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Since the introduction of next-generation sequencing, the frequency of germline
pathogenic TP53 variants and the number of cases with unusual clinical presentations
have been increasing. This has led to the expansion of the classical Li–Fraumeni syndrome
concept to a wider cancer predisposition syndrome designated as the Li–Fraumeni
spectrum. Here, we present a case with a malignant, metastatic perivascular epithelioid
cell tumor (PEComa) of the thigh muscle and a sinonasal carcinoma harboring a novel
TP53 germline splice mutation (NM_000546.5:c.97-2A>C). The classical presentation of
LFS in the long-since deceased mother and the presence of a germline TP53 variant in the
proband suggested a possible familial TP53-related condition. Complex pathological,
molecular, and clinical genetic analyses (whole exome sequencing of germline variants,
multigene panel sequencing of tumor DNA, Sanger validation, an in vitro functional test on
splicing effect, 3D protein modeling, p53 immunohistochemistry, and pedigree analysis)
were performed. The in vitro characterization of the splice mutation supported the
pathogenic effect that resulted in exon skipping. A locus-specific loss of heterozygosity
in the PEComa but not in the sinonasal carcinoma was identified, suggesting the causative
role of the splice mutation in the PEComa pathogenesis, because we excluded known
pathogenetic pathways characteristic to PEComas (TSC1/2, TFE3, RAD51B). However,
the second hit affecting TP53 in the molecular pathogenesis of the sinonasal carcinoma
was not identified. Although PEComa has been reported previously in two patients with
Li–Fraumeni syndrome, to the best of our knowledge, this is the first report suggesting a
relationship between the aberrant TP53 variant and PEComa.
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INTRODUCTION

Germline pathogenic TP53 variants are associated with Li–
Fraumeni syndrome (LFS), which is a rare, autosomal-dominant,
hereditary tumor syndrome (1). Five cancer types account for the
majority of LFS tumors, which are called “LFS core” tumors:
adrenocortical carcinoma, breast cancer, central nervous system
tumors, osteosarcomas, and soft-tissue sarcomas. However, LFS
patients have an increased risk of several additional cancers, such as
leukemia, lymphoma, gastrointestinal cancers, and cancers of head
and neck, kidney, larynx, lung, skin, ovary, pancreas, prostate, testis,
and thyroid (2). Also, many cases of germline TP53 pathogenic
variants have been identified in children with cancers, or among
adult females with breast cancers without a familial history of
cancer. Hence the expansion of the LFS concept to a wider cancer
predisposition syndrome: the terms “heritable TP53-related cancer
(hTP53rc) syndrome” by the European Reference Network
GENTURIS and “Li-Fraumeni spectrum” by Kratz et al. have
been recently suggested (3, 4). Based on classic, familial cases, the
cumulative cancer risk was initially given as 73%–100% by age 70,
with risks close to 100% in women (5–7). However, based on
population studies, and as a consequence of the increased
availability for high-throughput testing, the overall cancer
penetrance seems to be lower (3, 8). Still, based on a recent
observational cohort study on cancer incidence, patterns, and
genotype–phenotype associations, individuals with Li–Fraumeni
syndrome had a nearly 24 times higher incidence of any cancer
than the general population (9). Additionally, while the disease
prevalence is not well established, the prevalence of the germline
pathogenic TP53 carrier status in the general population was
recently estimated to be approximately 1:4,500 (8).

In clinical genetics, testing criteria for the TP53 gene have been
extensively discussed (3, 4), and for most tumors, based on the
personal or family history suggestive of such a syndrome, germline
testing is recommended (10). In addition, TP53 pathogenic/likely
pathogenic (P/LP) variants are commonly detected somatically, and
it is the most frequently mutated gene in tumor tissues (11–13).
Therefore, it has been recently recommended that when only
somatic testing is performed and a P/LP variant is identified in
the TP53 gene, germline examination is indicated only when it is
detected in sarcomas, breast cancer, or brain tumors (10).

