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a b s t r a c t 

The thermal behaviour is critical in numerous applications, affecting any device’s lifetime and safe oper- 

ations. Adding that the technological development resulted in the appearance of complex material struc- 

tures, making the research on advanced thermal models even more important. Materials like 3D printed 

structures, foams, or with a biological origin often show non-Fourier thermal response. Modelling such a 

problem requires a thorough analysis and a deep understanding of non-Fourier models. The present paper 

focuses on two advanced models, called two-temperature and Guyer-Krumhansl equations. We compare 

their physical background and characteristic behaviour. Additionally, we perform the first experimental 

test of the two-temperature model. It is found that the solutions of the two-temperature model deviate 

from the ones predicted by the Guyer-Krumhansl equation. However, both approaches can model the ex- 

perimental data under certain conditions and offer different insights about the observed heat conduction 

phenomenon. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 
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. Introduction 

In the last decades, there has been a tendency to design the 

aterial structure for a particular application, and such materi- 

ls are foams, composites, and metamaterials. Additionally, various 

eterogeneities are also present due to the manufacturing proce- 

ure, e.g., for 3D printed objects for which the object is formed 

rom particles, thus having a microporous structure. The present 

aper focuses on the thermal characterisation of heterogeneous 

aterials, considering only isotropic and constant material param- 

ters. 

The recent experimental findings [1,2] suggest that hetero- 

eneous materials can show thermal behaviour different from 

ourier’s law at room temperature in a macroscale object. That de- 

iation is not similar to second sound or ballistic propagation, i.e., 

o wavefronts are observed in the measurements. Instead, it oc- 
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urs due to the presence of parallel heat conduction channels. The 

ifference in the heat conduction channels originates in the het- 

rogeneity. For instance, the bulk metal material in a metal foam 

ample has good conductivity properties, while the gaseous mate- 

ial in the inclusions is more similar to an insulator. Furthermore, 

hermal radiation and heat convection could also contribute to the 

hermal behaviour, meaning further difficulties in the modelling. 

owever, the situation is different for a rock sample, where the 

resence of various constituents and porosity together realise the 

on-Fourier thermal response. 

That phenomenon is called over-diffusive propagation and has 

he following characteristics, presented on a usual experimental 

bservation. Figure 1 presents a typical rear side temperature his- 

ory for a heat pulse experiment, using a metal foam sample [3] . 

irst, the temperature rise is faster compared to Fourier’s predic- 

ion. Around the top, that faster increase of temperature dimin- 

shes; instead, it becomes slower. This observation suggests the 

xistence of two characteristic time scales for which the Fourier 

quation presents their average [2] . However, a more advanced 

odel can provide a finer resolution about this phenomenon, in- 

luding both time scales and therefore presenting a better expla- 

ation with a predictive nature. 
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Fig. 1. The normalised rear side temperature history for a metal foam sample to- 

gether with its best Fourier fit [3] . 
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It is clear that a model is not practically advantageous with in- 

luding specific material properties (e.g., the distribution and size 

f inclusions) as it strictly restricts the range of validity. This ap- 

roach is, however, typical for biological problems in which more 

nd more geometrical details are included. For instance, for a skin 

hermal model, it is natural to present the different layers, the vas- 

ular network, fat distribution and so on [4–6] . In the end, the 

odel becomes complex with many uncertain parameters, such 

s the thermal contact resistances on the interfaces. Additionally, 

hese attributes differ from person to person, and hence there is 

 natural variance in the parameters. While a detailed model in- 

reases the computational costs, it does not increase the accuracy 

f the prediction as the key factors bear a natural, uncontrollable 

ariance [7] . Consequently, instead of focusing on the specific ma- 

erial structure, we utilise models in which the two time scales are 

resent and characterise the thermal behaviour effectively. 

That effective description neglects the inner properties, and 

herefore the resulting parameters represent ‘average’ values. These 

alues, however, could be size-dependent, and that stands as an 

dditional challenge for experiments [2] . Whether a measurement 

ethod or a particular application presents particular size limits 

n the objects, size dependence can occur in many situations. We 

o not aim to investigate this property here, but we feel it essen- 

ial to keep in mind and call attention to these difficulties. 

In the present paper, we focus on two thermal modelling ap- 

roaches developed for heterogeneous materials and test them 

n experiments. The first one is the application of the Guyer- 

rumhansl (GK) equation, used earlier in numerous occasions with 

uccess [2,8] . The second one, called the two-temperature (2T) ap- 

roach [9–11] , however, has not been tested on heat pulse experi- 

ents so far but has a promising background and could influence, 

.g., the thermoelectric conversion processes [12] . The 2T model 

as been successfully used for heat transport in metals under ul- 

rashort heat pulses [13–16] , and also investigated by Gonzalez- 

ázquez et al. [17] . Therefore, we aim to thoroughly investigate the 

roperties of the 2T model and compare its outcome to the results 

f the GK equation. We note that many other heat equations can 

e found in the literature [18–22] , but they are not tested or not

pplicable for macroscale solids at room temperature. Many of 

hem particularly attributed to low-temperature phenomena such 

s second sound and ballistic heat conduction [23–27] . 
2 
. Thermal models with two time scales 

