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Motion is a typical reaction among animals and humans trying to reach better conditions in a changing
world. This aspect has been studied intensively in social dilemmas where competing players’ individual and
collective interests are in conflict. Starting from the traditional public goods game model, where players are
locally fixed and unconditional cooperators or defectors are present, we introduce two additional strategies
through which agents can change their positions of dependence on the local cooperation level. More importantly,
these so-called sophisticated players should bear an extra cost to maintain their permanent capacity to evaluate
their neighborhood and react accordingly. Hence, four strategies compete, and the most successful one can be
imitated by its neighbors. Crucially, the introduction of costly movement has a highly biased consequence on
the competing main strategies. In the majority of parameter space, it is harmful to defectors and provides a
significantly higher cooperation level when the population is rare. At an intermediate population density, which
would be otherwise optimal for a system of immobile players, the presence of mobile actors could be detrimental
if the interaction pattern changes slightly, thereby blocking the optimal percolation of information flow. In this
parameter space, sophisticated cooperators can also show the co-called Moor effect by first avoiding the harmful
vicinity of defectors; they subsequentially transform into an immobile cooperator state. Hence, paradoxically,
the additional cost of movement could be advantageous to reach a higher general income, especially for a rare
population when subgroups would be isolated otherwise.

What should we do if we want to avoid being exploited
by others or to realize a more supportive environment? A
simple answer is to leave our location and search for a bet-
ter place. This idea was studied intensively in evolution-
ary game theoretical models where cooperation and de-
fection compete. The problem has been investigated from
different angles, where an individual’s ambition to leave a
detrimental place or search for a more promising location
could be the main motivation. Interestingly, the major-
ity of previous models assumed homogeneous populations
where everyone is ready to move, ignoring the extra in-
vestment required to permanently monitor our neighbor-
hood. In the present research, we explore both aspects
and assume that staying or thinking about leaving could be
competing options, with explicit consideration to the addi-
tional cost of the latter. In the resulting 4-strategy model,
we provide insight into the conditions under which costly
migration could be beneficial to attain higher general well-
being across the entire society.

I. INTRODUCTION

Wars, climate change, and decaying living conditions are
the major factors that spur migration, which not only hugely
affects the global economy, but also precipitates further
change in our hectic world. In 2019, for instance, at least 3.5
% of the world’s population comprised international migrants,
according to the UN [1]. Individual mobility, however, is not
just a simple reaction to a specific living condition; it could
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also be the source of a co-evolutionary mechanism of how
collective well-being evolves in the framework of human co-
operation [2–9]. Therefore, when we sought to understand the
evolution of cooperation in spatially structured populations,
considering mobile agents was among our core ideas from the
outset [10–12].

Previous models have focused on different aspects of in-
dividual motivations to move. An involved actor’s reaction
could be risk-driven [13] or environment-driven [14–17], but
aspiring to a declared income or expectation regarding a cer-
tain payoff level could also be a prime goal of migration [18–
20]. The principal question along this research avenue is how
migration influences the evolution of cooperation among play-
ers who are involved in a social dilemma where their indi-
vidual and collective interests are in conflict. More precisely,
they can collect a higher payoff individually if they defect, but
if they all choose this strategy, then they will earn a smaller in-
come than in the scenario when they cooperate. Interestingly,
the conclusions are more subtle in terms of summary in the
form of a simple message [21–26]. In some cases, the play-
ers’ movement is proved to be harmful, while in other cases,
it clearly becomes a mechanism for supporting cooperation.
Additionally, there are examples where the intensity of mobil-
ity is a decisive factor in the evolutionary outcome [27, 28].

