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Abstract: Graphene-covered silver nanoparticles were prepared directly on highly oriented pyrolytic
graphite substrates and characterized by atomic force microscopy. UV–Vis reflectance spectroscopy
was used to measure the shift in the local surface plasmon resonance (LSPR) upon exposure to acetone,
ethanol, 2-propanol, toluene, and water vapor. The optical responses were found to be substance-
specific, as also demonstrated by principal component analysis. Point defects were introduced in the
structure of the graphene overlayer by O2 plasma. The LSPR was affected by the plasma treatment,
but it was completely recovered using subsequent annealing. It was found that the presence of defects
increased the response for toluene and water while decreasing it for acetone.

Keywords: silver nanoparticles; graphene coating; LSPR-based sensing; VOC detection

1. Introduction

Noble metal nanoparticles (NPs) are widely used for chemical and biological sensing
because of their local surface plasmon resonance (LSPR) [1,2] and surface-enhanced Raman
scattering (SERS) [3,4] properties. The LSPR produces sharp spectral absorption, which can
be used to detect changes in the molecular environment near the surfaces of NPs by spectral
shift detection [5–7]. Due to their enhanced interaction with light, gold (Au) and silver (Ag)
nanoparticles have been intensively studied as promising plasmonic sensing systems [8–14].
Their LSPR can be tuned by adjusting the size, shape, dispersion, and uniformity of the
NPs, as well as the dielectric constant of the detection medium [15–23]. Ag nanostructures
are often considered the best material for plasmonics, as there are no interband absorptions
and only minimum loss at optical frequencies [24]. They have an inherently more intensive
and sharper plasmonic spectrum than Au nanoparticles, enabling them to offer superior
sensing functionality. Silver, however, has poor stability under ambient conditions and
forms silver sulfide on its surface. This causes morphological changes in Ag NPs and a
significant decrease in the optical properties [25]. Conserving the high LSPR intensity is
critically important in potential sensor applications. A common method to protect Ag
NPs from environmental effects is to form core–shell structures where the Ag surface is
passivated with either organic or inorganic shells (for recent reviews, see Refs. [26,27]).
Graphene, as an atomically thin material with very low permeability [28–30], seems to be
an ideal passivating coating to prevent the surface oxidation of Ag films and NPs [25,31,32].
It was demonstrated that graphene can improve the sensitivity of silver-based LSPR sensors
and delay the oxidation process of Ag NPs effectively [33–36]. Nevertheless, it was also
shown that oxygen can penetrate through the defects and grain boundaries of large-area
graphene grown by chemical vapor deposition (CVD) [37].

The synthesis of Ag NPs can be accomplished using a variety of strategies [38] depend-
ing on the desired shape of the nanoparticles. Chemical reduction in a bottom-up approach
is the most used method. Many factors influence the size and shape of the produced Ag
NPs, including temperature, silver precursor concentration, the strength of the chemical
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interaction between the capping agent and the different silver crystallographic planes [39],
and so on. In this work, we fabricate Ag NPs and graphene–silver nanoparticle hybrids
directly on highly oriented pyrolytic graphite (HOPG) substrates using a straightforward
approach described earlier [40]. Scanning electron microscopy (SEM), atomic force mi-
croscopy (AFM), and UV–Vis reflectance spectroscopy are used, respectively, to investigate
the morphology, optical, and vapor sensing properties of the hybrid nanomaterial. We
show that graphene-covered Ag NP samples display a pronounced optical response upon
exposure to organic vapors (acetone, ethanol, 2-propanol, toluene, or water), which can be
observed in the shift in the LSPR. This optical response to the volatile organic compounds
(VOC) is proportional to the vapor concentration and is substance-specific. Furthermore,
we show that the optical response can be tuned by introducing point defects into the
structure of the graphene overlayer.