.1. 2T model 

Let us suppose that the heterogeneous material can be divided 

nto two subsystems. These subsystems obey the Fourier law and 

an interact with each other, and that model can express the ex- 

stence of parallel heat conduction channels. Therefore, the entire 

ystem is characterised by two diffusivities, presenting two dis- 

inct characteristic time scales. Such a situation can occur, e.g., 

n plasma, for which the electrons and ions represent the sub- 

ystems or in a sandwich structure including two distinct compo- 

ents. Thus the model reads in one spatial dimension as 

i c i ∂ t T i + ∂ x q i = (−1) j g(T j − T i ) , (1) 

 i = −λi ∂ x T i , (i = { 1 , 2 } , j = { 1 , 2 | j � = i } ) , (2) 

here ρ , c, λ, T , q are the mass density, specific heat, thermal con-

uctivity, temperature and heat flux for the corresponding subsys- 

em, respectively. Furthermore, ∂ denotes the partial derivative re- 

pect to time ( t) or space ( x ). The source term expresses the heat

xchange between the subsystems, hence g is a sort of ‘inner heat 

ransfer coefficient’, being uniform in the domain of interest. The 

ndices i and j denote the corresponding subsystem, and the sign 

lters in the source term by taking (−1) j . Equation (1) represent 

he balance of internal energy ( e ) in which e = cT is exploited, and

o further source terms are included. Equation (2) is a constitu- 

ive equation, called Fourier’s law. In non-Fourier models, Eq. (2) is 

xchanged with a partial differential equation, which has numer- 

us consequences [28] . From now on, we consider all parameters 

onstant. For simplicity, we introduce the notation C i = ρi c i . That 

odel describes a purely heat conduction phenomenon, without 

ny coupling to mechanics. Moreover, the subsystems are only cou- 

led through the balance equation, the constitutive equations are 

ot connected. 

Following [8–10,29] , there are two different tem perature repre- 

entations of such system. First, one can express T i , which is 

∂ tt T i + ∂ t T i = αi ∂ xx T i + l 2 ∂ txx T i − αg l 
2 
g ∂ xxxx T i , (3) 

n which 

= 

C 1 C 2 
g(C 1 + C 2 ) 

, αi = 

λi 

C i 
, l 2 = τ (α1 + α2 ) , αg = 

l 2 g 

τ
, 

 

2 
g = τ

√ 

α1 α2 , (g � = 0) , (4) 

herein αi denotes the thermal diffusivity of the corresponding 

ubsystem, and τ is the characteristic time of energy exchange be- 

ween the subsystems. Second, one can also choose to use the av- 

rage temperature T̄ = (C 1 T 1 + C 2 T 2 )(C 1 + C 2 ) 
−1 , that is, 

∂ tt ̄T + ∂ t ̄T = αi ∂ xx ̄T + l 2 ∂ txx ̄T − αg l 
2 
g ∂ xxxx ̄T , (5) 

here the coefficients defined through (4) . 

.2. GK model 

The Guyer-Krumhansl equation was first derived as a lineariza- 

ion of the Boltzmann equation [30] . Phonon hydrodynamics is 

ot applicable for solids in room temperature macroscale situa- 

ions, therefore the approach of Rational Extended Thermodynam- 

cs [26,31] is excluded. Here, we consider the continuum thermo- 

ynamic background [32–34] , for which the coefficients are re- 

tricted only by the second law of thermodynamics. On the con- 

rary to the kinetic theory [35] , there is no prior assumption on 

he heat conduction mechanism, therefore, it becomes possible to 

nd the parameters from an experiment analogously to the Fourier 

quation. Consequently, this GK model we apply has the same 
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a

tructure but is different in interpreting the coefficients from the 

riginal one. That attribute extends the range of validity, and the 

K equation is found to be helpful to characterise heterogeneous 

aterials [36] . 

The GK constitutive equation reads in one spatial dimension, 

∂ t q + q = −λ∂ x T + l 2 ∂ xx q, (6) 

here the coefficients cannot be interpreted as Eq. (4) suggests, 

hey found directly from a measurement. Considering again a lin- 

ar model, the temperature representation of the GK equation is 

∂ tt T + ∂ t T = α∂ xx T + l 2 ∂ txx T , (7) 

rom which the last term of Eq. (5) is missing. In other words, the

imilarity between Eqs. (3) and (6) is only formal, they possess dif- 

erent physical meaning, therefore the coefficients Eq. (4) is not 

alid for (7) , instead, the coefficients of (7) is found by fitting to

 transient measurement. Using this T -representation, it becomes 

isible that the GK equation also consists of two time scales with 

wo diffusivities: α and l 2 /τ . Based on the relationship between 

hese coefficients, one can distinguish three characteristic domains: 

nder-diffusive ( α > l 2 /τ ), over-diffusive ( α < l 2 /τ ), and Fourier 

esonance ( α = l 2 /τ ) [37,38] . Under-diffusive behaviour results in 

 damped wave propagation, and is characteristic for the low- 

emperature problems. In our situation, the over-diffusive propa- 

ation is of great importance, together with the Fourier resonance. 

hile there are common points and similarities between these 

odels, their constitutive background significantly differs, which 

eads to severe consequences on the mathematical and physical in- 

erpretation of the results. 

.3. Initial and boundary conditions 

In order to solve these heat conduction models, one needs to 

efine initial and boundary conditions. Their definitions depend on 

he model, and therefore, they are different for the 2T and GK ap- 

roaches. 