Nevertheless, previous model studies typically assumed
that a homogeneous population where every player has the
capacity to move and improve their individual payoff. This
choice could be the result of a decision given that moving
could be a costly skill. More precisely, those players who are
willing to move should constantly watch and evaluate their
neighborhood, as whether to move will depend on the result
of this analysis. Undoubtedly, these efforts require an extra
investment from the mentioned players, which should be con-
sidered an extra cost. Perhaps it is worth mentioning that one
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previous study examined costly migration [29], but the con-
clusions were controversial. To solve the puzzle and provide
a more comprehensive conclusion in our research, we assume
that the population could be heterogeneous. More precisely,
a player can decide whether she wants to invest extra efforts
to explore the neighborhood and possibly change residence,
or whether, alternatively, she prefers to save in terms of the
payoff by not moving and using unconditional cooperator or
defector strategies. Premised on this, we constructed a 4-
strategy model where both approaches are available, allow-
ing us to explore the profitability of each attitude at specific
parameter values, namely, average population density and the
strength of the social dilemma. In the next section, we de-
fine our extended public goods game (PGG) and introduce
the key parameters. Sec. III highlights our main observations.
Sec. IV concludes with a summary of the results and a discus-
sion about their implications.

II. MODEL

We start from a traditional spatial PGG, where players are
distributed on a square lattice with a linear size of L, and pe-
riodic boundary conditions are applied [30, 31]. Some of the
lattice points are occupied by a player while others are not;
hence, altogether, 0 < ρ ≤ 1 portion of the availableL×L po-
sitions are filled. According to the standard protocol, an actor,
who could be an unconditional cooperator (C) or an uncon-
ditional defector (D), plays a PGG with the nearest available
neighbors in which a cooperator player invests the amount of
c = 1 in the common pool, while a defector player refrains
from doing so. We then increase the accumulated contribu-
tions by an r enhancement factor and distribute the resulting
public goods equally amongst all group members regardless
of their strategies. Of course, players are also involved in the
games their neighbors organize.

We therefore extend the model by introducing two new
strategies that behave similarly to the original strategies in
the game but entail an extra skill related to moving. More
precisely, it is well-known that a cooperation level that is too
low is detrimental to everyone. Therefore, the new group of
players, called sophisticated players, are capable of evaluating
their local neighborhood and leaving it if it is harmful. In par-
ticular, they will leave their original positions if the average
cooperation level is less than 50% among the existing neigh-
bors. Moreover, if there is no other actor in the nearest neigh-
borhood because all four neighboring lattice sites are empty,
the actor will leave the site, too. In this way, we introduce so-
phisticated cooperator (SC) and sophisticated defector (SD)
strategies. These players always explore their environment,
and if they are dissatisfied, they move to a randomly chosen
neighboring empty place and make a trial strategy change in
the new position. Importantly, sophisticated players bear an
extra cost f because they need to constantly watch and eval-
uate their neighborhood. One may argue that the introduction
of mobile players will definitely support cooperation because
cooperators may have a chance to escape from a situation
where they are being exploited. On the other hand, mobile

defectors also have the opportunity to search for remote play-
ers who could be new prey given their selfish attitude. Hence,
the question is far from trivial. Interestingly, however, as we
will show, this extra cost has a biased consequence that im-
pacts the competing strategies.

The strategy change is based on the widely used imitation
process, where the probability of a player x adopting the strat-
egy of a neighboring player y is based on the payoff difference
between these competitors:

W (sx, sy) =
1

1 + exp[(Πx − Πy)/K)]
, (1)

where parameter K quantifies the uncertainty of strategy imi-
tation. To attain results that are comparable with those previ-
ously obtained in the traditional model, we fixed K = 0.1.

In sum, at the beginning of the Monte Carlo (MC) simu-
lation, we first randomly distribute N = ρ × L × L players
on a square lattice where ρ, as a key parameter, determines
the average population density. The players randomly choose
a strategy from the available set (C,D, SC, SD). During
an elementary step, we randomly choose a player i. If the
strategy that player i selects is SC or SD, which means we
have a sophisticated player, then player i explores her neigh-
borhood and determines the average cooperation level among
the neighbors. If it is below 1/2, then the player moves to a
randomly chosen empty neighboring place. In the next step,
player i, either in the original position or in the new place, se-
lects a neighboring player j who could be a potential model
player for strategy adoption. After we calculate the payoff
values for both involved players according to the PGG pro-
tocol, it is reduced by cost f for a sophisticated player. Next,
player i imitates player j with the probability defined by Eq. 1.
Evidently, traditional players are only involved in the strategy
updating step at their original positions. A full MC step is es-
tablished if we repeat the above-described procedureN times.
The relaxation time to reach the stationary state depends not
only on the applied system size but also on the population den-
sity. In each case, we monitored the evolution of strategies
and measured the proportions of strategies when they reached
the stationary values. The typical relaxation time was about
10,000 MC steps. In this research, we typically applied a lin-
ear system size of L = 400, but we also checked other sizes
to exclude finite-size effects. To obtain reliable values for the
cooperation level or for the proportions of strategies, we have
typically averaged the results of 10-50 independent runs.

