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We have investigated the structural change of dipolar hard sphere fluid while we change
the dipole from an idealized point dipole (pDHS fluid) to a physically more realistic extended
dipole (eDHS fluid) by increasing the distance d of the two point charges ±q while keeping the
dipole moment µ = qd fixed. We discuss our results on the basis of the first- and second-rank
orientational order parameters, angular distribution functions, chain-length distributions, and
snapshots. At a low density, we have found chain formation with longer chains as the distance
d is increased. At a high density, we have found phase transition from an orientationally
ordered ferroelectric nematic phase (at low d) into an isotropic liquid containing chains (at
large d).

1. Introduction

Strong dipolar interactions play an important role in technologically interesting
physical systems such as ferrofluids [1], electrorheological liquids [2], or magnetic
holes [3]. In the presence of external magnetic or electric field these systems tend
to form strongly ordered stuctures. Some of them have an orientationally ordered
structure even in the absence of an external field. This makes them important
candidates in the creation of “intelligent” materials. While ferromagnetic fluids
are well known, the ferroelectric phase, where the electrostatic forces alone pro-
duce an orientationally ordered nematic liquid, has not been found experimentally
(although the theoretical possibility has been raised [4–6]).

Simulation and theoretical studies of polar fluids started with simple, general
models of these molecules. More detailed models are needed to accurately describe
a specific fluid, while reduced models are used with a few parameters to study
general properties of polar fluids. The simplest models are those where a point
dipole (pD) is placed in the center of a spherical core modelled by the hard sphere
(HS), soft sphere (SS), or Lennard-Jones (LJ) potentials. We will refer to these
systems as the pDHS, pDSS, and pDLJ systems, respectively. The latter system is
commonly known as the Stockmayer fluid.

In this paper, our main goal is to study the effect of deviations from the idealized
pD description of the charge distribution of the molecule. One way to do this is
to add higher order terms to the multipole expansion. The other way, that we
follow in this paper, is to model the actual three-dimensional charge distribution
of the molecule. We take the first step and model the polar molecule by two partial
charges ±q in a distance d from each other. This is called a real, physical, or
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extended dipole in the literature. We follow Ballenegger and Hansen [7] and use
the term “extended dipole” (eD). Thus, we will denote such an eD placed in the
center of a HS, SS, or LJ core potential as eDHS, eDSS, or eDLJ fluid, respectively.
Ballenegger and Hansen [7] studied the eDLJ and eDSS fluids, while we consider
the eDHS system in this work (for the definition of the HS, pDHS, and eDHS
potentials, see the next section).

Both simulation and theoretical [8, 9] methods prove that high density pDHS
and pDSS fluids undergo a phase transition when the temperature is decreased.
In the early 1990s, computer simulations of Wei and Patey [10–12] for the pDSS
fluid and Weis and Levesque [13–15] for the pDHS fluid revealed the following
phenomena. (1) At low densities, strongly dipolar spheres tend to form chains,
where the dipoles are in head-to-tail position [13, 15]. (2) At high density, the
dipoles form an orientationally ordered ferroelectric nematic phase in the absence
of a depolarizing field (with the conducting boundary condition) [10, 11, 13, 14].
(3) When such a depolarizing field is present (sample surrounded by vacuum),
oppositely polarized domains appear in the simulation cell [11, 14]. (4) Increasing
the density, the system undergoes a ferroelectric liquid to ferroelectric solid phase
transition [11, 14]. (5) In some cases, a columnar phase was found [11] where the
chains form a spatial order perpendicular to them. Later, columnar order and
transition temperatures were established with more careful simulation techniques
using cluster moves and histogram reweighting [16, 17].

Furthermore, in contrast to theoretical predictions, simulations showed that there
is no vapour-liquid equilibrium (VLE) in the pDHS and pDSS systems. At low tem-
peratures, where one would expect VLE, ordered structures appear in the system.
Leeuwen and Smit [18] showed for the pDLJ fluid that a minimum amount of at-
tractive dispersion interaction is necessary to have VLE. This phenomenon was
also found in the dipolar Yukawa fluid [19, 20].