In this current study, we report a peculiar case, where in the
background of an unusual appearance of the Li–Fraumeni
spectrum manifesting in a malignant perivascular epithelioid
cell tumor (PEComa), a novel TP53 pathogenic variant was
identified. While PEComa was described in two previous case
reports of Li–Fraumeni patients (14, 15), PEComa was the first
manifestation of the disease in our patient. Our molecular
genetic assays suggest a potential relationship between the
pathogenic TP53 variant and PEComa development.
METHODS

Immunohistochemistry
Immunohistochemical characterization was performed on a
Ventana Benchmark autostainer (Roche Tissue Diagnostics,
Frontiers in Oncology | www.frontiersin.org 2
Oro Valley, AZ, USA) using the ultraView Universal DAB
Detection Kit. Antibodies used (in alphabetical order) and
vendors were as follows: ERG, H-Caldesmon, MelanA, and
SOX10 (Ventana, Oro Valley, AZ, USA). Further antibodies
CD34 (Dako-Agilent, Santa Clara, CA, USA, 1:200), Desmin
(Dako-Agilent, 1:200), EMA (Dako-Agilent, 1:800), H3K27me3
(Cell Signaling, Danvers, MA, USA, 1:50), HHF35 (Dako-
Agilent, 1:50), HMB45 (Dako-Agilent, 1:50), S100 (Dako-
Agilent, 1:4000), SMA (Dako-Agilent, 1:100), STAT6 (Santa
Cruz, Dallas, TX, USA, 1:100), Vim (Dako-Agilent, 1:100), and
p53 (Dako-Agilent, 1:200) were used.

Fluorescent In Situ Hybridization
Fluorescent in situ hybridization (FISH) was performed using
the ZytoLight® SPEC EWSR1/FLI1 TriCheck™ and ZytoLight®

SPEC TFE3 Dual Color Break Apart Probe.

Genetic Analysis
Germline genetic analysis of the proband and family members
was performed following an informed consent based on the
ethical approval by the Scientific and Research Committee of the
Medical Research Council of the Ministry of Health, Hungary
(ETT-TUKEB 53720-4/2019/EÜIG).

Nucleic Acid Isolation From Peripheral Blood and
From Tumor Tissue
DNA purification from peripheral blood and formalin-fixed
paraffin-embedded (FFPE) tissues was performed using the
Gentra Puregene Blood Kit (Cat No.: 158389, Qiagen, Hilden,
Germany) and the Maxwell RSC DNA FFPE Kit on a Maxwell
RSC Instrument (Cat. No.: S1450, Madison, WI, USA) as part of
the routine molecular pathology diagnostic workflow. For RNA
analysis, blood was collected in Tempus™ Blood RNA Tubes
(Thermo Fisher Scientific, Waltham, MA, USA) and RNA
extraction was performed by using the Tempus™ Spin RNA
Isolation Kit. Nucleic acid quality and quantity were determined
by a NanoDrop® 1000 Spectrophotometer (NanoDrop
Technologies, Thermo Fisher Scientific, Waltham, MA, USA).

Whole Exome Sequencing From Peripheral Blood
Whole exome sequencing was done as previously reported, using
a Twist Human Core Exome library preparation with a Twist
mitochondrial panel (Cat. No.: 102026, Twist Bioscience, San
Francisco, CA, USA) on a NovaSeq Illumina platform (Illumina,
San Diego, CA, USA) with an average coverage of 100x (16).
Data were analyzed by applying the Genome Analysis Toolkit
(GATK) Germline short variant discovery (SNPs + Indels)
algorithm. Annotation of coding variants was performed,
following the American College of Medical Genetics and
Genomics (ACMG) recommendations (17).

Sanger Validation, Site-Specific LOH Analysis, and
RNA Splicing Effect Test
Sanger validation and site-specific LOH analysis were performed
as previously reported (16). Primers used for validation were as
follows: TP53_ex04_FOR 5′-CTGGTAAGGACAAGGGTTGG-
3′; TP53_ex04_REV: 5′-GCCAGGCATTGAAGTCTCAT-3′,
March 2022 | Volume 12 | Article 849004
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a n d f o r LOH t e s t i n g : T P 5 3 _ i n t 4 e x 4 _ F 1 : 5 ′ -
CTGGTAAGGACAAGGGTTGG-3′; TP53_int4ex4_F2: 5′-
ACTTCCTGAAAACAACGTTCTG-3′; TP53_int4ex4_R1:
5′-TCATCTGGACCTGGGTCTTC-3′; TP53_int4ex4_R2: 5′-
TCTGGACCTGGGTCTTCAGT-3′; TP53_int4ex4_R3: 5′-
TCTGGGAGCTTCATCTGGAC-3′.

For testing the splicing effect, RNA extracted from whole
blood was reverse transcribed using SuperScript IV Reverse
Transcriptase (Thermo Fisher Scientific, MA, USA). cDNA
was then PCR-amplified with the following primers: TP53-C-
e02_For: 5′-AGGAAACATTTTCAGACCTATGGA-3′, TP53-
C-e06_Rev: 5′-CTGTCATCCAAATACTCCACACG-3′. PCR
products were subjected to agarose gel electrophoresis next to
controls and were then submitted for Sanger sequencing.

