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Abstract

We provide a Galton–Watson model for the growth of a bacterial
population in the presence of antibiotics. We assume that bacterial
cells either die or duplicate, and the corresponding probabilities de-
pend on the concentration of the antibiotic. Assuming that the mean
offspring number is given by m(c) = 2/(1 + αcβ) for some α, β, where
c stands for the antibiotic concentration we obtain weakly consistent,
asymptotically normal estimator both for (α, β) and for the minimal
inhibitory concentration (MIC), a relevant parameter in pharmacol-
ogy. We apply our method to real data, where Chlamydia trachomatis
bacteria was treated by azithromycin and ciprofloxacin. For the mea-
surements of Chlamydia growth quantitative PCR technique was used.
The 2-parameter model fits remarkably well to the biological data.

Keywords: multitype Galton–Watson process, asymptotically normal
estimator, quantitative PCR, Chlamydia, MIC.
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1 Introduction

Since the discovery of penicillin, antibiotics have been used increasingly
worldwide to treat bacterial infections. As the overuse of antibiotics may
results drug-resistant bacteria, determining the bactericidal potency is of
the utmost importance.
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In the present paper the bacterial population is modeled by a Galton–
Watson branching process. The offspring distribution, in particular the
offspring mean m(c) depends on the antibiotic concentration c > 0 as

m(c) = mα,β(c) =
2

1 + αcβ
, (1)

where α > 0, β > 0 are unknown parameters. Under this model the min-
imal inhibitory concentration (MIC), the smallest antibiotic concentration
preventing bacterial growth, is the smallest c for which m(c) = 1, that is
α−1/β. Based on measurements at different concentrations we obtain weakly
consistent asymptotically normal estimator both for (α, β), and for the MIC.

We assume that the bacterial population is homogeneous, all the cells
behave similarly. In particular, there is no resistant type. As mutation is
rare under normal conditions and in short time, this is a natural assump-
tion for our dataset. Long-term evolution of bacterial populations with both
resistant and susceptible types was investigated in several papers using de-
terministic models, see Svara and Rankin [11], Paterson et al. [10], and the
references therein. Closest to our model is the deterministic model given
by Liu et al. [7]. In [7] a deterministic expression for the number of colony
forming units is obtained in terms of the antibiotic concentration.

Branching processes are classical tools to model cell proliferation, see the
monographs by Haccou et al. [3], Kimmel and Axelrod [5]. However, to the
best of our knowledge for estimation of bactericidal potency of antibiotics
only deterministic models are used.

In the experiments growth of Chlamydia trachomatis bacterial popula-
tion was a analyzed by quantitative PCR (qPCR) method with 12 different
antibiotic concentrations and 2 different antibiotics.

Chlamydiae are obligate intracellular bacteria that primarily infect ep-
ithelial cells of the conjunctiva, respiratory tract and urogenital tract. They
have a unique developmental cycle, with two phenotypic bacterial forms,
the elementary body (EB) and the reticulate body (RB). The EB is the
infectious form that can be found outside of the host cells and it is not
capable to multiply. After infection of the host cell, the EB differentiates
to RB. The RB multiplies in the host cell by binary fission in a specific
area of the infected host cell, the inclusion. After a certain period of time,
depending on the chlamydial species, the RB redifferentiates to EB. The
EB is then released from the host cell ready to infect new host cells. This
unique life-cycle triggered lot of mathematical work to model the growth of
the population. Wilson [14] worked out a deterministic model taking into
account the infected and uninfected host cells and the extracellular Chlamy-
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dia concentration. Wan and Enciso [13] formulated a deterministic model
for the quantities of RB’s and EB’s, and solved an optimal control problem
to maximize the quantity of EB’s when the host cell dies. The same problem
in a stochastic framework was investigated by Enciso et al. [1] and Lee et
al. [6]. In these papers population growth is modeled without the presence
of antibiotic.