2. Experimental
2.1. Preparation of Graphene-Covered Silver Nanoparticles

Silver films of 7 nm nominal thickness were evaporated onto HOPG substrates at
a background pressure of 5 × 10−7 mbar and an evaporation rate of 0.1 nm s−1. The
deposited Ag films were covered with CVD graphene grown on copper foil (Graphenea),
immediately after the opening of the evaporation chamber. We applied polymer tape as
mechanical support to transfer large-area graphene samples. The copper foil was removed
using an etchant composed of copper (II) chloride aqueous solution (20%) and hydrochloric
acid (37%) in a 4:1 volume ratio. After rinsing and drying, the polymer tape with the
graphene was pressed onto the evaporated Ag films. The tape was removed by lifting it
with tweezers. To form nanoparticles, both bare and graphene-covered Ag thin films were
annealed at 400 ◦C under an inert gas (Ar) atmosphere for 1.5 h. The obtained samples
(samples #1 and #2) were characterized by tapping-mode AFM on a MultiMode 8 system
(Bruker FRANCE S.A.S., Strasbourg, Germany), as well as SEM using a Thermo Scientific
Scios2 (Brno, Czech Republic) instrument. Point defects were introduced in the atomic
structure of the graphene overlayer (sample #2) by 5 s of O2 plasma treatment (Zepto
cleaner, Diener electronic, Ebhausen, Germany) at 50 W, followed by annealing (400 ◦C) in
Ar gas for 60 min.

2.2. UV–Vis Spectroscopy and Vapor Sensing Setup

Optical reflectance and vapor sensing measurements were carried out by mounting
the samples in an airtight aluminum box covered with a fused silica window to provide
UV transmission. The samples were illuminated using an Avantes AvaLight DH-S-BAL
light source. The initial reflectance of the samples in synthetic air was measured with
an Avantes HS 1024 × 122TEC spectrometer (Avantes BV, Apeldoorn, The Netherlands)
by capturing the specularly reflected signal (measured under 15◦). For vapor sensing
experiments, five types of volatile vapors were passed through the cell’s gas inlet and
vented through the outlet: acetone, ethanol, 2-propanol, toluene, and water (analytical-
grade, VWR International Ltd., Radnor, PA, USA). Vapor concentration was adjusted by
switching digital mass flow controllers (Aalborg DFC, Aalborg Instruments & Controls, Inc.,
Orangeburg, NY, USA) to pass synthetic air (Messer, 80% N2, 20% O2) and saturated volatile
vapors through gas bubblers in the required ratio. During the measurements, a constant
gas flow of 1000 mL/min was sustained through the cell. Vapor detection experiments
were performed by varying the concentration and type of test vapor while tracking spectral
variations over time. To purge the cell, a 20 s vapor flow at a given concentration was
followed by a 60 s flow of synthetic air. In addition, before introducing the next vapor type,
a 120 s purge was used to recover the initial reflectance of the sample.

3. Results and Discussion

Tapping-mode AFM and SEM were used to characterize the formed nanoparticles. The
graphene-covered Ag nanostructures had elongated shapes (Figure 1a,b), with an average
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height of 61 nm. Typical nanoparticles that are completely sandwiched between graphene
and HOPG are shown in Figure 1c. Graphene wrinkles also developed near these NPs. In
contrast, smaller NPs formed in areas with graphene discontinuities. These bare NPs had a
rather disk-like shape, with an average height of 45 nm. The mean height distribution of
both graphene-covered and bare Ag NPs is shown in Figure 1d.
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quartz window, as illustrated in Figure 2a, and a synthetic air atmosphere. Specular re-
flection was applied at 15° degrees between the two optical fibers used for illumination 
and light collection. Typical reflectance spectra are shown in Figure 2b, where the LSPR is 
observed as prominent minima near 400 nm. As a reference, we used a bare HOPG sur-
face. In vapor sensing experiments, the spectral response was the shift in this sharp LSPR, 
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of Figure 2b, measured in synthetic air.  