For a 2T model, one must define the initial temperature distri- 

ution for both subsystems. In the case of a space-dependent ini- 

ial condition, the Fourier law can be used to determine the heat 

ux at the initial time instant. It requires detailed knowledge about 

ach subsystem, which could be a restrictive property. For the GK 

quation, however, one also needs the initial time derivative of the 

emperature field. This can be determined using the GK constitu- 

ive equation. These differences are crucial for nonequilibrium ini- 

ial states. 

In regard to the boundary conditions, the differences are more 

ignificant as they do not require special situations. The boundary 

onditions are defined through the constitutive equations to pre- 

erve physical consistency. Therefore, for a 2T model, one may de- 

ne the classical, well-known boundary conditions for the subsys- 

ems, depending on the situation. Moreover, the boundary condi- 

ions can differ for the subsystems, although they are not straight- 

orward. For instance, considering a heterogeneous sample in a 

eat pulse experiment, it is not clear whether the heat pulse ex- 

ites both subsystems or how the overall heat input splits between 

hem. Analogously, for Neumann-type boundary conditions, deter- 

ining the heat transfer coefficients is also not a straightforward 

uestion. These are crucial aspects in a 2T model. On the contrary, 

he GK equation is free from this difficulty; instead, it introduces 

ther aspects. Since the GK constitutive Eq. (6) introduces addi- 

ional time and space derivatives of heat flux, the temperature gra- 

ient is no longer capable of prescribing heat flux-type boundary 

onditions. In other words, its T -representation (7) is only helpful 

or Dirichlet boundaries. For Neumann-type boundary conditions, a 

 or a mixed (without eliminating any variables) representation is 

ecommended [29] . This is a key aspect of solving the GK equation. 
3

.4. Nonlinearities 

Here, we restrict ourselves to the temperature-dependent pa- 

ameters, as it is an essential question for practical applications. In 

hat sense, the 2T model follows the classical methodology. Addi- 

ionally, ρi , c i , and λi can depend only on T i . The situation is more

ifficult for the GK model due to the complex constitutive equa- 

ion. As a consequence of the second law of thermodynamics, the 

arameters τ , λ, and l 2 are not independent of each other, i.e., 

= 

ρm 

k 2 
, λ = 

1 

k 2 T 2 
, l 2 = 

k 1 
k 2 

(8) 

orm the coefficients of the GK equation according to the Onsage- 

ian relations ( k 1 , k 2 , m ≥ 0 ) [34] . In general, the coefficients k 1 ,

 2 and m are positive definite functions of state variables. How- 

ver, in numerous situations, the linear approximation is suffi- 

ient, thus they considered to be (positive) constants. Neverthe- 

ess, when the thermal conductivity λ depends on the tempera- 

ure (by k 2 = k 2 (T ) ), it immediately introduces temperature de- 

endence into all the other parameters, since k 2 contributes for 

and l 2 as well [39] . It has further consequences: such temper- 

ture dependence modifies the system of evolution equations, and 

echanics is also involved through thermal expansion [39,40] . 

This is a significant difference between these approaches, and 

t is entirely missing from the models based on the dual-phase-lag 

DPL) approach [41] . While the DPL model 

 (x, t + τq ) = −λ∂ x T (x, t + τT ) (9) 

as numerous variants based on the order of the Taylor series 

xpansion [42–44] and being popular due to its simple back- 

round, but it lacks the proper physical background and lead- 

ng to ill-posed problems [45–50] . However, in a particular sit- 

ation, the DPL model can reduce to a hyperbolic heat conduc- 

ion equation when τT → 0 , or analogously, when τT < τq . This hy- 

erbolic model is often identified as the Cattaneo-Vernotte (CV) 

51,52] equation, but the DPL model can lead to other hyperbolic 

quations as well with higher-order Taylor expansions. The ther- 

odynamically compatible version of the DPL equation is called 

effreys equation [34,53] 

∂ t q + q = −λ
(
∂ x T + τ∂ xt T 

)
, (10) 

here only one relaxation time appears on contrary to the DPL 

q. (9) , and the coefficient of ∂ xt T cannot be arbitrary. Furthermore, 

ts T-representation shows similarities to both 2T and GK models: 

∂ tt T + ∂ t T = α∂ xx T + ατ∂ txx T , (11) 

n which the coefficients differ from the other approaches, there- 

ore the time scales can also be interpreted differently. The Jeffreys 

odel is closest to the GK equation, however, as the constitutive 

q. (10) consists of ∂ tx T instead of ∂ xx q , it significantly affects ev-

ry attributes, including the initial and boundary conditions, too. 

learly, a solid thermodynamic background can be a reliable guide 

o consistently include the necessary nonlinearities. Furthermore, 

ariano et al. also suggest further modifications on the CV equa- 

ion using microstructural aspects [54,55] . 

. Characteristic solutions of the 2T model 

Here, we aim to present the characteristics of the 2T model 

n comparison to the GK equation. We apply initial and bound- 

ry conditions corresponding to the heat pulse measurement tech- 

ique for which the experimental test of the 2T model can be 

chieved. Therefore, the initial conditions describe a steady-state, 
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Fig. 2. The normalised rear side temperature history according to the 2T model, T a 
denotes the average temperature. The parameters: ρ1 = ρ2 = 2700 kg/m 

3 ; c 1 = c 2 = 

900 J/(kgK); λ1 = 10 W/(m ·K), λ2 = 2 W/(m ·K), and g = 0 W/(m 

3 K). 
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Fig. 3. The normalised rear side temperature history according to the 2T model, T a 
denotes the average temperature. The parameters: ρ1 = ρ2 = 2700 kg/m 

3 ; c 1 = c 2 = 

900 J/(kgK); λ1 = 10 W/(m ·K), λ2 = 2 W/(m ·K), and g = 10 6 W/(m 

3 K). 

Fig. 4. The normalised rear side temperature histories of the GK and 2T models. 