In this work, we study the effect of making the dipole in the molecule more and
more extended by increasing d and decreasing q while keeping the dipole moment
µ = qd constant. Ballenegger and Hansen [7] studied the structural and dielectric
properties of a high density eDLJ and eDSS systems this way. They used a smaller
dipole moment than that which we use in this study, so they started from an
isotropic liquid and found a transition into a hexagonal columnar phase above
d = 0.6. We start from a ferroelectric liquid at small d, so our study supplements
that of Ballenegger and Hansen.

More realistic models to represent the molecule’s charge distribution have been
considered in several studies [21–26]. The polarizability of the molecules was con-
sidered by several authors [27–29]. Orientationally ordered phases were found in
the pDLJ fluid with and without molecular polarizability [30, 31], in a system with
parallel point dipoles immersed in hard spheres [32], and in a rigid polyatomic
model system with extended dipoles [33].

Here we study changes in the structure of the eDHS fluid as we increase the dis-
tance between the charges of the extended dipole while keeping the dipole moment
fixed. We show that these structural changes are (1) the appearance of chains at a
low density and (2) the disappearance of the ferroelectric phase at a high density.
The changes in the structure were characterized by order parameters, chain-length
distributions, various projections of the pair correlation function, and snapshots.
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2. Model and Method

2.1. Model

The intermolecular potential of the eDHS fluid depends on the mutual posi-
tions rij = ri − rj and orientations Ωi and Ωj of the molecules: ueDHS(ij) =
ueDHS(rij ,Ωi,Ωj). It is a sum of two terms

ueDHS(ij) = ueD(ij) + uHS(rij) (1)

where

ueD(ij) = q2

[

1

|ri + d2ni − (rj + d2nj)|
−

1

|ri − d2ni − (rj + d2nj)|

−
1

|ri + d2ni − (rj − d2nj)|
+

1

|ri − d2ni − (rj − d2nj)|

]

, (2)

is the interaction of the two extended dipoles (eD) in Gaussian units and

uHS(rij) =

{

∞ for rij < σ
0 for rij ≥ σ,

(3)

is the hard sphere (HS) potential. The dipole moment of molecule i is modeled
by partial charges of opposite signs ±q that are separated by a distance d inside
the hard sphere of diameter σ, as shown in Fig. 1. In these equations, rij = |rij |
is the distance of the centers of the spheres, ni is the unit vector in the direction
of the dipole moment of molecule i (characterizing orientation Ωi), and d2 = d/2.
This equation does not contain the intramolecular interaction between the partial
charges inside a single molecule. The charges are placed symmetrically by a distance
d2 from the center of the hard sphere. The dipole moment of such a molecule is
[34]

µi = qdni = µni. (4)

In our calculations, we simultaneously change q and d keeping the dipole moment
µ = qd fixed. Thus, ueD can be written as a product of µ2 and a geometrical term
depending on the mutual position and orientation of the molecules.

This term also carries the information about how far is the dipole from the
idealized point dipole. When d is small, the limit of the ueD potential is the point
dipole-dipole (pD) potential :

ueD → upD if d → 0 with µ = const., (5)

where

upD(ij) = −µ2 D(ij)

r3
ij

. (6)

The following functions were introduced:

D(ij) =
3(ni · rij)(nj · rij)

r2
ij

− ∆(ij) (7)
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and

∆(ij) = ni · nj. (8)

These functions are rotational invariants; ∆(ij) is the scalar product of the unit
vectors of two dipoles and D(ij) is the angle dependent part of the pD potential.

2.2. Pair distribution functions

These functions appear in the series expansion of the pair correlation function of
axially symmetric molecules:

g(ij) =
∑

nml

hmnl(rij)Φmnl(ij). (9)

This expansion separates distance and angular dependence in such a way that the
projections hmnl(rij) depend only on the distance of particles and the projections
Φmnl(ij) are rotational invariants.