Multigene Panel Sequencing on FFPE Tumor DNA
Multigene panel sequencing of 161 genes related to personalized
tumor therapy with Oncomine™ Comprehensive Assay v3M
(Cat. No.: A35805, Thermo Fisher Scientific, Waltham, MA,
USA) was performed as previously described on an Ion Torrent
next-generation sequencing platform (Ion GeneStudio S5
System, Thermo Fisher Scientific, Waltham, MA, USA) (16).
Data were analyzed using Oncomine Knowledge Reporter
Software (Cat. No.: A34298, Thermo Fisher Scientific,
Waltham, MA, USA).

Monogenic Mutation Analysis of
Sinonasal Carcinoma
A real-time PCR test, a cobas 4800 KRAS Mutation test, and a
BRAF/NRAS mutation test were used according to the
manufacturer’s instructions.

3D Protein Modeling
For protein modeling, prediction, and analysis, Phyre2 software
was used to compare wild-type and variant amino acid sequences
(18). For assessing the variant protein function and disorder
prediction, the Phyre Investigator algorithm was applied.

Variant Classification
Specifications of the ACMG/AMP variant interpretation
guidelines for germline TP53 variants by Fortuno et al. were
applied for variant classification (19). Accordingly, the ClinGen
Sequence Variant Interpretation (SVI) Committee-approved
decision tree (Abou Tayoun et al.) was used to determine the
strength of PVS1 criteria, similarly to the TP53(NM_000546.5):
c.97-1G>A variant (19, 20).
RESULTS

Case Report
A 90 × 60 × 115 mm soft tissue tumor was observed in the medial
part of the right thigh of a 38-year-old, Caucasian male patient.
In addition to the right-thigh tumor, soft-tissue MRI and
thoraco-abdominal and pelvic CT revealed three nodules in the
chest that appeared suspicious for metastatic processes (15-mm
Frontiers in Oncology | www.frontiersin.org 3
nodule in the right-lobe S10; 102-mm nodule in the left-side S6
segment and a 10 × 15 mm nodule subcarinal). Following the
surgical removal of the thigh soft-tissue tumor, which was
diagnosed as a grade III myxofibrosarcoma, chemotherapy (6
series of EPI-ADM, parallel Lartruvo treatment from the second
series) was started (Table 1).

As the pulmonary nodules moderately regressed following
chemotherapy, pulmonary surgery was performed to remove
residual right-lobe nodules. Histology showed necrotizing
granulomatous inflammation.

Three months later, the patient observed bloody rhinorrhea.
Upon CT scanning, soft-tissue densities were observed in the
sinonasal tract. After endoscopic surgery, intestinal-type sinonasal
carcinoma showing typical histology and immunophenotype was
diagnosed. Postoperative radiotherapy resulted in complete
regression of the sinonasal tumor.

Ten months later, a control examination showed a right-lung
nodule: therefore, a right lower lobectomy was performed.
Pathological investigation revealed a cellular tumor showing a
prominent perivascular arrangement. Tumor cells were
pleomorphic with epithelioid or spindle-shaped character, and
they had clear or abundant granular eosinophilic cytoplasm.
Extensive necrotic areas and a very high mitotic rate (77/10HPF)
were observed (Figure 1). Upon immunohistochemistry, tumor
cells showed diffuse vimentin positivity. In the clear cell areas, tumor
cells showed diffuse HMB45 positivity (Figure 1A). Focal but strong
HMB45, desmin, H-Caldesmon, and smooth-muscle-actin
expression were seen in the spindle cell areas (Figure 1A).
Labeling for S100, SOX10, MelanA, cytokeratin (AE1–AE3),
EMA, HHF35, CD34, STAT6, H3K27me3, and ERG was
negative. Tumor cells were almost completely negative for p53
immunohistochemistry. Only scattered pleomorphic cells showed
weak p53 expression. EWSR1 and TFE3 fluorescent in situ
hybridization showed no rearrangement of the examined genes.
The final diagnosis was metastasis of a malignant PEComa (grade
III). In light of the histopathological results of the pulmonary lesion,
the histological findings of the thigh tumor, which was originally
diagnosed as a myxofibrosarcoma by another institute, were
reevaluated by a specialist soft-tissue pathologist. Although the
thigh tumor showed focal myxoid areas, probably resulting in the
original diagnosis of myxofibrosarcoma, morphologically it was a
similar mixture of epithelioid and spindle cells, as seen in the
pulmonary lesion. Since only a limited panel of immuno
histochemistry was performed at the time of the primary
diagnosis, further immunohistochemistry including muscle
markers and HMB45 was performed, which showed the same
positive reaction as in the lung tumor (Figure 1B). As the thigh
tumor showed a similar morphology and immunophenotype, it was
reclassified as a primary PEComa, and the pulmonary tumor was
considered as its metastasis.