The same set of parameters ( τ = 1 . 215 s, l 2 = 6 · 10 −6 m 

2 ) is utilised for the GK 

Eq. (6) and the 2T model (3) . 
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G

(

f

.e., 

T model: q i (x, t = 0) = 0 

W 

m 

2 
, T i (x, t = 0) = T 0 , (i = 1 , 2) 

(12) 

K model: q (x, t = 0) = 0 

W 

m 

2 
, T (x, t = 0) = T 0 (13) 

ith T 0 being a uniform initial temperature distribution, and is 

qual to the ambient temperature, too. The boundary conditions 

re 

T model: q i (x = 0 , t ≤ t p ) = q 0 

(
1 − cos 

(
2 πt 

t p 

))
W 

m 

2 
, 

 i (x = L, t) = h (T (x = L, t) − T 0 ) 
W 

m 

2 
, (i = 1 , 2) (14) 

K model: q (x = 0 , t ≤ t p ) = q 0 

(
1 − cos 

(
2 πt 

t p 

))
W 

m 

2 
, 

 (x = L, t) = h (T (x = L, t) − T 0 ) 
W 

m 

2 
(15) 

n which it is assumed that q 1 and q 2 have the same boundary 

onditions in the 2T model, i.e., the subsystems equally receive 

he heat pulse during its time t p . After the heat pulse, the bound-

ries are adiabatic for both models at the front, i.e., q (x, t ≥ t p ) = 0

/m 

2 . At the rear end, we can use convection boundary condition 

ith the heat transfer coefficient h , assumed to be the same for 

oth subsystems and for both models. Although, different consti- 

utive equations might lead to different heat transfer coefficients, 

ut h also significantly depends on the environmental conditions 

nd boundary layer properties. Therefore, assuming the same h for 

ifferent models implies that we assume the same environmental 

onditions, which is practically feasible in heat pulse experiments 

ue to the closed measurement chamber. Furthermore, as h de- 

ends on the surrounding fluid boundary layer, we can safely as- 

ume that Fourier’s law remains valid, thus the Nusselt equation is 

ot modified, and the same heat transfer coefficient could be a 

ractically viable situation. 

Both models are solved numerically with the procedure de- 

cribed in [56] , using the finite difference method with staggered 

patial discretization. This procedure is validated by analytical so- 

utions in the case of the GK equation with the given set of initial

nd boundary conditions [29] . 

Figure 2 presents the most straightforward situation with the 

T model, where both heat capacities ( C 1 and C 2 ) are equal, and

he coupling heat transfer coefficient ( g) is considered to be zero 

ogether with the heat transfer coefficient. It means that the sub- 

ystems are decoupled in the entire domain, but it is still possible 

o take their average at the end. It has experimental importance 

ince it can be easily realised using a thin silver layer at the end

1] . However, in that case, the coefficients ( τ , α and l 2 ) cannot
4 
e directly connected to the GK model based on (4) . The quali- 

ative behaviour changes significantly when the coupling is active 

i.e., g � = 0 ). Figure 3 represents the case when g = 10 6 W/(m 

3 K)

s applied, which is chosen to achieve a realistic relaxation time 

= 1 . 215 s, found in recent experiments, being characteristic for 

he rock samples [2] . 

Figure 4 compares the outcomes of both models for that set of 

arameters ( l 2 = 6 · 10 −6 m 

2 ). The GK equation is solved for three

ifferent thermal diffusivities. In two cases, the thermal diffusiv- 

ty of the corresponding subsystem ( α1 and α2 ) are utilised. Their 

verage ( ̄α) is substituted in the third one. Visibly, the GK equa- 

ion produces significantly different outcomes in each case. The 

easons can be found in their physical background. These equa- 

ions model a different physical situation. They are analogous, but 

heir outcome is not the same. While the 2T model remains valid 

or g = 0 , and the average temperature is still meaningful, it cannot 

e compared to the GK equation as τ → ∞ . Furthermore, the in- 

erpretation of their boundary conditions is also different. Overall, 

espite (3) and (5) , these models remain only similar but cannot 

e the same, especially due to the additional term ( ∂ 4 x T ) in the 2T

odel. 

. Experimental aspects 

The heat pulse measurement is used as a standard method to 

etermine the thermal diffusivity of a material by recording the 

ear side temperature history [57] , Fig. 5 /A) shows the arrange- 

ent of the measurement schematically. In order to test the ex- 

erimental capabilities of the 2T model, we aim to reproduce these 

ear side temperature histories recorded recently for a metal foam 

3] and a rock sample [2] . 

However, the 2T model consists of numerous parameters to fit, 

nd their number depends on how the model is utilised. First, as 

e have seen in the previous section, it is not possible to use the 

K parameters and calculate the coefficients in the 2T model using 

4) since the models do not cover the same physical system. There- 

ore, Eqs. (3) and (5) are not advantageous. Second, if the 2T model 
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Fig. 5. A) The schematics of the experimental setup [1] . B) The magnified image 

of the Szaszvar formation rock sample. C) The magnified image of the metal foam 

sample. 
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Fig. 6. The normalised rear side temperature history for the Szaszvar formation. 