Figure 1. (a) SEM image of bare Ag NPs (left) and Ag NPs covered with graphene (right). The edge
of graphene is marked with a blue dashed line as a guide for the eye. (b) AFM image of graphene-
encapsulated Ag NPs. Discontinuities in the graphene overlayer and areas with bare Ag NPs are
demarcated with blue dashed lines. Several graphene-covered nanoparticles are demarcated with a
white square and shown in the enlarged image in (c). Here, wrinkling of the graphene overlayer is
observed (arrows). (d) The mean height distribution of graphene-covered (green) and bare Ag NPs
(red) was measured on 142 NPs in both cases.

The optical properties of such nanoparticle ensembles were studied by UV–Vis re-
flectance spectroscopy. For this, the samples were fixed inside an aluminum cell with
a quartz window, as illustrated in Figure 2a, and a synthetic air atmosphere. Specular
reflection was applied at 15◦ degrees between the two optical fibers used for illumination
and light collection. Typical reflectance spectra are shown in Figure 2b, where the LSPR is
observed as prominent minima near 400 nm. As a reference, we used a bare HOPG surface.
In vapor sensing experiments, the spectral response was the shift in this sharp LSPR, and
it was characterized by dividing the measured spectrum with the reference spectrum of
Figure 2b, measured in synthetic air.



Nanomaterials 2022, 12, 2473 4 of 10Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 2. (a) Schematic drawing of the aluminum cell used in vapor sensing experiments. (b) Optical 
reflectance spectra of bare (dashed) and graphene-covered Ag NPs measured in air (samples #1 and 
#2 are similar). 

Note that the bare Ag NPs had a low LSPR intensity with a reflectance minimum at 
390 nm, while the LSPR wavelength of graphene-covered Ag NPs was at 397 and 399 nm, 
for samples #1 and #2, respectively. The redshift in the spectra of graphene-covered nano-
particles, compared to the spectrum of bare Ag NPs, is related, on one hand, to the n-type 
doping of graphene by electrostatic contact with silver [41], and, on the other hand, the 
graphene-covered NPs are larger than the bare NPs (see Figure 1), resulting in a redshift 
[42]. Moreover, the observed redshift can be partly ascribed to the increased effective re-
fractive index of the medium surrounding the NPs [34]. As the LSPR wavelength is sensi-
tive to the composition of the nearby atmosphere, it can be efficiently used for the detec-
tion of VOC molecules adsorbed on the surface.  

The adsorption of organic molecules to graphene is influenced by the presence of 
defects, as shown by recent calculations [43]. This, in turn, can affect the sensing properties 
of samples having a defected graphene overlayer. To investigate this, we introduced de-
fects in sample #2 using O2 plasma for 5 s. Such plasma treatment induced individual, 
point-like defects (vacancies) separated by several nanometers, as shown in Figure S1. 
Although the exposure to plasma was short, the nanoparticles were also affected. The re-
flectance measured after plasma treatment did not show a well-defined LSPR; it rather 
showed a significant decrease in the reflectance in the near-UV (Figure 3, spectrum in 
blue).  

This abrupt change in the optical characteristics is ascribed to the silver reacting with 
oxygen, and the formation of AgO or Ag2O phases [44]. These oxide phases were success-
fully decomposed by applying subsequent annealing of sample #2 at 400 °C in an inert 
atmosphere, which also resulted in the recovery of the metallic Ag NPs. This is expressed 
by the recovered resonance, as shown in Figure 3 (spectrum in red). Note that after an-
nealing, the new LSPR was measured at a lower wavelength (385 nm). The applied an-
nealing also stabilized the initially produced vacancy-type defects by dangling bond sat-
uration either through the adsorption of molecules, or via the formation of non-hexagonal 
carbon rings (pentagons, heptagons, etc.) [45]. 