Following lobectomy, a control CT was negative. Twelve
months after the lung surgery, the patient appeared to be
tumor free and is under close clinical follow-up (Table 1).

Molecular and Clinical Genetic Findings
We had only a limited amount of tissue from the sinonasal
carcinoma, which was unfortunately not sufficient for multigene
March 2022 | Volume 12 | Article 849004
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analysis. Monogenic analysis using COBAS kits showed no
evidence of KRAS, NRAS, or BRAF mutation.

Multigene panel (161 genes) sequencing was performed in the
malignant PEComa and identified a TP53(NM_000546.5):c.97-
2A>C variant with 66.21% allele frequency (variant allele
frequency, VAF), but no other therapy-predictive pathogenic
variant or gene fusion was detected. As VAF of the TP53 variant
suggested a potential germline presence, the patient was referred
for genetic consultation and molecular genetic analysis in our
department. During the consultation and pedigree analysis, Li–
Fraumeni core tumors in the long-since deceased mother of the
proband were identified (osteosarcoma at age 14; breast cancer at
the age of 33 and ovarian cancer at the age of 35). Based on the
available information, no other relative was affected (Figure 2).

We performed targeted Sanger sequencing of the identified
variant and proved the germline presence of the TP53
(NM_000546.5):c.97-2A>C variant (Figure 3A). Exome
sequencing was also performed but was not able to identify other
pathogenic variants in the compulsory gene list report or in potential
hereditary cancer genes. Comparing the germline and the somatic
(tumor types) variants, a partial locus-specific loss of heterozygosity
(normalized reduction of the reference allele quantity was 0.3 relative
to the variant allele) was observed in the PEComa, whereas no LOH
was identified in the sinonasal carcinoma (Figures 3A, B).
Additionally, in vitro RNA testing proved whole exon 4 skipping
due to the TP53(NM_000546.5):c.97-2A>C variant (Figure 3A).

While this exon skipping does not lead to a frame shift, it
results in a loss of 93 amino acids (from amino acids 32 to 125) at
Frontiers in Oncology | www.frontiersin.org 4
the protein level. Based on protein modeling, the variant protein
was predicted to have a different 3D structure (Figure 4).
Additionally, 40.8% of the lost amino acids were predicted as
“disordered” in the 3D structure, meaning that the change or loss
might lead to damaged protein structure/function. This was also
in line with the p53 immunohistological finding.

Based on the molecular and clinical findings, the TP53-specific
ACMG classification of TP53(NM_000546.5):c.97-2A>C in this
proband is Class 5, “pathogenic,” because it affects a splice site
(PVS1_strong), is not found in gnomAD exomes or genomes
(PM2_supporting), and matches computational predictions
(PP3_mooderate). Furthermore, our additional evidence supports
its pathogenicity: i) exon-skipping using an in vitro functional test
and ii) thenegativeTP53 immunohistochemistryon the tumor tissue.
DISCUSSION

We identified the TP53(NM_000546.5):c.97-2A>C variant as a
novel, germline pathogenic alteration in the background a thigh-
muscle PEComa. This variant, to the best of our knowledge, has
not been previously reported in the literature. In the ClinVar
database, a single submitter reported a different variant at the
same localization (accession: VCV000246337.1; NM_000546.5:
c.97-2A>G), but the molecular in vitro characterization of this
variant has not been performed. Additionally, another variant
affecting the same splice site at a different localization,
NM_000546.5:c.97-1G>A, was identified in a patient meeting
TABLE 1 | Timeline of the patient history.