The parameters: ρ1 = ρ2 = 2500 kg/m 

3 ; c 1 = c 2 = 900 J/(kgK); λ1 = 2 . 65 W/(m ·K), 

λ2 = 1 . 6 W/(m ·K), h = 13 W/(m 

2 K), g = 0 W/(m 

3 K). 

Fig. 7. The normalised rear side temperature history for the metal foam sample. 

The parameters: ρ1 = ρ2 = 2700 kg/m 

3 ; c 1 = c 2 = 900 J/(kgK); λ1 = 24 W/(m ·K), 

λ2 = 2 W/(m ·K), h = 9 . 8 W/(m 

2 K), g = 1 . 6 · 10 6 W/(m 

3 K). 
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s exploited in its original form, see Eqs. (1) - (2) ), then 6 material

arameters, 1 coupling coefficient and 1 heat transfer coefficient 

re to be found, 8 altogether. The 6 material parameters can be 

educed to 4 if only the heat capacities C i are found instead of ρi 

nd c i . There is a third way, where the two heat equations in the

T model are solved in the form of 

 t T i = αi ∂ xx T i + 

(−1) j g 

ρi c i 
(T j − T i ) , (i = { 1 , 2 } , j = { 1 , 2 | j � = i } ) . 

(16) 

hat way, the fitting of the parameters αi and χi = g/ (ρi c i ) are not

nough to recover the complete set of parameters if the tempera- 

ure averaging is used since it needs C i as well. The efficient fitting 

f 8 parameters would require a complex procedure, which is not 

et developed for the 2T model. Moreover, as the number of pa- 

ameters is twice as much as for the GK model, it needs further 

nvestigation to avoid overfitting. The possibility to take the aver- 

ge of the temperature of the subsystems T i , making the situation 

ven more difficult. Consequently, the data we publish here is only 

n approximation, a basic test of whether the capability of the 2T 

odel is present or not, before developing an advanced technique. 

dditionally, it would not be conclusive to statistically compare the 

ttings to each other since there is no any elaborated fitting ap- 

roach for the 2T model, which would require a thorough parame- 

er investigation. Regarding the GK equation, an efficient evaluation 

ethod is developed based on an analytical solution [8] , where the 

K parameters are found analogously to the case of the Fourier 

eat equation. 

est I. - Szaszvar formation 

The magnified image of the rock sample is presented in 

ig. 5 /B). It has a cylindrical shape with a diameter of 25 mm, 

nd its thickness is 3.8 mm. As highlighted in Fig. 5 /A), there is

 silver layer at the rear side. This is used to realise a proper

ontact for the thermocouple, and consequently, Fig. 6 shows the 

emperature of that silver layer. From the point of view of the 2T 

odel, that silver layer performs the averaging, therefore it is rea- 

onable to fit the average temperature T̄ . Interestingly, the fit de- 

icted in Fig. 6 is found with g = 0 W/(m 

3 K), therefore, the τ and

 

2 parameters cannot be compared to the ones from the GK equa- 

ion. Despite that these models are not comparable on the level of 

quations and parameters, both of them can interpret and model 

he same experimental data. For simplicity, we assumed that both 

omponents have the same heat capacity C i , thus both subsystems 

ontribute equally to the averaging. This is, naturally, a factor that 

an distort the results. However, no data is available on the con- 

tituents of the rock sample. This uncertainty is a weak point of 

he fitting and the 2T model. The two thermal diffusivities are 

1 = 1 . 178 · 10 −6 m 

2 /s, and α1 = 0 . 7111 · 10 −6 m 

2 /s. Their average

s ᾱ = 0 . 944 · 10 −6 m 

2 /s, which is close to the one found with the
5 
K equation: αGK 

= 0 . 922 · 10 −6 m 

2 /s [8] . Additionally, the GK pa-

ameters are τ = 0 . 648 s, and l 2 = 0 . 715 · 10 −6 m 

2 . Consequently,

he 2T model would be more advantageous for subsystems with 

nown inner structure and material properties. 

est II. - Metal foam 

The magnified image of the metal foam sample is presented 

n Fig. 5 /C), which has a thickness of 5.2 mm. The recorded tem- 

erature history, however, shows the evolution of T 1 . This is rea- 

onable since only the temperature of the bulk material can be 

easured, there is no averaging. While the Fourier thermal dif- 

usivity is αF = 1 . 2 · 10 −5 m 

2 /s, it is found that the subsystems

ave significantly lower values, i.e., α1 = 9 . 87 · 10 −6 m 

2 /s, and α2 =
 . 823 · 10 −6 m 

2 /s. In the case of over-diffusive heat conduction, 

he GK thermal diffusivity is always found to be smaller than 

ourier’s [2] . The present set of parameters lead to τ2T = 0 . 76 s,

nd l 2 
2T 

= 8 . 125 · 10 −6 m 

2 , according to Eq. (4) . The prediction of

he GK equation falls into the same order of magnitude, that is, 

GK 

= 0 . 4 s, and l 2 
GK 

= 2 . 89 · 10 −6 m 

2 ( Fig. 7 ). 