III. RESULTS

Let us begin by presenting our key observation about the
consequence of mobile players’ presence in addition to tra-
ditional immobile actors. This can be done effectively if
we compare the general cooperation level for the original 2-
strategy model with that of the extended 4-strategy case de-
fined in the previous section. As we noted, our main control
parameters are the r synergy factor of PGG, which character-
izes the strength of the dilemma, and ρ general density, which
indicates the population’s degree of rarity or crowdedness.
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FIG. 1. Cooperation level on the enhancement factor–density param-
eter plane for two models. The upper panel shows the result of the
2-strategy model where unconditional cooperators (C) and defectors
(D) are present and players have no moving capacity. The bottom
panel shows the cooperation level for our present 4-strategy model,
which represents our extension of the original model with the addi-
tion of two new strategies that entail cooperation (SC) or defection
(SD), and players are capable of leaving their positions if they find
them detrimental. This skill requires extra effort, in the form of an
extra fee, which is f = 0.08 in the plotted case. Evidently, the sum
of the proportions ofC+SC fractions indicates the cooperation level
in the latter case.

A comparison of the results obtained in the mentioned cases
is presented in Fig. 1. The upper panel shows the traditional
model, where we can see that there is an optimal density that
provides the highest cooperation level, especially at modest r
values. This result confirms a previous finding that at a fixed
dilemma strength, we can reach a higher cooperation level if
the population is less crowded [32]. More precisely, the high-
est cooperation level can be reached in the vicinity of the per-
colation threshold, which provides a successful combination
of external conditions: The population is sufficiently rare to
avoid providing easy prey for defectors, but on the other hand,
information about cooperators’ collective success can spread
throughout the whole system [33]. The latter condition is not
fulfilled if the population is rare. In this case, it is almost a
random situation in which strategy wins on a small island and
the local evolutionary outcome depends largely on the initial
distribution of strategies. Therefore the final and practically
frozen state is a mixture of pure C and pure D islands. This
consequence can be seen nicely in the upper panel of Fig. 1,
where the cooperation level is around 0.5, almost indepen-
dently of the dilemma strength if ρ is sufficiently small.

This situation changes significantly if mobile strategies are
also introduced. In this case, a significantly higher coopera-
tion level is also reached in a rare population. One might say

that the information spreads due to mobile agents, but the ex-
planation is not as simple because defectors can also move.
The deeper answer is based on the highly biased consequence
of costly movement, which is harmful to defectors but can of-
fer cooperators extra help. We will elaborate on this argument
later. Here, it is worth noting that the applied extra fee f is
sufficiently high to represent the enhanced investment for so-
phisticated players, but it is not too large to make their payoff
values unfeasible.

If we carefully compare the mentioned panels, we can
see that a better outcome can be reached in the traditional
2-strategy model around the previously mentioned optimal
ρ ≈ 0.6 density when r is small; hence, the dilemma strength
is more critical. For a quantitative comparison, in Fig. 2, we
simultaneously present both models’ cooperation levels de-
pendent on the synergy factor at a fixed value of ρ = 0.65. Ev-
idently, in the 4-strategy model, the cooperation level is calcu-
lated as the sum of the proportions of theC and SC strategies.
The figure shows that a significantly higher cooperation level
can be reached in the traditional model, where players cannot
move, and the difference only vanishes for higher r values.
This effect can be understood if we consider how movements
happen. If a player is satisfied because the cooperation level is
sufficiently high, then even mobile players will maintain their
positions and move only in the alternative case.

FIG. 2. Cooperation level dependent on the enhancement factor at
ρ = 0.65 for the traditional 2-strategy model (red) and the extended
4-strategy model (blue), with f = 0.08, as indicated. Around the
optimal density, which is close to the percolation threshold, mobile
actors’ presence could be harmful when the synergy is low.