Date Event

25 June 2018 Ultrasound confirmation of a lump on the right thigh (90 × 60 × 115 mm inhomogeneous, vascularized, cystic lesion)
3 July 2018 MRI of the thigh identified a 87 × 79 × 120 mm lesion
5 July 2018 Chest, abdominal, pelvic CT for staging identified 3 lesions suspected as metastasis in the lung (right lobe S10 segment -15 mm, S6 - 102

mm, subcarinal 10 × 15 mm)
11 July 2018 Surgical removal of the thigh lesion. Histological diagnosis: myxofibrosarcoma grade III. Following surgery, chemotherapy was started (6

cycles epiADM, from the second cycle with additional Latruvo treatment)
5 October 2018 Control MRI of the thigh: no tumor/recurrence was found
15 November 2018 Chest, abdominal, pelvic CT: lung nodules were regressed (right lobe S10 segment -12 mm, S6 - 6 mm, subcarinal 11 × 7 mm).
4 December 2018 Consultation of thoracic surgery: radiation therapy of the lung and mediastinal nodules are recommended. Right S10 and subcarinal

nodules can be removed by minimal invasive approach.
20 January 2019 Video-assisted thoracoscopic surgery, VATS
21 February 2019 Histology of the lung nodules and lymph nodes: No malignancy can be detected. Necrotizing granulomatous inflammation.
3 March 2020 The patient observed nasal congestion in the right nostril along with bloody rhinorrhea
5 May 2020 Endoscopic Surgery (following head and face CT & MRI), histology: adenocarcinoma, intestinal type
9 June 2020–16 July 2020 Radiochemoterapy (tumor bed irradiation with 54 Gy, along with cisplatin and 5FU chemotherapy)
9 September 2020 Control MRI of the skull and neck; CT of the skull and rhinobasis. Postoperative radiotherapy resulted in complete regression of the

sinonasal lesion. No residual or recurrent tumor can be detected
4 October 2020 Control chest CT scan revealed a 27-mm nodule in the S10 mediastinal segment of the right lobe. Consultation for thoracic surgery

recommended removal.
29 October 2020 PET/CT scan identified FDG uptake in a soliter nodule in the right lower lobe nodule, suggesting a metastasis in the lung.
16 November 2020 Thoracic surgery: right lobectomy
27 November 2020 Histology: I. metastasis of a malignant PEComa (grade III) in the right lobe; II: lymph nodes are tumor free
14 December 2020 Control MRI of the skull and neck; CT of the skull and rhinobasis: no residual or recurrent tumor can be detected
7 January 2021 Tumor board recommended close follow up
7 April 2021 Control MRI of the skull and neck; CT of the skull and rhinobasis: no residual or recurrent tumor can be detected
17 June 2021–14 July
2021

Control whole body MRI (abdomen, pelvis and thigh), and skull and neck MRI and spine & chest MRI: no residual or recurrent tumor can be
detected

17 November 2020–24
November 2020

Control MRI of the skull, chest, abdomen, and thighs indicated no residual or recurrent tumor
March 2022 | Volume 12 | Article 849004
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Chompret criteria and was found to cause abnormal splicing
upon functional assay analysis (21, 22). We proved that the
newly identified NM_000546.5:c.97-2A>C variant led to exon 4
skipping, potentially resulting in a different p53 protein structure
Frontiers in Oncology | www.frontiersin.org 5
that would be predicted to have decreased stability. This is
supported by p53 immunohistochemistry, where tumor cells
were predominantly negative, and only scattered, focal
positivity could be seen in pleomorphic cells.
FIGURE 2 | Pedigree of the proband.
A

B

FIGURE 1 | Immunohistochemistry of the PEComa tissue. (A) PEComa metastasis in the lung. (B) Primary tumor.
March 2022 | Volume 12 | Article 849004
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PEComas (perivascular epithelioid cell tumors) are rare,
mesenchymal tumors of uncertain malignant potential, as
recurrences may occur years after the initial diagnosis.
Malignant metastasizing PEComas are very rare (23). The
differential diagnosis can include carcinomas, smooth muscle
tumors, and adipocytic neoplasms (23). Our case (first diagnosed
Frontiers in Oncology | www.frontiersin.org 6
as myxofibrosarcoma of the muscle) highlights the difficulties in
the pathological diagnosis of malignant PEComa. Regarding
PEComa pathogenesis, alterations in two, or recently three,
main pathways have been described. Most commonly, a loss of
function in the tuberous sclerosis complex subunit 1, TSC1
(~27%) or TSC2 (~73%), has been observed due to deletion or
FIGURE 4 | Illustration of TP53(NM_000546.5) exon 4 skipping at the DNA, cDNA, and protein levels. 3D modeling of the wild-type and variant protein indicated
different structures (visualized by JSmol).
A