. Discussion 

Two advanced models are presented, the 2T and the GK equa- 

ions. Based on the first test of the 2T model, it is clear that both

pproaches can model the same phenomenon. However, there are 

lementary differences, which have several severe consequences on 

he outcome. 

First, we have seen that the initial and boundary conditions can 

iffer from each other. For a 2T model, we needed the assumption 

hat both subsystems receive the same amount of heat. We also 

xploited this attribute for the metal foam sample since there are 

nclusions right below the surface as well. This could be signifi- 

antly different in reality. Additionally, we also assumed that the 
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eat capacities are equal, which could be a viable option in some 

nstances. Second, the 2T model needs information about the ma- 

erial structure, especially about the constituents. Otherwise, the 

T model doubles the number of parameters and makes the fitting 

rocedure notably more difficult. Furthermore, the 2T model re- 

uires a reliable and effective evaluation procedure, probably based 

n an analytical solution that could ease the fitting, at least the 

rst guess for the parameters. Third, the 2T model needs input 

bout the measurement technique itself, which is demonstrated 

hrough the previous tests. It does matter which temperature is 

easured in an experiment, and it explicitly appears in the 2T 

odel. It is an essential advantageous property, which is missing 

rom any other models. However, with the present 8 parameters 

n the 2T model, the fitting might not be unique, at least when 

nly the rear side temperature history is investigated. Therefore, in 

egard the experimental techniques, we propose to record the tem- 

erature also on the front and on the lateral sides of the sample. 

hese would serve as further constraints in the fitting procedure 

hat would help to find the parameters reliably. 

It is important that a model should be predictive for practical 

pplications. For instance, when one designs a composite structure, 

t is easier to estimate the characteristic time scales using the 2T 

odel, as it couples two Fourier heat equations. However, the de- 

ign of the coupling parameter would be challenging as it depends 

n several factors, similarly to a heat transfer coefficient. Both ther- 

al models require further experimental and theoretical investiga- 

ion as it is still an open question how the parameters depend on 

he material structure. Additionally, the 2T model is not restricted 

o the case of two coupled Fourier equations. It could be possible 

o couple the Fourier equation to a more general model such as the 

K equation, providing an approach for more complex heat con- 

uction phenomena. For instance, the approach of Chen [25] can 

e investigated in the future in regard the presented physical and 

athematical aspects. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

cknowledgement 

We thank László Kovács (ROCKSTUDY Ltd. (Kõmërõ Kft.), Hun- 

ary) and Tamás Bárczy (Admatis Kft., Hungary) for producing the 

ock and metal foam samples. The research reported in this paper 

nd carried out at BME has been supported by the grants National 

esearch, Development and Innovation Office-NKFIH FK 134277, by 

he NRDI Fund (TKP2020 NC, Grant No. BME-NC) based on the 

harter of bolster issued by the NRDI Office under the auspices 

f the Ministry for Innovation and Technology and the New Na- 

ional Excellence Program of the Ministry for Innovation and Tech- 

ology project ÚNKP-21-5-BME-368. This paper was supported by 

he János Bolyai Research Scholarship of the Hungarian Academy of 

ciences. S.L. Sobolev acknowledges that he works in accordance 

ith the state task of Russian Federation, state registration No. 

AAA-A19-119071190017-7. 

eferences 

[1] S. Both, B. Czél, T. Fülöp, G. Gróf, A. Gyenis, R. Kovács, P. Ván, J. Verhás, De-

viation from the Fourier law in room-temperature heat pulse experiments, J. 
Non-Equilib. Thermodyn. 41 (1) (2016) 41–48 . 

[2] A. Fehér, N. Lukács, L. Somlai, T. Fodor, M. Szücs, T. Fülöp, P. Ván, R. Kovács,

Size effects and beyond-fourier heat conduction in room-temperature experi- 
ments, J. Non-Equilib. Thermodyn. 46 (2021) 403–411 . 

[3] P. Ván, A. Berezovski, T. Fülöp, G. Gróf, R. Kovács, A. Lovas, J. Verhás, Guy-
er-Krumhansl-type heat conduction at room temperature, EPL 118 (5) (2017) 

50 0 05 . ArXiv:1704.0 0341v1 
6

[4] H.G. Klinger, Heat transfer in perfused biological tissue–I: general theory, Bull. 
Math. Biol. 36 (1974) 403–415 . 

[5] P. Hooshmand, A. Moradi, B. Khezry, Bioheat transfer analysis of biological tis- 
sues induced by laser irradiation, Int. J. Therm. Sci. 90 (2015) 214–223 . 

[6] E.P. Scott, M. Tilahun, B. Vick, The question of thermal waves in heterogeneous 
and biological materials, J. Biomech. Eng. 131 (7) (2009) 074518 . 

[7] A. Sudár, G. Futaki, R. Kovács, Continuum modeling perspectives of non–
fourier heat conduction in biological systems, J. Non-Equilib. Thermodyn. 46 

(4) (2021) 371–381 . 

[8] A. Fehér, R. Kovács, On the evaluation of non-Fourier effects in heat pulse ex- 
periments, Int. J. Eng. Sci. 169 (2021) 103577 ArXiv: 2101.01123 . 

[9] S.L. Sobolev, Heat conduction equation for systems with an inhomogeneous 
internal structure, J. Eng. Phys. Thermophys. 66 (4) (1994) 436–440 . 