There is a third form of the bacterium, the aberrant body or persis-
tent body. This form is induced by various adverse environmental stimuli,
such as the lack of nutrients and the presence of antibiotics, see Panzetta
et al. [9]. The persistent body is not capable to multiply. After elimination
of the stress stimuli, the persistent body may reenter the normal develop-
mental cycle, differentiates to RB, multiplies and redifferentiates to EB. If
there is an excess of antibiotics reaching the so-called bactericide concen-
tration, the bacterium is killed, and no multiplication can be observed. A
lower antibiotic concentration does not kill all of the bacterium, but leads
to the formation of non-multiplying aberrant bodies. Further lowering the
antibiotic concentration more RB can be observed, while the formation of
aberrant body decreases. At very low antibiotic concentration, the antibiotic
has no effect on the bacterial growth and all the bacteria enter the normal de-
velopmental cycle. Azithromycin and doxycycline are the most commonly
used antibiotics in Chlamydia infections (Miller [8]), but Chlamydiae are
also sensitive to quinolone type antibiotics (Vu et al. [12]). In our study
Chlamydia trachomatis infected cells were treated with azithromycin and
the quinolone ciprofloxacin. The dose response curves, the concentration
dependent impacts of these antibiotics on chlamydial growth were measured
48 hours post infection. A major challenge is the accurate measurement of
chlamydial growth. The golden standard is the immunofluorescent labeling
and manual counting of the chlamydial inclusions, which has several disad-
vantages, including that the concentration of the individual bacteria cannot
be counted. Instead of counting the bacterial cells, the quantity of bacte-
rial genomes (which is a constant times the number of bacteria) can also
be measured. Chlamydial genome concentration in the infected host cells
can be measured by a quantitative polymerase chain reaction (qPCR). This
method is accurate and theoretically measures the genome of all individual
bacteria. Eszik et al. [2] developed a version of the qPCR, the so-called
direct qPCR method for chlamydial growth monitoring. Direct qPCR is
capable to perform qPCR measurements without the labor-intensive DNA
purification. The qPCR method gives a so-called cycle threshold (Ct) value
to each bacterial sample. If the effectivity of the qPCR is 100% then the
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theoretical Ct value equals a − log2 Z
(i)
n;c,x0 , where a ∈ R is an unknown

constant and Z
(i)
n;c,x0 stands for the total number of dead and alive bacterial

cells at antibiotic concentration c > 0, after n generations starting with x0
bacterias, in experiment i. Adding a measurement error, the measurements
have the form

Ci(c, x0) = a− log2 Z
(i)
n;c,x0 + εi;c, i = 1, . . . , N, (2)

where measurement error εi;c is assumed to be Gaussian with mean zero,
and variance σ2ε . This simple linear model is suggested by Yuan et al. [15].
Due to the measurement method lower Ct value means higher genome con-
centration. The dose response curves measured by a direct qPCR method
are given in Figures 3 and 4.

The rest of the paper is organized as follows. The model and some
basic properties are given in Section 2. The estimator of m(c) for c fixed
is provided in Section 3, while in Section 4 we consider different antibiotic
concentrations together. Section 5 contains a small simulation study, and
real data is analyzed in Section 6. The proofs are gathered together in the
Appendix.

2 The theoretical model

We consider a simple Galton–Watson branching process where the offspring
distribution depends on the antibiotic concentration c ≥ 0. Each bacteria
either dies (leaves no offspring), survives (leaves 1 offspring), or divides
(leaves 2 offsprings) with respective probabilities p0 = p0(c), p1 = p1(c), and
p2 = p2(c). Let f(s) = fc(s) denote the offspring generating function and
m = m(c) the offspring mean if the antibiotic concentration is c, i.e.

f(s) = fc(s) = Esξc =
2∑
i=0

pi(c)s
i, s ∈ [0, 1],

m = m(c) = f ′c(1) = Eξc,

where ξc is the number of offsprings. The process starts with X0 = x0 initial
individuals, and

Xn+1;c =

Xn;c∑
i=1

ξ
(n)
i;c ,

where {ξc, ξ(n)i;c : i ≥ 1, n ≥ 1} are independent and identically distributed
(iid) random variables with generating function fc. Note that the offspring
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distribution does depend on the antibiotic concentration c, but here and in
the next section we suppress this dependence from the notation.