This so-called environment-driven movement can cause
slight changes in the interaction graph, resulting in more
aggregated colonies. The aggregation of players can be
measured directly if we calculate the probability of finding
nearest-neighbor players around a player. In this way, two-
point probability p(1, 1) can indicate the likelihood of finding
the nearest neighbor next to our focal player. For example, if
we consider the two-strategy model at the mentioned density
of ρ = 0.65, then the supposed random distribution of players
results in an approximate value of p(1, 1) = 0.42 for the men-
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tioned pair probability. This value is significantly larger for
the 4-strategy model, where players may move and approach
each other. More specifically, if we use the same ρ value at
r = 3.4 and f = 0.08, then the mentioned probability in-
creases to 0.60. In other words, the population becomes more
aggregated, but it also means that the comprehensive percola-
tion is in jeopardy because we are close to the critical ρ value.
In this way, mobility may threaten one of the conditions we
previously identified as necessary to reach the highest cooper-
ation level. Of course, if the synergy factor is sufficiently high,
then we do not need proper percolation because the coopera-
tor can also win locally; hence, the detrimental consequence
of the player’s movement becomes irrelevant, and the coop-
eration level is restored to reach the value produced by the
simpler model with fixed players. To summarize our observa-
tions, there is a small area on the parameter plane at interme-
diate ρ values and modest r values when the traditional model
provides a better outcome, while for the majority of param-
eter pairs, the 4-strategy model undoubtedly offers a higher
cooperation level.

In the following paragraphs, we provide deeper insight into
the consequences of adopting new strategies. In Fig. 3, we
present a phase diagram on the r − ρ parameter plane, where
the same extra cost value for sophisticated players is used as
in Fig. 1. First, we would like to stress that only traditional
defectors survive if the synergy factor is sufficiently low, in-
dependent of the average density ρ. Evidently, if the social
dilemma is strong, then cooperators cannot gain the neces-
sary income to compensate for defectors’ exploitation. Conse-
quently, only those who adopted D and SD strategies survive
at the intermediate evolutionary stage. In this case, however,
the extra cost of the SD strategy forms a disadvantage com-
paring with simple D players, who will eventually dominate
the whole system.

Interestingly, the advantage of the D over the SD strategy
remains even if the extra cost f is zero. In the latter case, one
might expect that the capacity to move should provide some
benefit to adopters of the SD strategy, but the opposite is true.
The reason is as follows. The advantage of SD to move also
makes accumulation harder; it is therefore easier for an SD
player to meet a D player in a new position. On the con-
trary, if we select a D player, who cannot escape from nearby
players for strategy update, then it is more likely that the D
player will choose another D neighbor as a model player, in
which case nothing happens, and the portion of D players re-
mains unchanged. When we select an SD player during the
elementary process, then she may move first, but she may se-
quentially encounter aD player. Indeed, there is no difference
between their payoff values, but Eq. 1 indicates a 0.5 proba-
bility of adopting strategy D, which can decrease the portion
of SD. This asymmetry will gradually lead to a fully D des-
tination.

Returning to the phase diagram, it highlights that the SD
strategy is only viable in a very limited parameter area when
the dilemma strength is modest and the population is practi-
cally crowded. At these r values, the coexistence of coopera-
tor and defector strategies is expected in a spatial system [34];
therefore, SD players can enjoy the proximity of supporting

FIG. 3. Phase diagram of the 4-strategy model on the r − ρ plane
obtained for an additional cost f = 0.08. If the synergy factor is
sufficiently low, then only fixed defectors survive, independent of the
average population concentration. Sophisticated defectors can only
survive in a limited parameter area if the dilemma is mild and the
system is crowded. Sophisticated cooperators, however, are viable in
a large area, especially when mobility has an enhanced role in a rare
population.

cooperators that can generously cover their extra fees. On the
other hand, their skill of leaving a detrimental environment
makes them more competitive relative to the pure D strategy.
In other words, our preliminary expectation about the advan-
tage of mobile players is justified in the mentioned case. Im-
portantly, however, it is only valid for the SD strategy, not the
SC strategy. Players who adopt the latter strategy simply have
no chance of escaping defectors because of the high general
density, making it evident that the extra cost puts them at a
disadvantage. These mechanisms explain that C + SD forms
a stable solution here.