[10] S.L. Sobolev, Local non-equilibrium transport models, Phys. Usp. 40 (10) (1997) 
1043–1053 . 

[11] S.L. Sobolev, Nonlocal two-temperature model: application to heat transport in 

metals irradiated by ultrashort laser pulses, Int. J. Heat Mass Transf. 94 (2016) 
138–144 . 

[12] A . Sellitto, V.A . Cimmelli, D. Jou, Influence of electron and phonon tempera- 
ture on the efficiency of thermoelectric conversion, Int. J. Heat Mass Transf. 80 

(2015) 344–352 . 
[13] T. Xue, X. Zhang, K.K. Tamma, On a generalized non-local two-temperature 

heat transfer DAE modeling/simulation methodology for metal-nonmetal ther- 

mal inter-facial problems, Int. J. Heat Mass Transf. 138 (2019) 508–515 . 
[14] A. Sellitto, I. Carlomagno, M.D. Domenico, Nonlocal and nonlinear effects in hy- 

perbolic heat transfer in a two-temperature model, Zeitschrift für angewandte 
Mathematik und Physik 72 (1) (2021) 1–15 . 

[15] A. Bora, W. Dai, J.P. Wilson, J.C. Boyt, Neural network method for solving 
parabolic two-temperature microscale heat conduction in double-layered thin 

films exposed to ultrashort-pulsed lasers, Int. J. Heat Mass Transf. 178 (2021) 

121616 . 
[16] S.G. Bezhanov, S.A. Uryupin, Momentum and energy relaxation in femtosec- 

ond-scale energy transport in metals, Int. J. Heat Mass Transf. 184 (2022) 
122308 . 

[17] R.E. Gonzalez-Narvaez, M.L. de Haro, F. Vázquez, Internal structure and heat 
conduction in rigid solids: a two-temperature approach, J. Non-Equilib. Ther- 

modyn. 47 (1) (2022) 13–30 . 

[18] V.A . Cimmelli, A . Sellitto, D. Jou, Nonlinear evolution and stability of the heat
flow in nanosystems: beyond linear phonon hydrodynamics, Phys. Rev. B 82 

(18) (2010) 184302 . 
[19] V.A . Cimmelli, A . Sellitto, D. Jou, Nonlocal effects and second sound in a non-e-

quilibrium steady state, Phys. Rev. B 79 (1) (2009) 014303 . 
20] M. Wang, N. Yang, Z.Y. Guo, Non-Fourier heat conductions in nanomaterials, J. 

Appl. Phys. 110 (6) (2011) 064310 . 

[21] F.X. Alvarez, D. Jou, Memory and nonlocal effects in heat transport: from dif- 
fusive to ballistic regimes, Appl. Phys. Lett. 90 (8) (2007) 083109 . 

22] A. Berezovski, M. Berezovski, Influence of microstructure on thermoelastic 
wave propagation, Acta Mech. 224 (11) (2013) 2623–2633 . 

23] S.J. Rogers, Second sound in solids: the effects of collinear and non-collinear 
three phonon processes, Le Journal de Physique Colloques 33 (4) (1972) 4–111 . 

24] T.F. McNelly, Second sound and anharmonic processes in isotopically pure Al- 
kali-Halides, Cornell University, 1974 Ph.D. Thesis . 

25] G. Chen, Ballistic-diffusive heat-conduction equations, Phys. Rev. Lett. 86 (11) 

(20 01) 2297–230 0 . 
26] I. Müller, T. Ruggeri, Rational Extended Thermodynamics, Springer, 1998 . 

27] D.D. Joseph, L. Preziosi, Heat waves, Rev. Mod. Phys. 61 (1) (1989) 41 . 
28] M. Szücs, R. Kovács, S. Simi ́c, Open mathematical aspects of continuum 

thermodynamics: hyperbolicity, boundaries and nonlinearities, Symmetry 12 
(2020) 1469 . 

29] R. Kovács, Analytic solution of Guyer-Krumhansl equation for laser flash exper- 

iments, Int. J. Heat Mass Transf. 127 (2018) 631–636 . 
30] R.A . Guyer, J.A . Krumhansl, Solution of the linearized phonon Boltzmann equa- 

tion, Phys. Rev. 148 (2) (1966) 766–778 . 
[31] T. Ruggeri, M. Sugiyama, Rational Extended Thermodynamics Beyond the 

Monatomic Gas, Springer, 2015 . 
32] I. Gyarmati, Non-Equilibrium Thermodynamics, Springer, 1970 . 

33] P. Ván, Weakly nonlocal irreversible thermodynamics – the Guyer-Krumhansl 

and the Cahn-Hilliard equations, Phys. Lett. A 290 (1–2) (2001) 88–92 . 
34] P. Ván, T. Fülöp, Universality in heat conduction theory – weakly nonlocal ther- 

modynamics, Annalen der Physik 524 (8) (2012) 470–478 . 
35] W. Dreyer, H. Struchtrup, Heat pulse experiments revisited, Continuum Mech. 

Thermodyn. 5 (1993) 3–50 . 
36] V. Józsa, R. Kovács, Solving Problems in Thermal Engineering: A Toolbox for 

Engineers, Springer, 2020 . 

37] T. Fülöp, R. Kovács, P. Ván, Thermodynamic hierarchies of evolution equations, 
Proc. Est. Acad. Sci. 64 (3) (2015) 389–395 . 