Using the qPCR method the observed quantity is the genom of all indi-
vidual bacteria, which is a constant times the total number of bacteria, that
is live and dead cells together. Therefore, we have to keep track of the dead
bacterias too. In order to do this we consider a two-type Galton–Watson
branching process Xn = (Xn, Yn), n ≥ 0, where Xn, Yn stands for the num-
ber of alive, dead bacterias respectively, in generation n. Then the total
number of bacteria at generation n is Zn = Xn +Yn. We also write Zn,x0 to
emphasize that X0 = x0. The process evolves as

Xn+1 =

Xn∑
i=1

ξ
(n)
i

Yn+1 = Yn +

Xn∑
i=1

η
(n)
i , n ≥ 0,

(X0, Y0) = (x0, 0), where (ξ, η), (ξ
(n)
i , η

(n)
i ), n = 1, 2, . . ., i = 1, 2, . . . are iid

random vectors such that P((ξ, η) = (0, 1)) = p0, P((ξ, η) = (1, 0)) = p1,
P((ξ, η) = (2, 0)) = p2. The offspring mean matrix M has the form

M =

(
Eξ Eη
0 1

)
=

(
m p0
0 1

)
.

Next we determine the mean vector of Xn.

Lemma 1. If x0 = 1 then for the mean we have EXn = mn, and EYn =
p0(1 +m+ . . .+mn−1), thus

µn := EZn,1 =

{
mn
(

1 + p0
m−1

)
− p0

m−1 , m 6= 1,

1 + p0n, m = 1.

We note that the covariance matrix of Xn can be determined explicitly.
The computation is straightforward but rather lengthy. Since we only need
the explicit form of the mean and the finiteness of the second moments, we
skip the computation.

The strong law of large numbers and the central limit theorem imply
that for each fixed n as x0 →∞

Zn,x0
x0

−→ µn a.s.
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and
Zn,x0 − x0µn√

x0

D−→ N(0, σ2n), (3)

where
D−→ stands for convergence in distribution, and

σ2n = Var(Zn).

It is clear that the geometric growth rate of EZn is the offspring mean m,
while the precise distribution determines only the constant factor. Simple
analysis shows that if m = p1 + 2p2 > 1 then

mn ≤ µn =
p2m

n − p0
m− 1

≤ m(mn − 1)

2(m− 1)
+ 1, (4)

if m = 1 then
1 ≤ µn = 1 + p0n ≤ 1 +

n

2
, (5)

while for m < 1

1 ≤ µn =
p0 − p2mn

1−m
≤ m(1−mn)

2(1−m)
+ 1. (6)

The upper bound is attained at (p0, p1, p2) = (1 −m/2, 0,m/2), while the
lower bound is attained at (p0, p1, p2) = (0, 2−m,m− 1) for m ≥ 1, and at
(p0, p1, p2) = (1−m,m, 0) for m ≤ 1.

The process (Xn) is a single type Galton–Watson process with offspring
mean m = p1 + 2p2. If m ≤ 1 then the process dies out almost surely, while
if the process is supercritical, i.e. m > 1 then the probability of extinction
is the smaller root of f(q) = q, which is q = p0/p2. By the martingale
convergence theorem

Xn

mn
→W a.s., (7)

where W is a nonnegative random variable. For m ≤ 1 clearly W ≡ 0,
while if m > 1 then P(W = 0) = q, and the distribution of W is absolutely
continuous on (0,∞).

The process Xn = (Xn, Yn) is decomposable, because (Mn)2,1 = 0 for
any n. Limit theorems for supercritical decomposable processes were ob-
tained by Kesten and Stigum [4]. The eigenvalues of M are m and 1, there-
fore the process is supercritical if and only if m > 1. Applying Theorem 2.1
by Kesten and Stigum [4] we obtain for m > 1 that

lim
n→∞

1

mn
(Xn, Yn) = W

(
1,

p0
m− 1

)
,

where W is the nonnegative random variable from (7).
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3 Estimation of the offspring mean

Recall that the measurements are given in the form (2), where Z
(i)
n;c,x0 stands

for the total number of dead and alive bacteria at generation n, starting with
x0 bacteria under antibiotic concentration c at experiment i, i = 1, 2, . . . , N .
We assume that the sequence {εi;c : i ≥ 1, c ≥ 0} are iid, independent of the
process Xn, and is Gaussian with mean 0 and variance σ2ε .

By (3)

log2 Z
(i)
n;c,x0 = log2(x0µn) + log2

(
1 +

Z
(i)
n;c,x0 − x0µn

x0µn

)
= log2(x0µn) +

1
√
x0 log 2

σn
µn
ζi + oP(x

−1/2
0 ),

where (ζi)i=1,...,N is a sequence of iid N(0, 1) random variables. This implies
as x0 →∞

Ci(c, x0) = a− log2(x0µn) + εi;c −
1

log 2
√
x0

σn
µn
ζi + oP(x

−1/2
0 ).