When the system is less crowded, another aspect of the ac-
tor’s mobility can be detected. In a rare population, coopera-
tors may have a good chance of escaping defectors; hence, SC
strategy becomes viable. Interestingly, intermediate concen-
tration does not provide an opportunity for the SD strategy.
Indeed, these SD adopters can escape from nearby players,
but they can no longer utilize cooperator strategies, because
the latter type of player can form a compact island, which
gives them highly competitive payoff values. As we stressed
above, intermediate density was already a perfect condition in
the 2-strategy model, and this conclusion remains intact in the
extended model. One may claim that C and SC are still un-
equal since the latter should bear the extra cost f . However,
they remain separate because SC players can form “satisfied”
groups; hence, their coexistence is a mixture of the C and SC
domains.

Finally, if the population is very rare, then immobile defec-
tors once again have a chance at survival. In this case, they
win their local battle, but they are stuck afterward. Other do-
mains invaded by C or SC players are also satisfied; they
remain still, and the information about more successful strate-
gies does not reach D players. This explains why we can
observe the D + C + SC solution here.

Before discussing these parameter regions, let us return to
the case of intermediate ρ values; we can observe an inter-
esting process if we monitor the proportion of strategies dur-
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ing the evolution. Typical time evolution is shown in Fig. 4,
where we plotted how the proportions of strategies change if
we launch the evolution from a random initial state at r = 4,
ρ = 0.65, where sophisticated players bear an extra cost of
f = 0.08. At the very beginning, for a short initial period, de-
fector players enjoy a random local neighborhood; hence, co-
operators are decaying. The survivors then form cooperative
clusters that provide them with competitive payoffs; hence,
their numbers start growing. This “first down, later up” dy-
namic is the typical trademark of network reciprocity reported
earlier in several cases [35–39]. Another consequence of the
emergence of cooperative clusters is the rapid extinction of the
SD strategy. Even if they can escape nearby players, during
their migration, they may encounter a phalanx of cooperators
that can easily defeat them. Of course, this effect is not found
among pure D players, who cannot move; hence, they are not
threatened by a more successful strategy. Accordingly, their
proportion declines at a significantly slower rate due to the
strategy invasion process. The portion of sophisticated co-
operators, however, starts declining again after reaching the
maximum level. This phenomenon can be explained as fol-
lows. First, it is advantageous for cooperators to be mobile
because they can avoid intensive exploitation at the hands of
defectors. This is why their minimal proportion in the first
stage is a bit higher than the minimum level for the C strat-
egy. Hence, the presence of the SC strategy helps to fight
defection more effectively. However, later, when defectors
are eradicated, the vicinity of the simple C strategy becomes
dangerous to them because the negative consequence of the
additional cost f lowers their payoff. This process resembles
the so-called Moor effect [40]. When sophisticated cooper-
ators have performed their duties (and weakened defectors),
they may go (for the benefit of simple cooperators).

In Fig. 5, we present some characteristic patterns in this
parameter area to summarize the differences between the tra-
ditional and the extended models. The first row shows the sta-
tionary strategy distribution in the 2-strategy model while the
bottom row depicts the results of the 4-strategy case. Further-
more, the patterns shown in the first column were obtained
at r = 3, which represents harsh external conditions, while
the second column illustrates observations for a more friendly
case at r = 5. The difference between the two is striking.
While the players’ spatial distribution is random in panels
(a) and (b) due to the model’s similarity to the traditional 2-
strategy model, the players are more aggregated when indi-
vidual mobility is allowed. This is especially true for a small
r, as shown in panel (c), because in this case, nobody is sat-
isfied in the initial stage; hence, sophisticated players move
actively. However, they are prone to easy capture by defectors
because of the low r value. In the large r case, the popula-
tion is still more aggregated than a random distribution; hence,
the pattern is below the percolation threshold, though the to-
tal number of players would dictate the percolation in a uni-
formly distributed system. This explains why SC players can
survive: because they can form isolated domains comprising
pure C players who would otherwise beat them. For a simi-
lar reason, some isolated D spots remain, but they represent
a negligible minority; hence, the system closely approaches a

FIG. 4. The early evolution of the proportions of strategies in the
extended model at r = 4, ρ = 0.65, and f = 0.08. We can
detect three different stages in the evolutionary process, which are
discussed thoroughly in the main text. While the early growth of
C and SC strategies after an initial decline is a sign of how net-
work reciprocity works, the subsequent decline of the SC strategy is
a consequence of the so-called Moor effect. Finally, though this is
not shown here, all defector strategies die out, and only cooperator
strategies survive.