Figure 2. (a) Schematic drawing of the aluminum cell used in vapor sensing experiments. (b) Optical
reflectance spectra of bare (dashed) and graphene-covered Ag NPs measured in air (samples #1 and
#2 are similar).

Note that the bare Ag NPs had a low LSPR intensity with a reflectance minimum
at 390 nm, while the LSPR wavelength of graphene-covered Ag NPs was at 397 and
399 nm, for samples #1 and #2, respectively. The redshift in the spectra of graphene-covered
nanoparticles, compared to the spectrum of bare Ag NPs, is related, on one hand, to
the n-type doping of graphene by electrostatic contact with silver [41], and, on the other
hand, the graphene-covered NPs are larger than the bare NPs (see Figure 1), resulting in
a redshift [42]. Moreover, the observed redshift can be partly ascribed to the increased
effective refractive index of the medium surrounding the NPs [34]. As the LSPR wavelength
is sensitive to the composition of the nearby atmosphere, it can be efficiently used for the
detection of VOC molecules adsorbed on the surface.

The adsorption of organic molecules to graphene is influenced by the presence of
defects, as shown by recent calculations [43]. This, in turn, can affect the sensing properties
of samples having a defected graphene overlayer. To investigate this, we introduced defects
in sample #2 using O2 plasma for 5 s. Such plasma treatment induced individual, point-like
defects (vacancies) separated by several nanometers, as shown in Figure S1. Although
the exposure to plasma was short, the nanoparticles were also affected. The reflectance
measured after plasma treatment did not show a well-defined LSPR; it rather showed a
significant decrease in the reflectance in the near-UV (Figure 3, spectrum in blue).

This abrupt change in the optical characteristics is ascribed to the silver reacting
with oxygen, and the formation of AgO or Ag2O phases [44]. These oxide phases were
successfully decomposed by applying subsequent annealing of sample #2 at 400 ◦C in
an inert atmosphere, which also resulted in the recovery of the metallic Ag NPs. This
is expressed by the recovered resonance, as shown in Figure 3 (spectrum in red). Note
that after annealing, the new LSPR was measured at a lower wavelength (385 nm). The
applied annealing also stabilized the initially produced vacancy-type defects by dangling
bond saturation either through the adsorption of molecules, or via the formation of non-
hexagonal carbon rings (pentagons, heptagons, etc.) [45].
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Figure 3. Optical reflectance spectra of the graphene-covered Ag NP sample #2 before (black) and
after (blue) O2 plasma treatment. The LSPR is recovered (red) by annealing at 400 ◦C.

In the following, we used both graphene-covered Ag NP samples in VOC-sensing
experiments: sample #1 with pristine graphene, and sample #2 with a defected graphene
overlayer. Saturated vapors of acetone, ethanol, 2-propanol, toluene, and water were
diluted with synthetic air in ten different concentrations and the resulting wavelength shift
of the LSPR peak was measured. As a control experiment, a bare HOPG surface was used
in the same vapor sensing measurement, which resulted in only a slight decrease in the
intensity as the vapor concentration was increased (see Figure S2). The effect is attributed
to the adsorption of vapors onto the HOPG surface [46]. This minor baseline shift was
measured in all graphene-covered Ag NP samples too, which is corrected in Figures 4 and 5,
but the original data sets were used in the more detailed analysis shown later in Figure 6.
The vapor concentrations were applied in increasing order, and the observed LSPR shift
was proportional to the concentration for all VOCs. As an example, the data obtained
for ethanol are shown in Figure 4a. Since the LSPR shifts were rather small changes
compared to the LSPR intensity, it was more convenient to use the reflectance change
spectra (Figure 4b) defined as ∆R = (R / R0) × 100%, where R0 is the initial reflectance of
the sample in synthetic air. The calculated reflectance change spectra clearly showed an
increasing signal as a function of the vapor concentration. A higher number of adsorbed
molecules increased the effective refractive index of the medium more significantly. A
positive peak followed by a negative peak represent a redshift of the LSPR. In this way,
the original small changes in the LSPR could be effectively compared for all investigated
samples and substances.