The projection h000(rij) is the usual radial distribution function:

h000(rij) =

∫

g(ij)dΩidΩj , with Φ000 = 1. (10)

In a fluid phase, h000(rij) → 1 when rij → ∞ both in isotropic and nematic phases.
Other projections, also called angular correlation functions, carry information

about the orientational behaviour of the fluid. The value of the h112(rij) function
is high if the interaction energy between two dipoles separated by a distance rij

from each other is deep:

h112(rij) =
3

2

∫

D(ij)g(ij)dΩidΩj , with Φ112(ij) = D(ij) (11)

The value of the h110(rij) function is high if the dipole moments of particles sepa-
rated by a distance rij from each other tend to point in the same direction:

h110(rij) = 3

∫

∆(ij)g(ij)dΩidΩj , with Φ110(ij) = ∆(ij). (12)

The value of the h220(rij) function is high if the dipole moments of the particles
separated by a distance rij from each other tend to be parallel (not necessarily
pointing in the same direction):

h220(rij) =
5

2

∫

(3∆2(ij)− 1)g(ij)dΩidΩj , with Φ220(ij) = 3∆2(ij)− 1. (13)

If the system is isotropic, the latter three functions decay to 0 in the limit of
rij → ∞ indicating that there is no long range orientational order in the fluid.
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2.3. Order parameters

In the nematic phase, on the contrary, the projections hmn0(rij) obey the asymp-
totic behaviour:

lim
r→∞

hmn0(r) = (2m + 1) 〈Pm〉2 , (14)

where 〈Pm〉 is the mth-rank order parameter and the brackets denote ensemble
average. Particularly,

lim
r→∞

h110(r) = 3 〈P1〉
2 (15)

and

lim
r→∞

h220(r) = 5 〈P2〉
2 . (16)

In the case of a long range orientational order, the functions h110(r) and h220(r)
become constant at large separation. These constants are related to the first- and
second-rank orientational order parameters that are computed in our simulations
in an alternative way too. The second-rank order parameter 〈P2〉 is the ensemble
average of the largest eigenvalue of the instantaneous second-rank tensor

Qαβ =
1

N

N
∑

i=1

1

2
(3nα

i nβ
i − δαβ), (17)

where N is the number of particles in the simulation cell, nα
i is the α-component of

the unit vector ni, and δαβ is the Kronecker-delta. The corresponding eigenvector is
the instantaneous director P. The first-rank order parameter 〈P1〉 (the normalized
polarization) is the ensemble average of

P1 =
1

N

∣

∣

∣

∣

∣

N
∑

i=1

ni · P

∣

∣

∣

∣

∣

. (18)

2.4. Chain formation

Strong dipoles tend two arrange in their minimum energy head-to-tail position,
thus forming chains. We applied an energy criterion to define chains. Two dipoles
are defined to be in the same chain if their interaction energy is lower than a
prescribed value. In this study, we used the value 0.7uhead−to−tail, where

uhead−to−tail(d) = −
q2

1 − d
−

q2

1 + d
+ 2

q2

1
= −2

µ2

1 − d2
, (19)

is the lowest possible interaction energy of two dipoles: when they are in contact
(rij = 1) and in head-to-tail position (ni = nj = rij/rij).

Thus, we can calculate the number of chains ns having length s. The average
chain length for a configuration is given by

l =

∑

s sns
∑

s ns

. (20)
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The simulations produce ensemble averages for the average chain length 〈l〉 and
the distribution of chain length 〈ns〉 as a function of s.

2.5. Monte Carlo simulations

Canonical MC simulations were performed in cubic simulation cells of constant
volume V at constant temperature T and at a fixed number of particles N . We
used the standard Metropolis algorithm [35–37] with two kinds of MC moves. (1)
A randomly-chosen particle was randomly displaced not too far from its original
position. This kind of step is useful at high density, liquid-state systems. (2) Particle
displacement in the whole simulation cell to a randomly-chosen position that is
independent from the original position. We applied this step to equilibrate the low
density system.