Put

log2 µ̂n = a− log2 x0 −
∑N

i=1Ci(c, x0)

N
.

In what follows
P−→ stands for convergence in probability. By the law of

large numbers and the central limit theorem, we have the following.

Proposition 1. As x0 →∞ and N →∞

log2 µ̂n
P−→ log2 µn,

which implies that µ̂n is a weakly consistent estimator of µn. Furthermore,

1

σε

√
N [log2 µ̂n − log2 µn]

D−→ N(0, 1),

which implies that

1

σεµn log 2

√
N (µ̂n − µn)

D−→ N(0, 1).

We see that from the observations Z
(i)
n;c,x0 we cannot estimate m itself,

only µn. For m ∈ (0, 2] fixed we obtained sharp bounds for µn in (4), (5),
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Figure 1: Upper and lower bound for log2 µn for n = 10.

(6). In Figure 1 we see the corresponding upper and lower bounds for log2 µn
for n = 10. We see that the larger values for µn implies more precise bound
for m. Furthermore, larger n also implies more precise bound. However, for
m ≤ 1 one cannot determine the value m. This is reasonable, since for both
p0 = 1 and p1 = 1 we have µn = 1, whereas m = 0 in the former and m = 1
in the latter case.

However, in real applications we may and do assume that p1 ≡ 0. This is
clearly reasonable for bactericide antibiotics, which either kill the bacteria,
or let it duplicate. While, if a bacteriostatic antibiotic blocks the duplication
of a single bacteria then it keeps blocking in the later generations as well.
Therefore, we can equally count a ‘blocked’ bacteria as a dead one. Assume
now that p1 ≡ 0. Then µn is Lemma 1 simplifies to

µn(m) =
m

2

(
mn−1 + . . .+ 1

)
+ 1 =

{
m(mn−1)
2(m−1) + 1, m 6= 1,
n
2 + 1, m = 1.

Then µn is a strictly increasing convex function, µn(0) = 1, µn(2) = 2n. Its
inverse function ψn : [1, 2n]→ [0, 2] is continuous strictly increasing. Define
the estimate

m̂ = ψn(µ̂n).

From Proposition 1 it follows that m̂ is a weakly consistent estimator of m,
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and

ψn(µ̂n) = ψn

(
µn +

ζσεµn log 2√
N

+ oP(N−1/2)

)
= ψn(µn) + ψ′n(µn)

ζσεµn log 2√
N

+ oP(N−1/2)

= m+ ψ′n(µn)
ζσεµn log 2√

N
+ oP(N−1/2),

where ζ ∼ N(0, 1). Noting that ψ′n(µn(m)) = 1/µ′n(m) we obtain the fol-
lowing.

Proposition 2. Assume that p1 = 0. As x0 → ∞ and N → ∞, m̂ is a
weakly consistent estimator of m, and

µ′n(m)

σεµn(m) log 2

√
N(m̂−m)

D−→ N(0, 1).

4 The dependence of m on the antibiotic concen-
tration

Assuming p1 ≡ 0 we can estimate the mean for c > 0 fixed as described in
Proposition 2. Next we combine our estimator for different concentrations.

We assume that the offspring mean as a function of c satisfies (1) for
some unknown parameters α > 0, β > 0. This is a quite flexible model, and
we show that empirical data fits very well to this model. Rewriting (1)

logα+ β log c = log

(
2

m(c)
− 1

)
.

Assume that we have measurements for K ≥ 2 different concentrations
c1 < c2 < . . . < cK , and we obtain the estimator for the offspring mean
m̂(ci), i = 1, 2, . . . ,K. Using simple least squares estimator we obtain the
estimates

β̂ =
K
∑K

i=1 fi`i −
∑K

i=1 fiL1

KL2 − L2
1

α̂ = exp

{∑K
i=1 fi − β̂L1

K

}
,

(8)

where to ease notation we write

fi = log

(
2

m̂(ci)
− 1

)
, `i = log ci,
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and

L1 =
K∑
i=1

`i, L2 =
K∑
i=1

`2i . (9)

Note that by the Cauchy–Schwarz inequality the denominator of β̂ is strictly
positive for K ≥ 2.

The minimal inhibitory concentration (MIC) is the smallest antibiotic
concentration that stops bacteria growth. In mathematical terms

ϑ := MIC = min{c : m(c) ≤ 1},
which, under the assumption (1), ϑ = MIC = α−1/β. Define the estimator

ϑ̂ = α̂−1/β̂.