The optical responses of graphene-covered Ag NPs obtained for saturated vapors
are plotted in Figure 5. Although both samples #1 and #2 showed similar responses, the
reflectance change spectra were found to be unique for each VOC, when compared to each
other. For example, in addition to the induced LSPR shift, the UV absorption of acetone
and toluene vapors was also observed.

To investigate in more detail the VOC sensing data, principal component analysis
(PCA) of the measured data sets was carried out and the resulting score plots were com-
pared. As both samples showed a much higher response to acetone compared to the other
four substances, and because the UV absorbance of this vapor was in the range of the
LSPR, the data on acetone were omitted from the analysis. The PCA score plots of ethanol,
2-propanol, toluene, and water are shown in Figure 6. The cumulated variance of the first
three PCs was above 99% for both samples.
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Here, each vapor had a unique trajectory. To facilitate the comparison, the data points
were projected on the PC1–PC2 planes of the graphs. All trajectories originated from a
common point, which was the data point of the initial synthetic air spectrum. Away from
this, as the concentration of the vapors increased, the calculated points branched apart,
resulting in a clear separation of the trajectories. This showed that the VOC detection by the
graphene-covered Ag NPs was substance-specific. One can see on the PC1–PC2 projected
plane that the third dimension is needed to properly separate the signal of ethanol and
2-propanol, as the trajectories are overlapping in the 2D projection. Furthermore, to observe
the effect of defects in the graphene overlayer, we compared the maximal intensities of the
peak (near the LSPR) in the reflectance change spectra to the maximal intensities obtained
with the pristine graphene overlayer. These maximal peak intensities are plotted as a
function of concentration in Figure 7, for each applied vapor.
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cumulative variance of the first three PCs was above 99% for both samples.
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Figure 7. Maximal peak intensities in the reflectance change spectra as a function of vapor concentra-
tion. For each applied vapor, the optical responses of samples #1 and #2 are compared. (a) Acetone,
(b) ethanol, (c) 2-propanol, (d) toluene, and (e) water vapors were applied.

One can observe that there were differences in the maximal responses of the two
samples, especially for acetone, water, and toluene. The defected graphene overlayer
increased the sensitivity to water and toluene. This agrees with recent calculations showing
that toluene [43] and water [47,48] adsorb better to graphene with defects. In comparison,
exposure to ethanol and 2-propanol resulted in similar optical responses, while acetone
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even gave a reduced signal on defected graphene. To explain such changes in the sensitivity,
one must consider the interaction between the VOC molecules, defected graphene, and the
underlying Ag NPs as well, since possible charge redistribution effects can result in a slight,
opposite shift in the LSPR, reducing the main effect of the refractive index change. This calls
for theoretical calculations, which were beyond the scope of the current work. Nonetheless,
as demonstrated in Figure 7, the sensitivity to certain vapors can be tuned with structural
defects, which can be further explored in the development of selective VOC detectors.

4. Conclusions

We investigated the morphology, optical, and vapor sensing properties of graphene-
covered Ag NPs elaborated directly on HOPG substrates. We showed that the prepared
hybrid nanostructures displayed pronounced optical responses upon exposure to organic
vapors (acetone, ethanol, 2-propanol, toluene, and water). The observed concentration-
dependent shifts in the LSPR were substance-specific, as demonstrated by reflectance
change spectra and PCA. We further showed that, by introducing structural defects in the
graphene overlayer, the optical response of the graphene/Ag NPs increased for toluene
and water, while it decreased for acetone detection. These findings can stimulate further
research towards increasing the selectivity in VOC sensing.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12142473/s1, Figure S1: STM image of a HOPG substrate
exposed to 5 seconds of O2 plasma, Figure S2: Reflectance of bare HOPG surface when different
concentrations of ethanol vapor were applied.
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