At low densities, after 30,000-50,000 MC cycles (an MC cycle involved N at-
tempts to move a particle), the number of the successful displacements decreased
considerably. When the chains are formed, the system is in a local energy minimum:
it is practically frozen. Rarely accepted moves can make the sampling inefficient.
To improve the sampling, we applied a double loop during the simulations. The in-
ternal cycle included an equilibration period and a production run. In the external
cyle we repeated these relatively short runs starting from newly generated initial
configurations. At the end we averaged the results of the production runs of the
independent internal cycles.

In the case of the high density system, the initial configurations were generated
in the following way: we started from a lattice, then we produced a disordered,
isotropic, liquid-like state with a short simulation using a low dipole moment.
Then, we increased the dipole moment to the high value used in the production
run.

The long range corrections were treated with the reaction field (RF) method. In
this method, the sample is considered to be surrounded by a dielectric continuum
with a dielectric constant ǫRF. The charge induced on the boundary of the spherical
sample and the surrounding dielectric exerts a force on the central dipole described
by the potential of the reaction field

uRF(Ω1) = −
2(ǫRF − 1)

2ǫRF + 1

µ1 ·M

R3
c

, (21)

where µ1 is the dipole moment of the central dipole, M is the total dipole moment
of the sample, and Rc is the radius of the sample chosen to be the half width of
the simulation cell.

The value of ǫRF strongly influences the behaviour of the system in the ferro-
electric nematic phase. If ǫRF is high (or ǫRF → ∞ in the case of the conducting
or tin-foil boundary condition), uRF = −2(µ1 ·M)/R3

c , which is a negative con-
tribution if µ1 is parallel to M. It provides a strong polarizing field when the
ferroelectric phase is formed, namely, the reaction field facilitates the formation of
the orientationally ordered phase.

The value ǫRF = 1 (the sample is surrounded by vacuum), on the other hand,
acts against the formation of long range order. (Note that in the case of Ewald
summation a depolarization field appears in the case of ǫRF = 1, which is absent
for ǫRF → ∞. In the reaction field method, a polarizing field appears for the latter
case, absent in the former, with the same effect.) In this case, the system tends to
form local structures while keeping the total polarization zero. Because the system
has a large dielectric constant, using the tin-foil boundary condition is reasonable.
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Therefore, we present our results for ǫRF → ∞ in detail, while we briefly discuss
our results for ǫRF = 1.

3. Results and Discussion

In this study, we use reduced quantities: the reduced density is ρ∗ = ρσ3, where
ρ = N/V , while the reduced dipole moment is (µ∗)2 = µ2σ3/kT . Distances are
given by choosing σ = 1 as the unit of distance so we define the following reduced
quantities: d∗ = d/σ and r∗ = r/σ. The state of the pDHS system can be fully
defined by the values of ρ∗ and (µ∗)2, while the additional parameter d∗ (that
characterizes the non-ideality of the dipole) is needed to fix the thermodynamic
state of the eDHS system. The number of particles N or the volume V is also
needed to fix the size of the system.

We studied a low density ρ∗ = 0.05 and a high density ρ∗ = 0.8 case, with dipole
moments (µ∗)2 = 3 and (µ∗)2 = 6, respectively. Our goal was to study the effect
of the non-ideality of the dipoles on the properties of the system by increasing d
while keeping µ = qd constant.

3.1. Low density

At low density (ρ∗ = 0.05), we started the process from a state where the pDHS
system isotropic and no considerable chain formation is detected: d∗ = 0.001 (which
practically corresponds to the pDHS case) with dipole moment (µ∗)2 = 3. Then,
we gradually increased the distance between the partial point charges of the eD to
d∗ = 0.8. The number of particles was 512 in these simulations. We applied the
tin-foil boundary condition (ǫRF → ∞).