38] T. Fülöp, R. Kovács, A. Lovas, A. Rieth, T. Fodor, M. Szücs, P. Ván, G. Gróf,
Emergence of non-Fourier hierarchies, Entropy 20 (11) (2018) 832 . ArXiv: 

1808.06858 
39] R. Kovács, P. Rogolino, Numerical treatment of nonlinear Fourier and Maxwell–

Cattaneo-Vernotte heat transport equations, Int. J. Heat Mass Transf. 150 

(2020) 119281 . 
40] J. Ignaczak, M. Ostoja-Starzewski, Thermoelasticity with Finite Wave Speeds, 

OUP Oxford, 2009 . 
[41] D.Y. Tzou, Macro- to Micro-scale Heat Transfer: The Lagging Behavior, CRC 

Press, 1996 . 

http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0001
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0002
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0003
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0003
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0004
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0005
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0006
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0007
http://arXiv:2101.01123
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0009
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0010
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0011
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0012
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0013
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0014
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0015
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0016
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0017
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0018
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0019
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0020
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0021
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0022
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0023
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0024
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0025
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0026
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0027
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0028
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0029
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0030
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0031
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0032
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0033
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0034
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0035
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0036
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0037
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0038
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0038
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0039
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0040
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0041


R. Kovács, A. Fehér and S. Sobolev International Journal of Heat and Mass Transfer 194 (2022) 123021 

[

[  

[

[

[

[

[

[

[

[

[

[

[

[

42] Y. Zhang, Generalized dual-phase lag bioheat equations based on nonequilib- 
rium heat transfer in living biological tissues, Int. J. Heat Mass Transf. 52 (21) 

(2009) 4 829–4 834 . 
43] J. Zhou, J.K. Chen, Y. Zhang, Dual-phase lag effects on thermal damage to bi-

ological tissues caused by laser irradiation, Comput. Biol. Med. 39 (3) (2009) 
286–293 . 

44] N. Afrin, J. Zhou, Y. Zhang, D.Y. Tzou, J.K. Chen, Numerical simulation of ther- 
mal damage to living biological tissues induced by laser irradiation based on 

a generalized dual phase lag model, Numer. Heat Transf. Part A 61 (7) (2012) 

483–501 . 
45] M. Fabrizio, F. Franchi, Delayed thermal models: stability and thermodynamics, 

J. Therm. Stresses 37 (2) (2014) 160–173 . 
46] M. Fabrizio, B. Lazzari, Stability and second law of thermodynamics in du- 

al-phase-lag heat conduction, Int. J. Heat Mass Transf. 74 (2014) 4 84–4 89 . 
[47] R. Kovács, P. Ván, Thermodynamical consistency of the dual phase lag heat 

conduction equation, Continuum Mech. Thermodyn. (2017) 1–8 . 

48] R. Quintanilla, R. Racke, Qualitative aspects in dual-phase-lag heat conduction, 
Proc. R. Soc. London A 463 (2079) (2007) 659–674 . 

49] M. Dreher, R. Quintanilla, R. Racke, Ill-posed problems in thermomechanics, 
Appl. Math. Lett. 22 (9) (2009) 1374–1379 . 
7

50] S.A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduc- 
tion: higher-order approximations, Int. J. Therm. Sci. 113 (2017) 83–88 . 

[51] C. Cattaneo, Sur une forme de lequation de la chaleur eliminant le paradoxe 
dune propagation instantanee, C. R. Hebd. Seances Acad. Sci. 247 (4) (1958) 

431–433 . 
52] P. Vernotte, Les paradoxes de la théorie continue de léquation de la chaleur, C. 

R. Hebd. Seances Acad. Sci. 246 (22) (1958) 3154–3155 . 
53] R. Kovács, Heat conduction beyond Fourier’s law: theoretical predictions and 

experimental validation, Budapest University of Technology and Economics 

(BME), 2017 PhD thesis . 
54] P.M. Mariano, Mechanics of material mutations, Adv. Appl. Mech 47 (1) (2014) 

91 . 
55] G. Capriz, K. Wilmanski, P.M. Mariano, Exact and approximate Maxwell-Catta- 

neo-type descriptions of heat conduction: a comparative analysis, Int. J. Heat 
Mass Transf. 175 (2021) 121362 . 

56] A. Rieth, R. Kovács, T. Fülöp, Implicit numerical schemes for generalized heat 

conduction equations, Int. J. Heat Mass Transf. 126 (2018) 1177–1182 . 
57] W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, Flash method of determining 

thermal diffusivity, heat capacity, and thermal conductivity, J. Appl. Phys. 32 
(9) (1961) 1679–1684 . 

http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0042
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0043
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0044
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0045
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0046
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0047
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0048
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0049
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0050
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0051
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0052
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0053
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0054
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0055
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0056
http://refhub.elsevier.com/S0017-9310(22)00494-X/sbref0057

	On the two-temperature description of heterogeneous materials
	1 Introduction
	2 Thermal models with two time scales
	2.1 2T model
	2.2 GK model
	2.3 Initial and boundary conditions
	2.4 Nonlinearities

	3 Characteristic solutions of the 2T model
	4 Experimental aspects
	Test I. - Szaszvar formation
	Test II. - Metal foam

	5 Discussion
	Declaration of Competing Interest
	Acknowledgement
	References