FIG. 5. Representative strategy distributions obtained for a density
of ρ = 0.65 at r = 3 (left column) and at r = 5 (right column).
Panels (a) and (b) show the 2-strategy model, while panels (c) and
(d) depict the 4-strategy case. The panels only show a 100 × 100
section of a larger system. Dark (light) blue represents pure (sophis-
ticated) cooperators, while dark red shows pure defectors. Note that
sophisticated defectors cannot survive here.
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full cooperator state.
Next, we discuss the low ρ region when the population is

rare and smaller communities become partly separated. In
this case, the introduction of costly mobile strategies has a
clear positive impact regarding improving general coopera-
tion. This can be seen in Fig. 6, where we compared the
average cooperation levels dependent on the synergy factor
at ρ = 0.25. First, we briefly discuss the gentle increasing
red slope of the 2-strategy model. As we mentioned at the
beginning of Sec. III, here, the key parameter that character-
izes the dilemma strength only has second-order importance.
There are small communities where the evolutionary outcome
is sensitive to the initial distribution of strategies. Therefore
either cooperators or defectors can win locally, which pro-
vides an average cooperation level close to the random value.
Of course, the value of the synergy factor plays a certain role;
hence, the cooperation level increases slightly as we increase
r. However, the r-dependence is unusually weak, which is the
consequence of poor communication between smaller com-
munes. Of course, it also means that cooperators may survive
at very small r values, but practically, it is an artificial effect,
and it is divorced from the social dilemma.

FIG. 6. Cooperation level dependent on the enhancement factor at
ρ = 0.25 for the traditional 2-strategy model (red) and the extended
4-strategy model (blue), with f = 0.08, as indicated. In this param-
eter region, the presence of sophisticated players has a clear positive
impact on public cooperation.

This situation changes dramatically when we introduce mo-
bile players. In this case, a significantly higher cooperation
level can be reached at a low r value because mobile play-
ers can spread the good news about the benefits of coopera-
tion. Of course, SD players can also move, but they are un-
protected, as we argued earlier. If we compare the blue line
with the results shown in Fig. 2, we see that full cooperation
cannot be reached in a rare population, even if we have mo-
bile actors. This is because some tiny domains are occupied
by pure D players. Even if they are unsatisfied, they cannot
change their status. Other domains formed by C players are
also immobile, or, if they are SC players, then they are sat-
isfied in the company of nearby neighbors. Therefore, they

FIG. 7. Representative strategy distributions obtained for a density
of ρ = 0.1 at r = 3 (left column) and at r = 5 (right column).
Panels (a) and (b) show the 2-strategy model, while panels (c) and
(d) depict the 4-strategy case. The panels only show a 100 × 100
section of a larger system. The color code is the same as in Fig. 5.

are not motivated to move; hence, the poor performance of
defector spots remains hidden, which noticeably lowers the
general cooperation level. Interestingly, this mechanism can-
not work at an intermediate density because defector domains
cannot be completely isolated. It is also worth noting that the
above-mentioned Moor effect regarding the time evolution of
the SC strategy is less visible at small densities, the explana-
tion for which is similar to that for the survival of fixed de-
fectors. Specifically, isolated SC actors may reach a state of
satisfaction in the vicinity of similar players; hence, they do
not move, and can keep their original strategy because their
additional cost no longer has any relevance.

Next, we support our arguments by presenting some repre-
sentative patterns obtained at ρ = 0.1. In Fig. 7 we follow
the same logic as in Fig. 5. As the top row highlights, we
have small isolated homogeneous domains in the final state,
where either C or D wins. If we compare the columns, there
is no significant detectable difference between the configura-
tions shown in panels (a) and (b). Here, the r value has no
crucial role because the final local outcome is highly sensitive
to the initial distribution of strategies.