In the following statement we summarize the main properties of these
estimators. Introduce the notation

ki = − 2

m(ci)(2−m(ci))

σεµn(m(ci)) log 2

µ′n(m(ci))
, i = 1, 2, . . . ,K.

Proposition 3. Assume that x0 →∞ and N →∞. Then α̂, β̂, and ϑ̂ are
weakly consistent estimators of the corresponding quantities. Furthermore,

√
N(α̂− α, β̂ − β)

D−→ (U, V ),

where (U, V ) is a two-dimensional normal random vector with mean 0 and
covariance matrix (

σ2α σαβ
σαβ σ2β

)
,

where

σ2α =
α2(

KL2 − L2
1

)2 K∑
i=1

k2i (L2 − L1`i)
2

σαβ =
α(

KL2 − L2
1

)2 K∑
i=1

k2i (K`i − L1)(L2 − L1`i)

σ2β =
1(

KL2 − L2
1

)2 K∑
i=1

k2i (K`i − L1)
2 ,

and √
N(ϑ̂− ϑ)

D−→ N(0, σ2ϑ),

with

σ2ϑ =
ϑ2 (logα)2

β2(KL2 − L2
1)

2

K∑
i=1

k2i

(
L2 − L1`i

logα
− K`i − L1

β

)2

.
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5 Simulation study

Regardless of the fixed values c = (c1, . . . , cK) the estimator (α̂, β̂) is weakly
consistent and asymptotically normal as N →∞. However, the asymptotic
variances in Proposition 3 do depend on the specific choice of K ≥ 2 and
the values c1 < . . . < cK . Intuitively, it is clear that we should choose values
for the concentrations ci such that m(ci) is not close to 0, nor to 2.

Consider the following example. Assume that

α = 10, β = 1, n = 10, x0 = 104, σε = 0.2. (10)

It turns out that this is a reasonable choice, see the azithromycin data in
the next section. The mean offspring function m(c) is given on Figure 2.

Figure 2: m(c) in a logarithmic scale (solid (α, β) = (10, 1), dashed (α, β) =
(100, 2)).

Choose K = 3 different concentrations such that c1 = (2−6, 2−4, 2−2).
Then for the asymptotic covariances we obtain

σ2α = 8.63, σα,β = 0.25, σ2β = 0.00767, σ2ϑ = 0.00012. (11)

However, as we see in Table 1 wrong choice of the concentrations might
results much larger variances. For c2 we only observe the process at large
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concentrations, killing all the bacteria, while in case c3 the concentration
is small, the antibiotic does not have any effect. The combination of large
and small values as in c4 does not help either. Less obvious is the fact that
choosing too many points is contraproductive too. This is the case for c5.

concentrations σ2α σα,β σ2β σ2ϑ
c1 = (2−6, 2−4, 2−2) 8.63 0.25 0.00767 0.00012
c2 = (2−2, 2−1, 1) 112 9.41 0.833 0.012
c3 = (2−9, 2−8, 2−7) 967 18.7 0.364 0.0298
c4 = (2−8, 2−7, 2−1, 1) 58 1.17 0.0257 0.00179
c5 = (2−9, 2−8, . . . , 1) 23 0.568 0.0157 0.00051

Table 1: Asymptotic variances for different choices of c for (α, β) = (10, 1).

Choosing the values as in (10), K = 3 and c1 = (2−6, 2−4, 2−2) we
simulated the process as follows. For a given concentration ck, k = 1, . . . ,K,
we calculate m(ck) from (1), and choose the offspring distribution

p0;k = 1− m(ck)

2
, p1;k = 0, p2;k =

m(ck)

2
.

With this offspring distribution we simulate n = 10 generations of the
two-type Galton–Watson process (Xn, Yn) described in Section 2. There-
fore we obtain Z10;ck,x0 . Independently, we repeat the simulation N times
for each concentration ck. Independent of the Z’s take an iid sequence
of Gaussian random variables {εi;ck : i = 1, . . . , N ; k = 1, . . . ,K} with
mean zero and variance σ2ε . Take a = 0 in (2). The resulting sequence
{Ci(ck, x0) : i = 1, . . . , N ; k = 1, . . . ,K} is one simulated measurement.
From each measurement we calculate the estimator (α̂, β̂) as described in
(8). We simulated the measurement this way 1000 times. The resulting
means and empirical variances of

√
N(α̂ − α, β̂ − β) and

√
N(ϑ̂ − ϑ) are

given in Table 2. We see that the empirical values are very close to the
theoretical ones in (11) even for N = 3, 10. It is somewhat surprising that
the estimates work even for N = 3, which is the suggested number of mea-
surements at each concentration in microbiology (see e.g. [15, 2]).