B

FIGURE 3 | (A) Germline heterozygous TP53(NM_000546.5):c.97-2A>C variant in the DNA isolated from blood. cDNA sequencing identified exon 4 skipping,
accordingly. On the electrophoresis gel, the 600-bp PCR product indicates the wild type, the 550-bp PCR product indicates a heteroduplex, and the 300-bp PCR
product was confirmed as a skipped exon 4 transcript following Sanger sequencing. (C1, C2, C3 were used as controls). (B) Sanger sequencing in the PEComa
tissue sample indicated the loss of the wild-type (wt) allele in the tumor: loss of heterozygosity (LOH) was detected. In sinonasal carcinoma, wild-type and variant
alleles are presented in ~50%–50%: no LOH was detected.
March 2022 | Volume 12 | Article 849004
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pathogenic missense variants, leading to activated mTOR
signaling and increased cell growth (23, 24). TSC1 or TSC2
inactivation can appear somatically, or in individuals already
harboring a germline TSC1/2 mutation. In both cases, mTOR
inhibition can be a potential therapeutic option. The other main
molecular feature behind PEComa pathogenesis (in
approximately 23% of cases) is the rearrangement affecting
TFE3 (transcription factor binding to IGHM enhancer 3),
which is implicated in cell differentiation (23, 24). This has a
significant clinical importance, as these tumors might be non-
responsive to mTOR inhibition. Lately, rearrangements of
RAD51B in uterine PEComas have also been identified (23).
Similar to other tumors, somatic TP53 mutations have been
described in PEComas, and they are potentially linked to
malignancy (24–27).

Most PEComas are sporadic, and only a small subset is
associated with the hereditary condition TSC. Recently, our
group also identified a PTCH1 mutation in a patient with
bilateral intra-abdominal PEComas suffering from Gorlin-Goltz
syndrome (16). PEComas have been reported in only two Li–
Fraumeni cases in the literature to date (14, 15). Contrary to these
two examples, in our case the PEComa was the first manifestation
in the LFS proband. In our case, we could not detect TSC1 or TSC2
sequence- or copy-number variants, either in the germline or
somatically. The causative role of RAD51B was also excluded by
multigene panel sequencing, copy number analysis, and fusion
analysis. We did not detect TFE3 rearrangement by FISH analysis,
which further reduces the likelihood of a causative role of the TFE3
pathway in the pathogenesis. However, we identified a site-specific
LOH in the PEComa tissue regarding the novel TP53 pathogenic
variant. The normal allele was lost in favor of the non-functional
allele harboring the pathogenic variant, and this was supported by
the immunohistochemical findings. This suggested a role for the
defective TP53 pathway in the PEComa pathogenesis, which is also
reported to be associated with the malignant, metastatic form of
this tumor type in this patient.

While a sinonasal carcinoma can be part of the Li–Fraumeni
spectrum, we were not able to identify the second hit affecting
TP53 that causes the tumor development.

As TP53 pathogenic variants contribute to cancer
proliferation and metastasis, targeting the signaling pathways
that become altered by p53 mutation seems to be an attractive
strategy (28). Whereas in the clinical practice there is currently
no such drug available, several agents are under investigation in
clinical trials (28). The prognostic and predictive role of TP53
pathogenic variants has been intensively investigated and
reported in somatic settings (29). Currently, there are no
special recommendations for treatment of the Li–Fraumeni
spectrum; indeed, there are reports of treatment (chemo- and
radiotherapy) failure (30). While the primary goal is always the
treatment of the actual malignant disease, the radiation (both
diagnostic and therapeutic) exposure should be minimized, as
subsequent primary tumors, particularly within the radiotherapy
field, often develop after the exposure (3). Therefore, avoiding
radiotherapy when possible and instead using preferably non-
genotoxic chemotherapies are recommended by recent
guidelines (3).
Frontiers in Oncology | www.frontiersin.org 7
The genetic counseling of patients carrying pathogenic TP53
variants is essential. Following international and national
guidelines, the patients have to be informed of the disease, the
risk of tumor development and localization, the potential options
related to surveillance, and the screening of first-degree or at-risk
relatives (3, 9). Accordingly, pre- and posttest genetic counseling
and family screening were performed in our PEComa patient.
CONCLUSION

We identified a novel TP53 splice variant in an attenuated LFS
patient manifesting with a malignant PEComa of unusual
appearance. This rare, unexpected phenotype of the patient
highlights the importance of the introduction of the Li–Fraumeni
spectrum instead of the classic LFS concept. Additionally, using
complex molecular genetic assays, we demonstrated the pathogenic
role of a novel TP53 germline variant in the development of the
PEComa. This may help with the interpretation of this variant in
other patients identified in the future.
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