Turning to the 4-strategy case, SD cannot survive; hence,
we did not detect players represented by light red. Com-
pared to the top row, the aggregation of players is obvious
in panels (c) and (d) as a result of sophisticated players’ mi-
gration. Due to the small r value, a small island should be
homogeneous. Here, either cooperation or defection should
prevail locally. Notably, both C and SC strategies can sur-
vive. Adopters of the latter may reach a state of satisfaction
in the vicinity of similar actors and therefore refrain from any
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further movement. For the high r case, the main difference
is that defectors cannot build large domains it is no longer as
easy for them to emerge victorious from the initial battle. This
mechanism results in a significantly higher general coopera-
tion level. However, some isolated red spots remain, which
explains why we cannot realize a full cooperator state here.
The latter would require an effective information percolation
throughout the whole system.

Finally, we briefly discuss the role of the additional cost
parameter f , which is a crucial element of our model com-
pared to the large number of other models previously used
to understand the impact of migration on the original social
dilemma. Evidently, if this cost is too high, then sophisticated
strategies become less viral, and we practically revert to the
original 2-strategy model. Interestingly, however, the behav-
ior of the SD strategy is almost independent of the value of
f , and the strategy only survives in a very limited parameter
area when ρ is sufficiently high and r is in an intermediate
region. From this aspect, the presented behaviors obtained at
f = 0.08 faithfully represent what we can expect of other
moderate f values.

IV. CONCLUSION

It is perhaps unnecessary to emphasize the importance of
exploring the possible impacts of migration on the outcomes
of social dilemmas because individual mobility may gener-
ally result in subtle collective behavior among system mem-
bers [41]. Therefore, the last decade has seen intensive re-
search activity along this path [42–58]. In this research, our
principal motivation was twofold. First, we wanted to ascer-
tain the impact if players have the liberty to decide whether
they want to ponder the option of moving. This aspect can be
modeled using two significantly different families of strate-
gies. While the first one focuses on how to behave in the
original social dilemma, the other entails permanent observa-
tion of the neighborhood, and individuals may move if their
neighbors’ behavior is unsatisfactory. In other words, it could
also be the source of a dilemma regarding whether we want
to ponder with the option of moving. If the answer is yes,
then we will pay the price for extra information and for main-
taining the capacity to change our position. Alternatively, we
can consider the cost of proper movement into this parame-
ter. Notably, the majority of previous work has ignored this
aspect.

It is also worth mentioning that we introduced the so-called
sophisticated players as strategy-neutral, because both coop-
erators and defectors may choose this option. Therefore, its
impact for the cooperation level is far from trivial. Our main
observation was that the introduction of an extra cost has a

highly biased effect on the competition among the original
strategies. In particular, the sophisticated cooperator strategy
is viral and can help to elevate the cooperation level in the ma-
jority of the available area within the parameter space. This
is especially true in a population where the average density is
low and information exchange would be difficult otherwise.
There is a very limited parameter space, with an intermediate
concentration and a low synergy factor, where sophisticated
players’ presence is detrimental. In this narrow parameter re-
gion, the fixed players would have formed an optimal interac-
tion pattern, which provides a high cooperation level. In the
mentioned case, the population is sufficiently rare; hence, de-
fectors have little opportunity to exploit neighboring coopera-
tors. However, because we are beyond the percolation thresh-
old, the positive impact of cooperation can spread throughout
the whole system. Allowing some players to move damages
the latter condition. Consequently, players aggregate more in-
tensively, and the percolation is broken.

The asymmetric impact of the extra cost on strategies is also
evidenced by the fact that sophisticated defectors can only sur-
vive in a very limited parameter area in coexistence with pure
cooperators. In this section of the parameter plane, the popu-
lation is essentially crowded; hence, individual mobility only
has second-order importance. Furthermore, the applied syn-
ergy factor would also allow the coexistence of pure strategies.

In sum, our model is an initial trial to investigate more real-
istic models where all aspects of individual mobility are con-
sidered, allowing us to accurately estimate the impact of this
factor on fundamental social dilemmas. Extensions to other
evolutionary games and alternative interaction graphs would
increase our understanding of the original question.
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