Next we investigate our estimator with a steeper killing curve. Let α =
100 and β = 2, and the other values as in (10). This is also a possible choice,
see the ciprofloxacin data. In Figure 2 wee see the mean offspring function
m(c) for (α, β) = (10, 1) and for (α, β) = (100, 2). In the latter case there
are less relevant concentrations, so we expect larger variances. In Table 3
we see that this is partly true, however the estimate of ϑ is good.
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N α β ϑ σ̂2α σ̂α,β σ̂2β σ̂2ϑ
3 10.359 1.004 0.0998 12.95 0.325 0.00891 0.000121

10 10.106 1.002 0.1 9.27 0.262 0.00789 0.000116
50 10.03 1.0005 0.1 9.3 0.265 0.008 0.000124

100 9.999 0.9999 0.1 8.83 0.258 0.008 0.000117
∞ 10 1 0.1 8.63 0.25 0.00767 0.00012

Table 2: Empirical mean and variances for (α, β) = (10, 1).

concentrations σ2α σα,β σ2β σ2ϑ
c1 = (2−6, 2−4, 2−2) 11298 35.6 0.0124 0.000364
c6 = (2−5, 2−4, 2−3) 1431 5.49 0.0216 0.0000126
c7 = (2−7, 2−6, . . . , 2−1) 42490 129.3 0.429 0.00142

Table 3: Asymptotics variances for different choices of c for (α, β) = (100, 2).

6 The experiment

In the experiment 50, 000 mother cells were infected by Chlamydia trachoma-
tis. The multiplicity of infection (MOI) value, the ratio of the initial number
of bacteria and number of mother cells is 0.2. That is x0 = 10, 000. The
measurements correspond to 12 different antibiotic concentrations using two-
fold dilution technique, meaning that ci = 2ic0, i = 0, 1, . . . , 11. For each
concentration 3 measurements were done. For the technical details of the
experiment we refer to [2].

We analyze two antibiotics: azithromycin and ciprofloxacin. These an-
tibiotics have different antimicrobial effects: azithromycin is a bacteriostatic
antibiotic, meaning that it does not necessarily kill the bacteria, only pre-
vents growth, while ciprofloxacin is a bactericide antibiotic, which usually
kills bacteria. In Figures 3 and 4 we see the qPCR measurements as a
function of log2 c.

If c is large enough, i.e. at very high antibiotic concentration m(c) is
close to 0, that is Zn;x0,c ≈ x0, since all the bacteria dies without offspring.
Therefore, for c large enough we can estimate the constant a in (2) as

âN =
1

N

N∑
i=1

Ci(c, x0) + log2 x0.

Then âN is normally distributed with mean a and variance σ2ε/N . Further-
more, σε can also be estimated from these data. For azithromycin we used
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Figure 3: Measured (◦) and simulated (×) Ct values for azithromycin.

the measurements where c ≥ 2−1, while for ciprofloxacin c ≥ 1.
The number of generations n is typically a fixed small number, in our

experiments around 10. If c is small then there is no antibiotical effect so the
bacterial population grows freely, that is Zn,x0,0 ≈ 2nx0. We can estimate n
as

n̂N = âN − log2 x0 −
1

N

N∑
i=1

Ci(c, x0).

Then n̂N is normally distributed with mean n and variance 2σ2ε/N . To
estimate n̂N we used the smallest possible concentration, c = 2−7.

Using Proposition 2 we estimate m(c). In Figures 5 and 6 we see the
estimated means and the corresponding fitted curve m(c), where the pa-
rameters α, β are estimated as described in (8). In the previous section
we showed that the best strategy is to choose few concentration where the
mean offspring is not close to 0, nor to 2. For the azithromycin we chose
c = (2−5, 2−4, 2−2, 2−1) and obtained α̂ = 9.1, β̂ = 1.12, and ϑ̂ = 0.139. (We
obtain similar estimates for various reasonable choices.) For ciprofloxacin in
Figure 4 we see a rapid drastic change; for c ≥ 2−2 the population dies out,
while for c ≤ 2−4 the population freely grows. We chose c = (2−4, 2−3, 2−2)

14



Figure 4: Measured (◦) and simulated (×) Ct values for ciprofloxacin.

and obtained α̂ = 71.8, β̂ = 2.46, ϑ̂ = 0.175. (These values are less stable
to the change in c.) Simulated measurements with the estimated values are
given in Figures 3 and 4, where the circles are the real measurements and
the crosses are the simulated ones. In both cases we obtain a remarkably
good fit.

