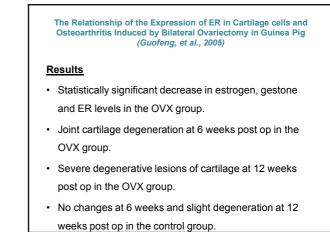
· Expression in malignant canine mammary tumors:

TABLE OF LIDEOR	Todal number	Ortingen Decentor N Positze	Sof sur a did soo
onpos envirante	9	1	57
Simple curvinome	12	2	100
Оканооколи	;	0	
CNST	9	1	(re)
Foral	10	8 (22%)	87.5

ERβ Expression in Normal and Tumoral Canine Mammary Glands

- The results suggest that ERβ positive tumors are more frequently benign.
- Additionally, malignant ER β positive tumors are more frequently complex/mixed than simple.

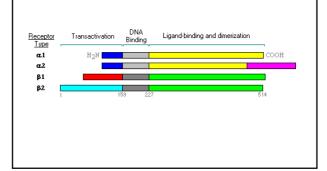

The Relationship of the Expression of ER in Cartilage cells and Osteoarthritis Induced by Bilateral Ovariectomy in Guinea Pig (*Guofeng, et al., 2005*)


- 30 two month old female guinea pigs divided into two 15 member groups.
- First group underwent Overiectomy (OVX group) while the other served as the control group.
- Measurement of serum estrogen, ER expression, along with SEM and TEM.

The Relationship of the Expression of ER in Cartilage cells and Osteoarthritis Induced by Bilateral Ovariectomy in Guinea Pig (*Guofeng, et al., 2005*)

• The serum levels of estrogen, gestone and ER:

	Curre	Field settline	GMMER 201 01	Turning the second of
Fainger (agi 1	Ontel OVX	815-51 55 - 44	113-35	7 7 - 115 128 - 75
	Control	2.78 1.2	4.53 0.35	4.19 0.19
Grades (QpL)	09X	328 6.8	2.45 0.57	2.53 0.39
TR (Trailingprovid)	Constrait OV S	1111123	2011 - 101	70 4 1 4



Thyroid Hormone Receptor

- A receptor which binds T3 was discovered in 1972.
- Main Isoforms: TRα1, TRβ1 and TRβ1
- Share a homologous amino acid sequence with steroid hormone receptors, despite having a structurally different ligand.
- Isoforms generally show a high DBD and LBD homology but low amino terminal homology.

Thyroid Hormone Receptor Isoforms

Thyroid Hormone Resistance and TR β Mutation (Adams, et al., 1994)

- 20 Patients with generalized- and 9 patients with pituitary resistance to TH were analyzed.
- All were affected by a mutation of the TR β gene.
- No association established between type or site of mutation and clinical signs.
- · Significance?

Link between Alteration of TR Expression and Human Breast Cancer (*Silva, et al., 2002*)

- A series of samples of tumoral and control tissues from 70 patients analyzed by RT-PCR.
- · Samples found to contain alterations were subsequently sequenced.

	Number of samples showing alteration	Percentage of total samples
TRa1	6	8.57%
TRβ1	4	5.71%
$TR\alpha 1 + TR\beta 1$	2	2.86%
Truncated TRβ1 RNA	6	8.57%
TRβ2	0	0.00%

Lordosis behavior, TR and ER (Morgan, et al., 2000)

 Testing the effect of thyroid hormones on estrogen induced lordosis in mice.

Lordosis behavio	or, TR and ER (Morgan, First experiment	et al., 2000)
OVX, n=56	Estradiol benzoate implant	Vehicle
Daily T4 injection (20 μg)	EB + T4(high)	T4(high)
Vehicle	EB	Veh
OVX/TX, n=58	Estradiol benzoate implant	Vehicle
Daily T4 injection (5 µg)	EB + T4(low)	T4(low)
Vehicle	EB	Veh

Lordosis behavior, TR and ER (Morgan, et al., 2000) Second experiment

 Aimed to assess whether a T4 pretreatment will produce a more pronounced and rapid onset of suppression of lordosis.

	pellet
T4 Implant EB	EB + T4

Lordosis behavior, TR and ER (Morgan, et al., 2000)

Behavioral test

- Females placed with males
- LQ = Receptive responses/number of mounts x 100
- LS = Total value of receptive responses/number of mounts.
- · Value of receptive response:
 - 0: Female did not stop moving during mounting
 - I: Female paused and allowed for mounting, but ended interaction afterwards
 - $\,\circ\,$ 2: Female froze in lordosis posture until dismounting of male.

Lordosis behavior, TR and ER (Morgan, et al., 2000)

Results

- First experiment
 - OVX mice: suppression of lordosis in EB+T4(high) group only by test day 4.
 - OVX/TX mice: no significant difference between groups.
- · Second experiment:
 - $\,\circ\,$ Suppression of lordosis in EB+T4 group by test day 2

Lordosis behavior, TR and ER (Morgan, et al., 2000) Conclusions

Increased levels of T4 result in suppression of estrogen mediated sexual behavior in

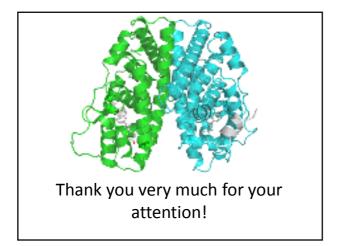
- female mice.
- Pre treatment speeds up the initiation of this suppression, when compared to the non pretreated group.

Thyroid- and Estrogen Mediated Response in Neuroblastoma Cells (Zhao, et al., 2005)

- Previous studies:
 - Non genomic EH membrane actions could potentiate transcription from an ERE in neuroblastoma cells. (Vaseudevan, et al., 2001)
 - T4 application increased cell proliferation in MCF 7 breast carcinoma cells, mimicking estradiol.
 (*Tang, et al., 2004*)

Thyroid- and Estrogen Mediated Response in Neuroblastoma Cells (Zhao, et al., 2005)

- Can non genomic TH potentiate transcription by 17βestradiol from a consesus ERE in neuroblastoma cells?
- Cell were transfected with TRα1 or TRα2 and with ERα to allow for the respective hormone activities.
- A "two pulse paradigm" of T3 and 17β-estradiol preperations, or two 17β-estradiol preperations was used to mimic the hypothesized non genomic potentiation.


Thyroid- and Estrogen Mediated Response in Neuroblastoma Cells (Zhao, et al., 2005)

Results

- Both T3 and 17β-estradiol were able to potentiate ER mediated transcription from a consensus ERE, by using the "two pulse paradigm".
- Neither T3, nor 17β-estradiol had any effect on transcription when given in a single pulse.

Acknowledgments

I would like to thank the Department of Physiology in the Faculty of Veterinary Medicine of Szent István University, and especially Dr. Győrffy Andrea, for allowing me to-, and assisting me with writing my thesis in their department.