As the dipole was being made more and more non-ideal, longer chains appeared in
the system. Figure 2a shows the distribution of the average chain length for various
values of d∗. At small d∗, only associated dipole-pairs appeared (and a few triplets),
while increasing d∗ longer chains could be found. Based on these distributions, the
average chain length was calculated using Eq. 20. The result is shown in Fig. 2b
as a function of d∗. The average chain length increases with increasing d∗.

Chain-formation is also shown by the correlation functions h000(r), h112(r), and
h110(r) (Fig. 3). High peaks appear at distances r∗ = 1, 2, and 3 for larger d∗. The
peaks indicate association of the particles at contact positions. The peaks in h112(r)
indicate that particles with their associates have low energy mutual configurations
at these positions. Furthermore, the peaks in the h110(r) functions indicate that
the dipoles of the particle associates are parallel and point in the same direction.
This is a clear footprint of chain formation. A visual representation of a randomly
chosen configuration for d∗ = 0.8 clearly shows the chains (Fig. 4).

The asymptotic behaviour of the correlation functions (limr→∞ h000(r) = 1,
limr→∞ h112(r) = 0, and limr→∞ h110(r) = 0) indicate that the system is still
an isotropic fluid despite the chain formation. The system can be viewed as a mix-
ture of chains of various lengths in a dynamical sense. The chains break up and
reform, they exchange particles during the thermal motion, so the system cannot
be considered as a mixture of polymers of fixed lengths in a static sense.

The above results for the low density system were expected. The interaction
energy between two particles in head-to-tail position Eq. 19 becomes more attrac-
tive as d∗ increases. In other words, additional attractive terms between dipole
and higher-order moments (the next non-vanishing term is the octopole moment)
appear as the charge distribution of the molecule becomes different from the pD.
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4. High density

At a high density, on the contrary, we obtained surprising results. We expected that
the enhanced attraction between extended dipoles in head-to-tail positions would
make the formation of a ferroelectric nematic phase more probable. In this phase,
chains would be formed, but they would be straight and parallel, thus producing
a long range order in the liquid.

We chose the dipole moment (µ∗)2 = 6 at density ρ∗ = 0.8 and increased d∗

keeping µ = qd fixed as in the low density case. At this value of the dipole moment,
the pDHS system formed a ferroelectric nematic phase using tin-foil boundary
condition (ǫRF → ∞). The boundary condition is important at high densities for
the formation of long range orientational order. First, we present our results for
ǫRF → ∞, then we briefly discuss the case of ǫRF = 1. System size is also important
at high densities. We will report our results using 620 particles, but we will also
present an analyzis of system size dependence to show that system size effects did
not influence our qualitative findings.

Figure 5 shows the order parameters as functions of d∗. The nonzero value of
both 〈P1〉 and 〈P2〉 for small d∗ indicates the formation of long range orientational
order in the liquid. The order parameters increase with increasing d∗ up to about
d∗ = 0.4 so the long range order becomes more stable. This is in agreement with
the results of Hansen and Ballenegger [7] who reported a phase transition from an
isotropic fluid phase to a ferroelectric columnar phase at the value d∗ ≈ 0.64 for
the eDLJ fluid with a dipole moment smaller than that we used here.

Our dipole moment, nevertheless, is larger, so after a stabilization process of the
long range orientational order, a sudden structural change occurs between d∗ = 0.4
and 0.5. The order parameters drop to small values close to zero that implies that
the long range orientational order vanishes for large d∗ (the order parameters are
finite due to the finite size of the simulation cell).

Thus, depending on the value of d∗, the system can be in two characteristically
different phases. To understand the structure of the fluid in these phases, let us
investigate the angular correlation functions. The radial distribution functions (not
shown) behave as expected: they exhibit peaks at contact positions indicating
strong association of particles and approach to 1 for r → ∞ indicating that the
system is a liquid.