7 Conclusion

To model the growth of a bacterial population and its dependence on the
antibiotic concentration we proposed a simple Galton–Watson model, where
the offspring distribution depends on the antibiotic concentration via (1).
A stochastic model is more natural compared to the previous deterministic
model in [7], because we are able to estimate the parameters of the model
and investigate the properties of the estimator. Taking into account the
measurement error using qPCR technique, from the measurements at differ-
ent antibiotic concentrations we obtained a weakly consistent asymptotically
normal estimator for the unknown parameters (α, β) in (1).

The minimal inhibitory concentration (MIC), the smallest concentration

15



Figure 5: Estimated means and the fitted curve for azithromycin.

Figure 6: Estimated means and the fitted curve for ciprofloxacin.
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of antibiotic that prevents bacterial growth, is a very important parameter
in pharmacology. Its estimation is rather troublesome, since due to the usual
two-fold dilution technique one can observe only the bacterial growth under
antibiotic concentration c0, 2c0, . . . , 2

kc0. Therefore one can claim only that
the MIC belongs to some interval [c, 2c], or give an upper bound for it.
The vast majority of the literature does not provide a proper mathematical
model for the growth of the bacterial population, only determines the MIC
value as the smallest concentration without visible bacterial growth. In our
framework an explicit mathematical definition of the MIC is given, and we
constructed an estimator for it.

Simulation study showed that the estimators work surprisingly well even
if the number of measurements at different concentration is 3, which is the
suggested number in microbiology (see e.g. [15, 2]).

We applied the model to real measurements, where growth of Chlamydia
trachomatis was analyzed treated by two different antibiotics. Although the
mathematical model has only 2 parameters, we found extremely good fitting
to the real data for both the bactericide and the bacteriostatic antibiotic.

Appendix

Proof of Lemma 1. Conditioning on Xn

E [Xn+1|Xn] =

(
mXn

p0Xn + Yn

)
= XnM,

thus
EXn = X0M

n.

We have, by induction on n that

Mn =

(
mn p0(1 + . . .+mn−1)
0 1

)
,

thus

EZn = mn + p0(1 +m+ . . .+mn−1)

=

{
mn
(

1 + p0
m−1

)
− p0

m−1 , if m 6= 1,

1 + np0, if m = 1,

as claimed.
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Proof of Proposition 3. Again by Proposition 2

fi = log

(
2

m(ci)
− 1

)
− 2

m(ci)(2−m(ci))

σεµn(m(ci)) log 2√
Nµ′n(m(ci))

ζi + oP(N−1/2)

= log

(
2

m(ci)
− 1

)
+

ki√
N
ζi + oP(N−1/2),

where ζi’s are iid N(0, 1), i = 1, 2, . . . ,K. Recall the notation in (9). Then

K∑
i=1

fi (K`i − L1) =

K∑
i=1

[
log

(
2

m(ci)
− 1

)
+
kiζi√
N

]
(K`i − L1) + oP(N−1/2).

Substituting back into (8)

β̂ − β =
1√
N

K∑
i=1

ζi ki
K`i − L1

KL2 − L2
1

+ oP(N−1/2), (12)

and similarly

log α̂− logα =
1

K
√
N

K∑
i=1

ζi ki

(
1− L1(K`i − L1)

KL2 − L2
1

)
+ oP(N−1/2)

=
1√
N

K∑
i=1

ζi ki
L2 − L1`i
KL2 − L2

1

+ oP(N−1/2),

(13)

which implies

α̂− α =
α√
N

K∑
i=1

ζi ki
L2 − L1`i
KL2 − L2

1

+ oP(N−1/2).

From (12) and (13) we obtain

ϑ̂− ϑ = − ϑ logα√
Nβ(KL2 − L2

1)

K∑
i=1

ζiki

(
L2 − L1`i

logα
− K`i − L1

β

)
.
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