Figure 6 shows results for the h112(r), h110(r), and h220(r) angular correlation
functions for different values of d∗. For small values of d∗, these functions show
a behaviour characteristic of a ferroelectric nematic phase as was found before
for the pDHS fluid [14] and for the pDSS fluid [10, 11]. The h110(r) and h220(r)
projections approach to their asymptotic values 3 〈P1〉

2 and 5 〈P2〉
2 as indicated by

arrows in the figure. The ferroelectric nematic phase is illustrated in Fig. 7a, where
a snapshot is shown for d∗ = 0.2. The dipoles tend to point in the same direction;
chains can be identified, but the system is otherwise a liquid without long range
spatial order.

The curves for d∗ = 0.4 are more structured with larger order parameters which
raises the possibility of a columnar order. In this phase, there is a long range
spatial structural order in the direction perpendicular to the chains/columns (the
director). Therefore, the system is a liquid in parallel to the chains, while it is a
crystal perpendicular to them. Such a phase has been reported before for dipolar
fluids at low temperatures. Weis and Levesque [17] reported the appearance of a
columnar phase for the pDHS fluid at (µ∗)2 ≥ 6.25 for ρ∗ = 0.92. They did not
find the columnar phase in their earlier study [14] for ρ∗ = 0.84 and (µ∗)2 = 9.
Wei and Patey [11] reported a columnar phase for the pDSS fluid for ρ∗ = 0.7 and
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(µ∗)2 = 9. Ballenegger and Hansen [7] showed that a columnar ordering appears
when the distance of the two point charges is above d∗ = 0.64 in the eDLJ fluid
for ρ∗ = 0.82 and (µ∗)2 = 2.88. In our simulation for d∗ = 0.4, investigation
of snapshots did not reveal any columnar order. Decisive identification requires
the calculation of the pair distribution functions parallel and perpendicular to the
director, h‖(r) and h⊥(r). We did not compute these functions, so we do not pursue
this question further in this study.

When d∗ is increased further, d∗ ≥ 0.5, the nature of angular correlation functions
changes dramatically. High peaks appear at positions r∗ = 1, 2, and 3 indicating
short-range correlation between the particles. The functions h110(r) and h220(r)
approach 0 as r → ∞ showing that the long range orientational order vanishes.
These functions resemble those for low density (Fig. 3) where chains are formed.
It implies that local structures with chain formation appear without any global
orientation order. The absence of global order and the chains can be observed in
Fig. 7b where a snapshot is shown for d∗ = 0.65.

The energetic criterion for chain formation, which was mainly used in gas phase
where the chains are distinct, can also be used in liquid phase [15] to show the
distribution of chains of various lengths as d∗ is varied. Figure 8 shows the chain
length distribution for high density. The figure is quite similar to the low density
case (Fig. 2b). Increasing d∗, longer chains appear in the system.

The structure of this liquid is also very similar to the low density counterpart: the
fluid is like a mixture of polymers formed by the associating dipoles. The lengths
and conformations of the chains vary during thermal motion, they are not “stable
entities” [15].

Our qualitative conclusion (that a phase transition from a ferroelectric nematic
to a chain-rich isotropic phase appears) does not depend on system size. Figure 9
shows results for the h110(r) function at different particle numbers for two values of
d∗. Although some quantitative deviations can be seen, the qualitatively different
behaviour of the function for d = 0.2 and 0.8 does not depend on N . Similar
insensitivity to system size can be observed for the other projections too (data not
shown).

When the sample is surrounded by vacuum, (ǫRF = 1), the polarizing reaction
field is absent. As it was shown earlier [11, 14], the system tends to form locally
oriented structures (domains) while maintaining a globally unpolarized state. In
particular, simulations for the pDHS system at ρ∗ = 0.916, (µ∗)2 = 6.25, and
N = 500 produced two oppositely polarized domains [14]. We found a similar
behaviour for the eDHS fluid for d∗ = 0.2 using N = 620 particles. For this value
of d∗, the h110(r) projection decays to zero for r → ∞, while the h220(r) projection
approaches a finite value. Interestingly, this behaviour vanishes when we increase
system size. Even for N = 864 particles, we have not found the two oppositely
polarized domains and both projections decay to zero. Our results imply that
simulations for ǫRF = 1 are strongly dependent on system size.

For d∗ = 0.8, we have found the same behaviour that we found in the case of
the tin-foil boundary condition: formation of chains in local structures without any
global order.

5. Conclusions

The physical reason of the phase transition at d ≈ 0.5 is probably a result of the
competition of three balancing forces: (1) the attraction between dipoles in head-
to-tail positions, (2) the repulsion when they are in parallel positions, and (3) the
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negative energy gained from the polarizing reaction field (for ǫRF =→ ∞) when
the dipoles are aligned. When d is small, the repulsive contribution to free energy
from the parallel dipoles is balanced by the third term. When d is increased, the
second repulsive term increases but the third attractive term does not (the dipole
moment does not change as d is increased because µ = qd is kept fixed). Thus, the
second term cannot be balanced by the third term anymore. The other way to get
rid of the parallel dipoles is to break up the aligned, parallel structure of the chains
and to fold them up without a long range orientational order. The system becomes
unpolarized; the third term vanishes, but the free energy is still minimized this
way.

All these results imply that the molecules of strongly dipolar fluids – especially
if we model them with partial charges located at certain sites – tend to associate
into local structures like chains. They have a medium range pattern strongly de-
pendent on boundary conditions and system size. Globally, they are not polarized
in the absence of an external polarizing effect (the reaction field in our simulations
provides this effect in some cases). This kind of association and locally ordered
liquid structure are present in real liquids with large dipole moment. Chains were
identified in liquid HF by Jedlovszky and Vallauri [38] using a more realistic model
potential in molecular dynamics simulations. The most widely known example for
strong local ordering in an otherwise isotropic liquid is water.

We conclude that modeling strongly polar fluids by extended dipoles reveales
a behaviour not necessarily described by idealized point dipoles. Site-site poten-
tials, used in force fields commonly applied in molecular dynamics simulations, or
higher order terms in the multipole expansions might be necessary for more realistic
description of the molecules’ charge distribution. Furthermore, taking the polariz-
ability of the molecules into account is probably needed to accurately describe the
structural and dielectric properties of strongly polar fluids [28, 29].
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Figure 1. Illustration of the itermolecular potential. Partial charges of signs ±q are located centrally in
a sphere of unit diamater in a distance of d from each other forming a dipole µ

i
= qdni, where ni is the

unit vector of the dipole.
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Figure 2. (a) Chain-length distributions at a low density (ρ∗ = 0.05) for various values of d∗. (b)
The average chain-length as a function of d∗ computed from Eq. 20.
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Figure 3. Projections h000(r), h112(r), and h110(r) of the pair-correlation function for low density (ρ∗ =
0.05) for various values of d∗.
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Figure 4. Snapshot of a randomly chosen configuration for d∗ = 0.8 at a low density (ρ∗ = 0.05). Blue
dots represent the centers of the spheres, while the red rods show the orientations of the dipoles.
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Figure 5. Order parameters as functions of d∗ for a high density (ρ∗ = 0.8).
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Figure 6. Projections h112(r∗), h110(r∗), and h220(r∗) of the pair-correlation function for a high density
(ρ∗ = 0.8) for various values of d−.
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(a) (b)

Figure 7. Snapshot of randomly chosen configurations for (a) d∗ = 0.2 and (b) d∗ = 0.8 at a high
density (ρ∗ = 0.8). Blue dots represent the centers of the spheres, while the red rods show the
orientations of the dipoles.
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Figure 8. Chain-length distributions at a high density (ρ∗ = 0.8) for various values of d∗.
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Figure 9. System size dependence of the projection h110(r∗) for various values of d∗ at high a density
(ρ∗ = 0.8) using tin-foil boundary condition (ǫRF → ∞). Various lines represent various numbers of
particles as indicated in the figure.


